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We establish the existence of solutions to systems of second-order dynamic equations on time
scales with the right member f , a Δ-Carathéodory function. First, we consider the case where
the nonlinearity f does not depend on the Δ-derivative, xΔ(t). We obtain existence results for
Strum-Liouville and for periodic boundary conditions. Finally, we consider more general systems
in which the nonlinearity f depends on the Δ-derivative and satisfies a linear growth condition
with respect to xΔ(t). Our existence results rely on notions of solution-tube that are introduced in
this paper.

1. Introduction

In this paper, we establish existence results for the following systems of second-order
dynamic equations on time scales:

xΔΔ(t) = f(t, x(σ(t))), Δ-a.e. t ∈ �κ2

0 , x ∈ (BC), (1.1)

xΔΔ(t) = f
(
t, x(σ(t)), xΔ(t)

)
, Δ-a.e. t ∈ �κ2

0 ,

a0x(a) − xΔ(a) = x0, a1x(b) + γ1x
Δ(ρ(b)) = x1.

(1.2)
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Here, � is a compact time scale where a = min�, b = max�, and �
κ2

0 is defined in (2.4).
The map f : �κ

0 × �n → �
n is Δ-Carathéodory (see Definition 2.9), and (BC) denotes one of

the following boundary conditions:

x(a) = x(b),

xΔ(a) = xΔ(ρ(b)),
(1.3)

a0x(a) − γ0x
Δ(a) = x0,

a1x(b) + γ1x
Δ(ρ(b)) = x1,

(1.4)

where a0, a1, γ0, γ1 ≥ 0, max{a0, γ0} > 0, and max{a1, γ1} > 0.
Problem (1.1) was mainly treated in the case where it has only one equation (n = 1)

and f is continuous. In particular, the existence of a solution of (1.1) was established by
Akın [1] for the Dirichlet boundary condition and by Stehlı́k [2] for the periodic boundary
condition. Equation (1.1) with nonlinear boundary conditions was studied by Peterson et al.
[3]. In all those results, the method of lower and upper solutions was used. See also [4, 5] and
the references therein for other results on the problem (1.1) when n = 1.

Very few existence results were obtained for the system (1.1) when n > 1. Recently,
Henderson et al. [6] and Amster et al. [7] established the existence of solutions of (1.1)
with Sturm-Liouville and nonlinear boundary conditions, respectively, assuming that f is
a continuous function satisfying the following condition:

∃R > 0 such that
〈
x, f(t, x)

〉
> 0 if ‖x‖ = R. (1.5)

The fact that the right member in the system (1.2) depends also on the Δ-derivative,
xΔ, increases considerably the difficulty of this problem. So, it is not surprising that there are
almost no results for this problem in the literature. Atici et al. [8] studied this problem in the
particular case, where there is only one equation (n = 1) and f is positive, continuous and
satisfies a monotonicity condition. Assuming a growth condition of Wintner type and using
the method of lower and upper solutions, they obtained the existence of a solution.

The system (1.2) with the Dirichlet boundary condition was studied by Henderson
and Tisdell [9] in the general case where n > 1. They considered f a continuous function and
� a regular time scale (i.e., ρ(t) < t < σ(t) or � = [a, b]). They established the existence of a
solution of (1.2) under the following assumptions:

(A1) there exists R > max{‖x0‖, ‖x1‖} such that 2〈x, f(t, x, y)〉 + ‖y‖2 > 0 if ‖x‖ = R,
−2〈x, y〉 ≤ μ(t)‖y‖2,

(A2) there exist c, d ≥ 0 such that d(ρ(b) − a) < 1 and ‖f(t, x, y)‖ ≤ c + d‖y‖ if ‖x‖ ≤ R.

In the third section of this paper, we establish an existence theorem for the system (1.1).
To this aim, we introduce a notion of solution-tube of (1.1) which generalizes to systems
the notions of lower and upper solutions introduced in [1, 2]. This notion generalizes also
condition (1.5) used by Henderson et al. [6] and Amster et al. [7]. Our notion of solution-
tube is in the spirit of the notion of solution-tube for systems of second-order differential
equations introduced in [10]. Our notion is new even in the case of systems of second-order
difference equations.
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In the last section of this paper,we study the system (1.2). Again, we introduce a notion
of solution-tube of (1.2) which generalizes the notion of lower and upper solutions used by
Atici et al. [8]. This notion generalizes also condition (1.5) and the notion of solution-tube of
systems of second-order differential equations introduced in [10]. In addition, we assume that
f satisfies a linear growth condition. It is worthwhile to mention that the time scale � does
not need to be regular, and we do not require the restriction d(ρ(b) − a) < 1 as in assumption
(A2) used in [9].

Moreover, we point out that the right members of our systems are not necessarily
continuous. Indeed, we assume that the weaker condition: f is a Δ-Carathéodory function.
This condition is interesting in the case where the points of � are not all right scattered.
We obtain the existence of solutions to (1.1) and to (1.2) in the Sobolev space W2,1

Δ (�,�n).
To our knowledge, it is the first paper applying the theory of Sobolev spaces with topological
methods to obtain solutions to (1.1) and (1.2). Solutions of second-orderHamiltonian systems
on time scales were obtained in a Sobolev space via variational methods in [11]. Finally, let us
mention that our results are new also in the continuous case and for systems of second-order
difference equations.

2. Preliminaries and Notations

For sake of completeness, we recall some notations, definitions, and results concerning
functions defined on time scales. The interested readermay consult [12, 13] and the references
therein to find the proofs and to get a complete introduction to this subject.

Let � be a compact time scale with a = min� < b = max�. The forward jump operator
σ : � → � (resp., the backward jump operator ρ : � → �) is defined by

σ(t) =

⎧
⎨
⎩
inf{s ∈ � : s > t} if t < b,

b if t = b,

⎛
⎝resp., ρ(t) =

⎧
⎨
⎩
sup{s ∈ � : s < t} if t > a,

a if t = a

⎞
⎠.

(2.1)

We say that t < b is right scattered (resp., t > a is left scattered) if σ(t) > t (resp., ρ(t) < t)
otherwise, we say that t is right dense (resp., left dense). The set of right-scattered points of � is
at most countable, see [14]. We denote it by

R� := {t ∈ � : t < σ(t)} = {ti : i ∈ I}, (2.2)

for some I ⊂ �. The graininess function μ : � → [0,∞) is defined by μ(t) = σ(t) − t. We denote

�
κ = � \ (ρ(b), b], �0 = � \ {b}. (2.3)

So, �κ = � if b is left dense, otherwise �κ = �0. Since �κ is also a time scale, we denote

�
κ2

= (�κ)κ, �
κ2

0 = �κ2 \ {b}. (2.4)
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In 1990, Hilger [15] introduced the concept of dynamic equations on time scales.
This concept provides a unified approach to continuous and discrete calculus with the
introduction of the notion of delta-derivative xΔ(t). This notion coincides with x′(t) (resp.,
Δx(t)) in the case where the time scale � is an interval (resp., the discrete set {0, 1, . . . ,N}).

Definition 2.1. A map f : � → �
n is Δ-differentiable at t ∈ �κ if there exists fΔ(t) ∈ �n (called

the Δ-derivative of f at t) such that for all ε > 0, there exists a neighborhood U of t such that

∥∥∥
(
f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

)∥∥∥ ≤ ε|σ(t) − s| ∀s ∈ U. (2.5)

We say that f is Δ-differentiable if fΔ(t) exists for every t ∈ �κ.
If f isΔ-differentiable and if fΔ isΔ-differentiable at t ∈ �κ2

, we call fΔΔ(t) = (fΔ)Δ(t)
the second Δ-derivative of f at t.

Proposition 2.2. Let f : � → �
n and t ∈ �κ.

(i) If f is Δ-differentiable at t, then f is continuous at t.

(ii) If f is continuous at t ∈ R�, then

fΔ(t) =
f(σ(t)) − f(t)

μ(t)
. (2.6)

(iii) The map f is Δ-differentiable at t ∈ �κ \ R� if and only if

fΔ(t) = lim
s→ t

f(t) − f(s)
t − s

. (2.7)

Proposition 2.3. If f : � → �
n and g : � → �

m are Δ-differentiable at t ∈ �κ, then

(i) if n = m, (αf + g)Δ(t) = αfΔ(t) + gΔ(t) for every α ∈ �,
(ii) if m = 1, (fg)Δ(t) = g(t)fΔ(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + g(σ(t))fΔ(t),

(iii) if m = 1 and g(t)g(σ(t))/= 0, then

(
f

g

)Δ

(t) =
g(t)fΔ(t) − f(t)gΔ(t)

g(t)g(σ(t))
, (2.8)

(iv) if W ⊂ �
n is open and h : W → � is differentiable at f(t) ∈ W and t /∈R�, then

(h ◦ f)Δ(t) = 〈h′(f(t)), fΔ(t)〉.

We denote C(�,�n ) the space of continuous maps on �, and we denote C1(�,�n) the
space of continuous maps on � with continuous Δ-derivative on �κ. With the norm ‖x‖0 =
max{‖x(t)‖ : t ∈ �} (resp., ‖x‖1 = max{‖x‖0,max{‖xΔ(t)‖ : t ∈ �

κ}}), C(�,�n) (resp.,
C1(�,�n)) is a Banach space.
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We study the second Δ-derivative of the norm of a map.

Lemma 2.4. Let x : � → �
n be Δ-differentiable.

(1) On {t ∈ �κ2
: ‖x(σ(t))‖ > 0 and xΔΔ(t) exists},

‖x(t)‖ΔΔ ≥ 〈x(σ(t)), xΔΔ(t)〉
‖x(σ(t))‖ . (2.9)

(2) On {t ∈ �κ2 \ R� : ‖x(σ(t))‖ > 0 and xΔΔ(t) exists},

‖x(t)‖ΔΔ =
〈x(t), xΔΔ(t)〉 + ‖xΔ(t)‖2

‖x(t)‖ − 〈x(t), xΔ(t)〉2
‖x(t)‖3 . (2.10)

Proof. Denote A = {t ∈ �
κ2

: ‖x(σ(t))‖ > 0 and xΔΔ(t) exists}. By Proposition 2.3, on the set
A \ R�, we have

‖x(t)‖Δ =
〈x(t), xΔ(t)〉

‖x(t)‖ ,

‖x(t)‖ΔΔ =
〈x(t), xΔΔ(t)〉 + ‖xΔ(t)‖2

‖x(t)‖ − 〈x(t), xΔ(t)〉2
‖x(t)‖3 ≥ 〈x(σ(t)), xΔΔ(t)〉

‖x(σ(t))‖ .

(2.11)

If t ∈ A is such that t < σ(t) = σ2(t), then by Propositions 2.2 and 2.3, we have

‖x(t)‖ΔΔ =
‖x(σ(t))‖Δ − ‖x(t)‖Δ

μ(t)

=
〈x(σ(t)), xΔ(σ(t))〉

μ(t)‖x(σ(t))‖ − ‖x(σ(t))‖ − ‖x(t)‖
μ(t)2

=
〈x(σ(t)), xΔ(t) + μ(t)xΔΔ(t)〉

μ(t)‖x(σ(t))‖ − 〈x(σ(t)), x(t) + μ(t)xΔ(t)〉
μ(t)2‖x(σ(t))‖

+
‖x(t)‖
μ(t)2

=
〈x(σ(t)), xΔΔ(t)〉

‖x(σ(t))‖ − 〈x(σ(t)), x(t)〉
μ(t)2‖x(σ(t))‖

+
‖x(t)‖
μ(t)2

≥ 〈x(σ(t)), xΔΔ(t)〉
‖x(σ(t))‖ .

(2.12)
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If t ∈ A is such that t < σ(t) < σ2(t), then

‖x(t)‖ΔΔ =
‖x(σ(t))‖Δ − ‖x(t)‖Δ

μ(t)

=
‖x(σ2(t)

)‖ − ‖x(σ(t))‖
μ(σ(t))μ(t)

− ‖x(σ(t))‖ − ‖x(t)‖
μ(t)2

≥ 〈x(σ(t)), x(σ2(t)
) − x(σ(t))〉

μ(σ(t))μ(t)‖x(σ(t))‖ − ‖x(σ(t))‖ − ‖x(t)‖
μ(t)2

=
〈x(σ(t)), xΔ(σ(t))〉

μ(t)‖x(σ(t))‖ − ‖x(σ(t))‖ − ‖x(t)‖
μ(t)2

,

(2.13)

and we conclude as in the previous case.

Let ε > 0. The exponential function eε(·, t0) is defined by

eε(t, t0) = exp

(∫

[t0,t)∩�
ξε
(
μ(s)

)
Δs

)
, (2.14)

where

ξε(h) =

⎧
⎪⎨
⎪⎩

ε, if h = 0,

log(1 + hε)
h

, if h > 0.
(2.15)

It is the unique solution to the initial value problem

xΔ(t) = εx(t), x(t0) = 1. (2.16)

Here is a result on time scales, analogous to Gronwall’s inequality. The reader may
find the proof of this result in [13].

Theorem 2.5. Let α > 0, ε > 0, and y ∈ C(�,�). If

y(t) ≤ α +
∫

[a,t)∩�
εy(s)Δs for every t ∈ �, (2.17)

then

y(t) ≤ αeε(t, a) for every t ∈ �. (2.18)

We recall some notions and results related to the theory of Δ-measure and Δ-Lebesgue
integration introduced by Bohner and Guseinov in [12]. The reader is also referred to [14]
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for expressions of the Δ-measure and the Δ-integral in terms of the classical Lebesgue
measure and the classical Lebesgue integral, respectively.

Definition 2.6. A set A ⊂ � is said to be Δ-measurable if for every set E ⊂ �,

m∗
1(E) = m∗

1(E ∩A) +m∗
1(E ∩ (� \A)), (2.19)

where

m∗
1(E) =

⎧
⎪⎨
⎪⎩
inf

{
m∑
k=1

(dk − ck) : E ⊂
m⋃
k=1

[ck, dk) with ck, dk ∈ �
}

if b /∈E,

∞ if b ∈ E.

(2.20)

The Δ-measure onM(m∗
1) := {A ⊂ � : A is Δ-measurable}, denoted by μΔ, is the restriction of

m∗
1 toM(m∗

1). So, (�,M(m∗
1), μΔ) is a complete measurable space.

Proposition 2.7 (see [14]). Let A ⊂ �, then A is Δ-measurable if and only if A is Lebesgue
measurable. Moreover, if b /∈A,

μΔ(A) = m(A) +
∑

ti∈A∩R�
(σ(ti) − ti), (2.21)

wherem is the Lebesgue measure.

The notions of Δ-measurable and Δ-integrable functions f : � → �
n can be defined

similarly to the general theory of Lebesgue integral.
Let E ⊂ � be a Δ-measurable set and f : � → �

n a Δ-measurable function. We say
that f ∈ L1

Δ(E,�
n) provided

∫

E

‖f(s)‖Δs < ∞. (2.22)

The set L1
Δ(�0,�n) is a Banach space endowed with the norm

‖f‖L1
Δ
:=
∫

�0

‖f(s)‖Δs. (2.23)

Here is an analog of the Lebesgue dominated convergence Theorem which can be proved as
in the general theory of Lebesgue integration theory.

Theorem 2.8. Let {fk}k∈� be a sequence of functions in L1
Δ(�0,�n). Assume that there exists

a function f : �0 → �
n such that fk(t) → f(t) Δ-a.e. t ∈ �0, and there exists a function

g ∈ L1
Δ(�0) such that ‖fk(t)‖ ≤ g(t) Δ-a.e. t ∈ �0 and for every k ∈ �, then fk → f in L1

Δ(�0,�n).

In our existence results, we will consider Δ-Carathéodory functions.
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Definition 2.9. A function f : �0 × �m → �
n is Δ-Carathéodory if the following conditions

hold:

(i) t �→ f(t, x) is Δ-measurable for every x ∈ �m ,

(ii) x �→ f(t, x) is continuous for Δ-almost every t ∈ �0,

(iii) for every r > 0, there exists hr ∈ L1
Δ(�0, [0,∞)) such that ‖f(t, x)‖ ≤ hr(t) for

Δ-almost every t ∈ �0 and for every x ∈ �m such that ‖x‖ ≤ r.

In this context, there is also a notion of absolute continuity introduced in [16].

Definition 2.10. A function f : � → �
n is said to be absolutely continuous on � if for every

ε > 0, there exists a δ > 0 such that if {[ak, bk)}mk=1 with ak, bk ∈ � is a finite pairwise disjoint
family of subintervals satisfying

m∑
k=1

(bk − ak) < δ, then
m∑
k=1

‖f(bk) − f(ak)‖ < ε. (2.24)

Proposition 2.11 (see [17]). If f : � → �
n is an absolutely continuous function, then the

Δ-measure of the set {t ∈ �0 \ R� : f(t) = 0 and fΔ(t)/= 0} is zero.

Proposition 2.12 (see [17]). If g ∈ L1
Δ(�0,�n) and f : � → �

n is the function defined by

f(t) :=
∫

[a,t)∩�
g(s)Δs, (2.25)

then f is absolutely continuous and fΔ(t) = g(t) Δ-almost everywhere on �0.

Proposition 2.13 (see [16]). A function f : � → � is absolutely continuous on � if and only if f
is Δ-differentiable Δ-almost everywhere on �0, fΔ ∈ L1

Δ(�0) and

∫

[a,t)∩�
fΔ(s)Δs = f(t) − f(a), for every t ∈ �. (2.26)

We also recall a notion of Sobolev space, see [18],

W1,1
Δ (�,�n) =

{
x ∈ L1

Δ(�0,�
n) : ∃g ∈ L1

Δ(�0,�
n) such that

∫

�0

x(s)φΔ(s)Δs

= −
∫

�0

g(s)φ(σ(s))Δs for every φ ∈ C1
0,rd(�)

}
,

(2.27)
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where

C1
0,rd(�) =

{
φ : � → � : φ(a) = 0 = φ(b), φ is Δ-differentiable and

φΔ is continuous at right-dense points of � and

its left-sided limits exist at left-dense points of �
}
.

(2.28)

A function x ∈ W1,1
Δ (�,�n) can be identified to an absolutely continuous map.

Proposition 2.14 (see [18]). Suppose that x ∈ W1,1
Δ (�,�) with some g ∈ L1

Δ(�0,�) satisfying
(2.27), then there exists y : � → � absolutely continuous such that

y = x, yΔ = g Δ-a.e. on �0. (2.29)

Moreover, if g is Crd(�κ,�), then there exists y ∈ C1
rd(�,�) such that

y = x Δ-a.e. on �0, yΔ = g Δ-a.e. on �κ. (2.30)

Sobolev spaces of higher order can be defined inductively as follows:

W2,1
Δ (�,�n) =

{
x ∈ W1,1

Δ (�,�n) : xΔ ∈ W1,1
Δ (�κ,�n)

}
. (2.31)

With the norm ‖x‖W1,1
Δ

:= ‖x‖L1
Δ
+ ‖xΔ‖L1

Δ
(resp., ‖x‖W2,1

Δ
:= ‖x‖L1

Δ
+ ‖xΔ‖L1

Δ
+ ‖xΔΔ‖L1

Δ
),

W1,1
Δ (�,�n) (resp.,W2,1

Δ (�,�n)) is a Banach space.

Remark 2.15. By Proposition 2.7, we know that μΔ({t}) > 0 for every t ∈ R�. From this fact
and the previous proposition, one realizes that there is no interest to look for solutions to
(1.1) and (1.2) in W2,1

Δ (�,�n) and to consider Δ-Carathéodory maps f in the case where the
time scale is such that μΔ(�0 \ R�) = 0. In particular, this is the case for difference equations.
Let us point out that we consider more general time scales. Nevertheless, the results that we
obtained are new in both cases.

As in the classical case, some embeddings have nice properties.

Proposition 2.16 (see [18]). The inclusion j1 : W
2,1
Δ (�,�n) → C1(�,�n) is continuous.

Proposition 2.17. The inclusion j0 : W2,1
Δ (�,�n) ↪→ C(�,�n) is a continuous, compact, linear

operator.

Proof. Arguing as in the proof of the Arzelà-Ascoli Theorem, we can show that the inclusion
i : C1(�,�n) ↪→ C(�,�n) is linear, continuous, and compact. The conclusion follows from the
previous proposition since j0 = i ◦ j1.

We obtain a maximum principle in this context. To this aim, we use the following
result.
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Lemma 2.18 (see [19]). Let f : � → � be a function with a local maximum at t0 ∈ (a, b) ∩ �.
If fΔΔ(ρ(t0)) exists, then fΔΔ(ρ(t0)) ≤ 0 provided t0 is not at the same time left dense and right
scattered.

Theorem 2.19. Let r ∈ W2,1
Δ (�) be a function such that rΔΔ(t) > 0 Δ-almost everywhere on {t ∈

�
κ2

0 : r(σ(t)) > 0}. If one of the following conditions holds:
(i) a0r(a) − γ0rΔ(a) ≤ 0 and a1r(b) + γ1rΔ(ρ(b)) ≤ 0 (where a0, a1, γ0, and γ1 are defined as

in (1.4)),

(ii) r(a) = r(b) and rΔ(a) ≥ rΔ(ρ(b)),

then r(t) ≤ 0, for every t ∈ �.

Proof. If the conclusion is false, there exists t0 ∈ � such that

r(t0) = max
t∈�

r(t) > 0. (2.32)

In the case where a ≤ ρ(t0) < t0 < b, then rΔΔ(ρ(t0)) exists since μΔ({ρ(t0)}) = t0 −
ρ(t0) > 0 and r ∈ W2,1

Δ (�). By Lemma 2.18, rΔΔ(ρ(t0)) ≤ 0, which is a contradiction since
r(σ(ρ(t0))) = r(t0) > 0.

If a < ρ(t0) = t0 = σ(t0) < b, there exists t1 > t0 such that r(σ(t)) > 0 for every
t ∈ (t0, t1) ∩ �. On the other hand, since r(t0) is a maximum, rΔ(t0) = 0, and there exists
s ∈ (t0, t1) such that rΔ(s) ≤ 0, thus,

0 ≥ rΔ(s) − rΔ(t0) =
∫

[t0,s)∩�
rΔΔ(τ)Δτ > 0, (2.33)

by hypothesis and Proposition 2.13, which is a contradiction. Observe that the same argument
applies if a = ρ(t0) = t0 = σ(t0) and rΔ(t0) = 0. Notice also that if ρ(t0) = t0 = σ(t0) = b and
rΔ(t0) = 0, we get a contradiction with an analogous argument for a suitable t1 < t0.

If a ≤ ρ(t0) = t0 < σ(t0) < b and r(t0) = r(σ(t0)), we argue as in the first case replacing
t0 by σ(t0) to obtain a contradiction.

In the case where a < ρ(t0) = t0 < σ(t0) ≤ b and r(t0) > r(σ(t0)), then rΔ(t0) < 0. Since
t �→ rΔ(t) is continuous, there exists δ > 0 such that rΔ(t) < 0 on an interval (t0 − δ, t0), which
contradicts the maximality of r(t0).

Observe that a = t0 and rΔ(a) < 0 could happen if a = t0 = σ(t0) or if a = t0 < σ(t0)
and r(a) > r(σ(a)). In this case, we get a contradiction if r satisfies condition (i). On the other
hand, if r satisfies condition (ii), then r(b) = r(a) > 0 and rΔ(ρ(b)) < 0. So ρ(b) = b since
r(b) ≥ r(ρ(b)). This contradicts the maximality of r(b).

On the other hand, the case where t0 = b and r satisfies condition (i) can be treated
similarly to the previous case.

Finally, we define the Δ-differential operator associated to the problems that we will
consider

L : W2,1
Δ,B(�,�

n) −→ L1
Δ

(
�
κ
0 ,�

n) defined by L(x)(t) := xΔΔ(t) − x(σ(t)), (2.34)
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whereW2,1
Δ,B(�,�

n) := {x ∈ W2,1
Δ (�,�n) : x ∈ (BC)}with (BC) denoting the periodic boundary

condition (1.3) or the Sturm-Liouville boundary condition (1.4).

Proposition 2.20. The operator L is invertible and L−1 is affine and continuous.

Proof. If (BC) denotes the Sturm-Liouville boundary condition (1.4), consider the associated
homogeneous boundary condition

a0x(a) − γ0x
Δ(a) = 0,

a1x(b) + γ1x
Δ(ρ(b)) = 0.

(2.35)

Denote

W2,1
Δ,B0

(�,�n) =

⎧
⎪⎨
⎪⎩

{
x ∈ W2,1

Δ (�,�n) : x satisfies (1.3)
}

if (BC) denotes (1.3),
{
x ∈ W2,1

Δ (�,�n) : x satisfies (2.35)
}

if (BC) denotes (1.4).
(2.36)

Notice thatW2,1
Δ,B0

(�,�n) is a Banach space. Define

L0 : W
2,1
Δ,B0

(�,�n) −→ L1
Δ

(
�
κ
0 ,�

n) by L0(x)(t) := xΔΔ(t) − x(σ(t)). (2.37)

It is obvious that L0 is linear and continuous. It follows directly from Theorem 2.19 that L0 is
injective.

If (BC) denotes (1.4) (resp., (1.3)), let G(t, s) be the Green function given in [13,
Theorem 4.70] (resp., [13, Theorem 4.89]). Arguing as in [13, Theorem 4.70] (resp., [13,
Theorem 4.89]), one can verify that for any h ∈ L1

Δ(�
κ
0 ,�

n),

x(t) =
∫

[a,ρ(b))∩�
G(t, s)h(s)Δs (2.38)

is a solution of L0(x) = h. So, L0 is bijective and, hence, invertible with L−1
0 continuous by the

inverse mapping theorem.
Finally, if (BC) denotes (1.3), since L = L0, we have the conclusion. On the other hand,

if (BC) denotes (1.4), let y be given in [13, Theorem 4.67] such that

yΔΔ(t) − y(σ(t)) = 0 on �κ2
, a0y(a) − γ0y

Δ(a) = x0, a1y(b) + γ1y
Δ(ρ(b)) = x1,

(2.39)

then L−1 = y + L−1
0 .

Remark 2.21. We could have considered the operator

L̃ : W2,1
Δ,B(�,�

n) −→ L1
Δ

(
�
κ
0 ,�

n) defined by L̃(x)(t) := xΔΔ(t), (2.40)
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when the boundary condition is (1.4) with suitable constants a0, a1, γ0, γ1 such that L̃ is
injective. For simplicity, we prefer to use only the operator L.

3. Nonlinearity Not Depending on the Delta-Derivative

In this section, we establish existence results for the problem

xΔΔ(t) = f(t, x(σ(t))), Δ-a.e. t ∈ �κ2

0 , x ∈ (BC), (3.1)

where (BC) denotes the periodic boundary condition

x(a) = x(b),

xΔ(a) = xΔ(ρ(b)),
(3.2)

or the Sturm-Liouville boundary condition

a0x(a) − γ0x
Δ(a) = x0,

a1x(b) + γ1x
Δ(ρ(b)) = x1,

(3.3)

where a0, a1, γ0, γ1 ≥ 0, max{a0, γ0} > 0, and max{a1, γ1} > 0. We look for solutions in

W2,1
Δ (�,�n).

We introduce the notion of solution-tube for the problem (3.1).

Definition 3.1. Let (v,M) ∈ W2,1
Δ (�,�n) ×W2,1

Δ (�, [0,∞)). We say that (v,M) is a solution-tube
of (3.1) if

(i) 〈x − v(σ(t)), f(t, x) − vΔΔ(t)〉 ≥ M(σ(t))MΔΔ(t) for Δ-almost every t ∈ �κ2

0 and for

every x ∈ �n such that ‖x − v(σ(t))‖ = M(σ(t)),

(ii) vΔΔ(t) = f(t, v(σ(t))) and MΔΔ(t) ≤ 0 for Δ-almost every t ∈ �
κ2

0 such that
M(σ(t)) = 0,

(iii) (a) if (BC) denotes (3.2), then v(a) = v(b),M(a) = M(b), and ‖vΔ(ρ(b))−vΔ(a)‖ ≤
MΔ(ρ(b)) −MΔ(a),

(b) if (BC) denotes (3.3), ‖x0 − (a0v(a) − γ0vΔ(a))‖ ≤ a0M(a) − γ0MΔ(a),

‖x1 − (a1v(b) + γ1vΔ(ρ(b)))‖ ≤ a1M(b) + γ1MΔ(ρ(b)).

We denote

T(v,M) =
{
x ∈ W2,1

Δ (�,�n) : ‖x(t) − v(t)‖ ≤ M(t) ∀t ∈ �
}
. (3.4)

We state the main theorem of this section.
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Theorem 3.2. Let f : �κ
0 × �n → �

n be a Δ-Carathéodory function. If (v,M) ∈ W2,1
Δ (�,�n) ×

W2,1
Δ (�, [0,∞)) is a solution-tube of (3.1), then the system (3.1) has a solution x ∈ W2,1

Δ (�,�n) ∩
T(v,M).

In order to prove this result, we consider the following modified problem:

xΔΔ(t) − x(σ(t)) = f(t, x(σ(t))) − x(σ(t)), Δ-a.e. t ∈ �κ2

0 ,

x ∈ (BC),
(3.5)

where

x(s) =

⎧
⎪⎨
⎪⎩

M(s)
‖x − v(s)‖ (x − v(s)) + v(s) if ‖x − v(s)‖ > M(s),

x otherwise.
(3.6)

We define the operator F : C(�,�n) → L1
Δ(�

κ
0 ,�

n) by

F(x)(t) := f(t, x(σ(t))) − x(σ(t)). (3.7)

Proposition 3.3. Under the assumptions of Theorem 3.2, the operator F defined above is continuous
and bounded.

Proof. First of all, we show that the set F(C(�,�n)) is bounded. Fix R > ‖v‖0 + ‖M‖0. Let
hR ∈ L1

Δ(�
κ
0 , [0,∞)) be given by Definition 2.9(iii). Thus, for every x ∈ C(�,�n),

‖F(x)(s)‖ ≤ hR(s) + R =: h(s) Δ-a.e. s ∈ �κ
0 . (3.8)

To prove the continuity of F, we consider {xk}k∈� a sequence of C(�,�n) converging
to x ∈ C(�,�n). We already know that for every k ∈ �,

‖F(xk)(s)‖ ≤ h(s) Δ-a.e. s ∈ �κ
0 . (3.9)

One can easily check that xn(t) → x(t) for all t ∈ �. It follows from Definition 2.9(ii) that

F(xk)(s) −→ F(x)(s) Δ-a.e. s ∈ �κ
0 . (3.10)

Theorem 2.8 implies that F(xk) → F(x) in L1
Δ(�

κ
0 ,�

n).

Lemma 3.4. Under the assumptions of Theorem 3.2, every solution x of (3.5) is in T(v,M).

Proof. Since x ∈ W2,1
Δ (�,�n) (resp., v ∈ W2,1

Δ (�,�n), M ∈ W2,1
Δ (�,�)), xΔΔ(t) (resp., vΔΔ(t),

MΔΔ(t)), there exists Δ-almost everywhere on �κ2
. Denote

A =
{
t ∈ �κ2

0 : ‖x(σ(t)) − v(σ(t))‖ > M(σ(t))
}
. (3.11)
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By Lemma 2.4(1),

(‖x(t) − v(t)‖ −M(t))ΔΔ ≥ 〈x(σ(t)) − v(σ(t)), xΔΔ(t) − vΔΔ(t)〉
‖x(σ(t)) − v(σ(t))‖ −MΔΔ(t) Δ-a.e. on A.

(3.12)

We claim that

(‖x(t) − v(t)‖ −M(t))ΔΔ > 0 Δ-a.e. on A. (3.13)

Indeed, we deduce from the fact that (v,M) is a solution-tube of (3.5) and from (3.12) that
Δ-almost everywhere on {t ∈ A : M(σ(t)) > 0},

(‖x(t) − v(t)‖ −M(t))ΔΔ

≥ 〈x(σ(t)) − v(σ(t)), f(t, x(σ(t))) − x(σ(t)) + x(σ(t)) − vΔΔ(t)〉
‖x(σ(t)) − v(σ(t))‖ −MΔΔ(t)

=
〈x(σ(t)) − v(σ(t)), f(t, x(σ(t))) − vΔΔ(t)〉

M(σ(t))
+ ‖x(σ(t)) − v(σ(t))‖ −M(σ(t)) −MΔΔ(t)

>
M(σ(t))MΔΔ(t)

M(σ(t))
−MΔΔ(t) = 0,

(3.14)

and Δ-almost everywhere on {t ∈ A : M(σ(t)) = 0},

(‖x(t) − v(t)‖ −M(t))ΔΔ

≥ 〈x(σ(t)) − v(σ(t)), f(t, x(σ(t))) − x(σ(t)) + x(σ(t)) − vΔΔ(t)〉
‖x(σ(t)) − v(σ(t))‖ −MΔΔ(t)

=
〈x(σ(t)) − v(σ(t)), f(t, v(σ(t))) − vΔΔ(t)〉

‖x(σ(t)) − v(σ(t))‖ + ‖x(σ(t)) − v(σ(t))‖ −MΔΔ(t)

> −MΔΔ(t) ≥ 0.

(3.15)

Observe that if ‖x(a) − v(a)‖ −M(a) > 0,

‖x(a) − v(a)‖Δ ≥ 〈x(a) − v(a), xΔ(a) − vΔ(a)〉
‖x(a) − v(a)‖ . (3.16)
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Indeed, this follows from Proposition 2.3 when a = σ(a). For a < σ(a),

‖x(a) − v(a)‖Δ =
‖x(σ(a)) − v(σ(a))‖ − ‖x(a) − v(a)‖

μ(a)

≥ 〈x(a) − v(a), x(σ(a)) − v(σ(a)) − (x(a) − v(a))〉
μ(a)‖x(a) − v(a)‖

=
〈x(a) − v(a), xΔ(a) − vΔ(a)〉

‖x(a) − v(a)‖ .

(3.17)

Similarly, if ‖x(b) − v(b)‖ −M(b) > 0,

‖x(ρ(b)) − v
(
ρ(b)

)‖Δ ≤ 〈x(b) − v(b), xΔ(ρ(b)) − vΔ(ρ(b))〉
‖x(b) − v(b)‖ . (3.18)

If (BC) denotes (3.2),

‖x(a) − v(a)‖ −M(a) = ‖x(b) − v(b)‖ −M(b). (3.19)

We deduce from (3.16), (3.18), and Definition 3.1 that

‖x(a) − v(a)‖ −M(a) = ‖x(b) − v(b)‖ −M(b) ≤ 0, (3.20)

or

(
‖x(ρ(b)) − v

(
ρ(b)

)‖Δ −MΔ(ρ(b))
)
−
(
‖x(a) − v(a)‖Δ −MΔ(a)

)

≤ 〈xΔ(ρ(b)) − vΔ(ρ(b)), x(b) − v(b)〉
‖x(b) − v(b)‖

− 〈xΔ(a) − vΔ(a), x(a) − v(a)〉
‖x(a) − v(a)‖ −

(
MΔ(ρ(b)) −MΔ(a)

)

=
〈vΔ(a) − vΔ(ρ(b)), x(a) − v(a)〉

‖x(a) − v(a)‖ −
(
MΔ(ρ(b)) −MΔ(a)

)

≤ ‖vΔ(a) − vΔ(ρ(b))‖ −
(
MΔ(ρ(b)) −MΔ(a)

)
≤ 0.

(3.21)

If (BC) denotes (3.3), we deduce from (3.16), (3.18), and Definition 3.1 that

‖x(a) − v(a)‖ −M(a) ≤ 0, (3.22)
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or

a0(‖x(a) − v(a)‖ −M(a)) − γ0
(
‖x(a) − v(a)‖Δ −MΔ(a)

)

≤ 〈x(a) − v(a), a0(x(a) − v(a)) − γ0
(
xΔ(a) − vΔ(a)

)〉
‖x(a) − v(a)‖

− a0M(a) + γ0M
Δ(a)

≤
∥∥∥x0 −

(
a0v(a) − γ0v

Δ(a)
)∥∥∥ − a0M(a) + γ0M

Δ(a)

≤ 0,

(3.23)

and similarly

‖x(b) − v(b)‖ −M(b) ≤ 0, (3.24)

or

a1(‖x(b) − v(b)‖ −M(b)) + γ1
(
‖x(ρ(b)) − v

(
ρ(b)

)‖Δ −MΔ(ρ(b))
)
≤ 0. (3.25)

Finally, it follows from (3.13), (3.20), (3.21), (3.22), (3.23), (3.24), (3.25), and
Theorem 2.19 applied to r(t) = ‖x(t) − v(t)‖ −M(t) that ‖x(t) − v(t)‖ ≤ M(t) for every t ∈ �.

Now, we can prove the main theorem of this section.

Proof of Theorem 3.2. A solution of (3.5) is a fixed point of the operator

T : C(�,�n) −→ C(�,�n) defined by T := j0 ◦ L−1 ◦ F, (3.26)

where L and j0 are defined in (2.34) and Proposition 2.17, respectively. By Propositions 2.17,
2.20, and 3.3, the operator T is compact. So, the Schauder fixed point theorem implies that T
has a fixed point and, hence, Problem (3.5) has a solution x. By Lemma 3.4, this solution is in
T(v,M). Thus, x is a solution of (3.1).

In the particular case where n = 1, as corollary of Theorem 3.2, we obtain
a generalization of results of Akın [1] and Stehlı́k [2] for the Dirichlet and the periodic
boundary conditions, respectively.

Corollary 3.5. Let f : �κ
0 × � → � be a Δ-Carathéodory function. Assume that there exists α, β ∈

W2,1
Δ (�,�) such that

(i) α(t) ≤ β(t) for Δ-almost every t ∈ �,
(ii) αΔΔ(t) ≥ f(t, α(σ(t))) and βΔΔ(t) ≤ f(t, β(σ(t))) for Δ-almost every t ∈ �κ2

,
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(iii) (a) if (BC) denotes (3.2), then α(a) = α(b), αΔ(a) ≥ αΔ(ρ(b)), β(a) = β(b), and
βΔ(a) ≤ βΔ(ρ(b)),

(b) if (BC) denotes (3.3), then a0α(a)− γ0αΔ(a) ≤ x0 ≤ a0β(a) − γ0βΔ(a) and a1α(b) +
γ1αΔ(ρ(b)) ≤ x1 ≤ a1β(b) + γ1βΔ(ρ(b)),

then (3.1) has a solution x ∈ W2,1
Δ (�,�) such that α(t) ≤ x(t) ≤ β(t) for every t ∈ �.

Proof. Observe that ((α + β)/2, (β − α)/2) is a solution-tube of (3.1). The conclusion follows
from Theorem 3.2.

Theorem 3.2 generalizes also a result established by Henderson et al. [6] for systems
of second-order dynamic equations on time scales. Let us mention that they considered
a continuous map f and they assumed a strict inequality in (3.27).

Corollary 3.6. Let f : �κ
0 × �n → �

n be a Δ-Carathéodory function. Assume that there exists a
constant R > 0 such that

〈
x, f(t, x)

〉 ≥ 0 Δ-a.e. t ∈ �κ2

0 , ∀x such that ‖x‖ = R. (3.27)

Moreover, if (BC) denotes (3.3), assume that ‖x0‖ ≤ a0R and ‖x1‖ ≤ a1R, then the system (3.1) has
a solution x ∈ W2,1

Δ (�,�n) such that ‖x(t)‖ ≤ R for every t ∈ �.

Here is an example in which one cannot find a solution-tube of the form (0, R).

Example 3.7. Consider the system

xΔΔ(t) = k(t)(‖x(σ(t)) − σ(t)c‖ − 1) Δ-a.e. t ∈ �κ2

0 ,

x(a) = 0, x(b) = 0,
(3.28)

where k ∈ L1
Δ(�0,�n \ {0}) and c ∈ �n \ {0} is such that ‖c‖max{|a|, |b|} ≤ 1. One can check

that (v,M) is a solution-tube of (3.28) with v(t) = tc,M(t) ≡ 1. By Theorem 3.2, this problem
has at least one solution x such that ‖x(t) − tc‖ ≤ 1. Observe that there is no R > 0 such that
(3.27) is satisfied.

4. Nonlinearity Depending on xΔ

In this section, we study more general systems of second-order dynamic equations on time
scales. Indeed, we allow the nonlinearity f to depend also on xΔ. We consider the problem

xΔΔ(t) = f
(
t, x(σ(t)), xΔ(t)

)
, Δ-a.e. t ∈ �κ2

0 ,

a0x(a) − xΔ(a) = x0, a1x(b) + γ1x
Δ(ρ(b)) = x1,

(4.1)

where a0, a1, γ1 ≥ 0 and max{a1, γ1} > 0.
We also introduce a notion of solution-tube for this problem.
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Definition 4.1. Let (v,M) ∈ W2,1
Δ (�,�n) ×W2,1

Δ (�, (0,∞)). We say that (v,M) is a solution-tube
of (4.1) if

(i) for Δ-almost every t ∈ {t ∈ �κ2

0 : t = σ(t)},
〈
x − v(t), f

(
t, x, y

) − vΔΔ(t)
〉
+ ‖y − vΔ(t)‖2 ≥ M(t)MΔΔ(t) +

(
MΔ(t)

)2
, (4.2)

for every (x, y) ∈ �
2n such that ‖x − v(t)‖ = M(t) and 〈x − v(t), y − vΔ(t)〉 =

M(t)MΔ(t),

(ii) for every t ∈ {t ∈ �κ2

0 : t < σ(t)},
〈
x − v(σ(t)), f

(
t, x, y

) − vΔΔ(t)
〉
≥ M(σ(t))MΔΔ(t), (4.3)

for every (x, y) ∈ �2n such that ‖x − v(σ(t))‖ = M(σ(t)),

(iii) ‖x0 − (a0v(a)−vΔ(a))‖ ≤ a0M(a)−MΔ(a), ‖x1 − (a1v(b)+γ1vΔ(ρ(b)))‖ ≤ a1M(b)+
γ1MΔ(ρ(b)).

If � is the real interval [a, b], condition (ii) of the previous definition becomes useless,
and we get the notion of solution-tube introduced by the first author in [10] for a system of
second-order differential equations.

Here is the main result of this section.

Theorem 4.2. Let f : �κ
0 × �2n → �

n be a Δ-Carathéodory function. Assume that

(H1) there exists (v,M) ∈ W2,1
Δ (�,�n) ×W2,1

Δ (�, (0,∞)) a solution-tube of (4.1),

(H2) there exist constants c, d > 0 such that ‖f(t, x, y)‖ ≤ c + d‖y‖ for Δ-almost every t ∈ �κ
0

and for every (x, y) ∈ �2n such that ‖x − v(t)‖ ≤ M(t),

then (4.1) has a solution x ∈ W2,1
Δ (�,�n) ∩ T(v,M).

To prove this existence result, we consider the following modified problem:

xΔΔ(t) − x(σ(t)) = g
(
t, x(σ(t)), xΔ(t)

)
, Δ-a.e. t ∈ �κ2

0 ,

a0x(a) − xΔ(a) = x0, a1x(b) + γ1x
Δ(ρ(b)) = x1,

(4.4)

where g : �κ
0 × �2n → �

n is defined by

g
(
t, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(σ(t))
‖x − v(σ(t))‖f

(
t, x(σ(t)), ỹ(t)

) − x(σ(t))

+
(
1 − M(σ(t))

‖x − v(σ(t))‖
)(

vΔΔ(t) +
MΔΔ(t)

‖x − v(σ(t))‖ (x − v(σ(t)))

)

if ‖x − v(σ(t))‖ > M(σ(t)),

f
(
t, x(σ(t)), ỹ(t)

) − x(σ(t)),

otherwise,

(4.5)
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where x(σ(t)) is defined as in (3.6),

ỹ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷ(t) +

(
MΔ(t) − 〈x − v(σ(t)), ŷ(t) − vΔ(t)〉

‖x − v(σ(t))‖

)(
x − v(σ(t))
‖x − v(σ(t))‖

)

if t = σ(t), ‖x − v(σ(t))‖ > M(σ(t)),

ŷ(t) +
MΔ(t)
M(σ(t))

(
1 − K

‖y − vΔ(t)‖
)
(x − v(σ(t)))

if t = σ(t), ‖x − v(σ(t))‖ ≤ M(σ(t)), ‖y − vΔ(t)‖ > K,

ŷ(t)

if t < σ(t),

y

otherwise,

ŷ(t) =

⎧
⎪⎨
⎪⎩

K

‖y − vΔ(t)‖
(
y − vΔ(t)

)
+ vΔ(t) if ‖y − vΔ(t)‖ > K,

y, otherwise,
(4.6)

with K > 0 a constant which will be fixed later.

Remark 4.3. (1) Remark that

‖x(σ(t)) − v(σ(t))‖ ≤ M(σ(t)),

‖ỹ(t)‖ ≤ 2K + ‖vΔ(t)‖ + ∣∣MΔ(t)
∣∣.

(4.7)

(2) If ‖x − v(σ(t))‖ > M(σ(t)),

‖x(σ(t)) − v(σ(t))‖ = M(σ(t)),

〈
x(σ(t)) − v(σ(t)), x̃Δ(t) − vΔ(t)

〉
= M(σ(t))MΔ(t), for t = σ(t).

(4.8)

(3) If ‖x − v(σ(t))‖ > M(σ(t)) and t = σ(t),

‖x̃Δ(t) − vΔ(t)‖2 = ‖x̂Δ(t) − vΔ(t)‖2 +
(
MΔ(t)

)2
−

〈
x(t) − v(t), x̂Δ(t) − vΔ(t)

〉2

‖x(t) − v(t)‖2 . (4.9)

(4) Since f is Δ-Carathéodory, by (1), there exists h ∈ L1
Δ(�

κ
0 ,�) such that for every

x, y ∈ �n ,

‖g(t, x, y)‖ ≤ h(t) Δ-a.e. t ∈ �κ
0 . (4.10)
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We associate to g the operator G : C1(�,�n) → L1
Δ(�

κ
0 ,�

n) defined by

G(x)(t) := g
(
t, x(σ(t)), xΔ(t)

)
. (4.11)

Proposition 4.4. Let f : �κ
0 × �

2n → �
n be a Δ-Carathéodory function. Assume that (H1) is

satisfied, then G is continuous.

Proof. Let {xk} be a sequence of C1(�,�n) converging to x ∈ C1(�,�n). It is clear that

xk(t) −→ x(t), x̂Δ
k(t) −→ x̂Δ(t). (4.12)

On {t ∈ � : t < σ(t)}, we have

g
(
t, xk(σ(t)), xΔ

k (t)
)
−→ g

(
t, x(σ(t)), xΔ(t)

)
, (4.13)

since f is Δ-Carathéodory.
Similarly, Δ-almost everywhere on {t ∈ �κ

0 : t = σ(t), ‖x(σ(t)) − v(σ(t))‖/=M(σ(t))},

g
(
t, xk(σ(t)), xΔ

k (t)
)
−→ g

(
t, x(σ(t)), xΔ(t)

)
, (4.14)

since x̃Δ
k(t) → x̃Δ(t) and, for k sufficiently large, ‖xk(σ(t)) − v(σ(t))‖/=M(σ(t)).

Denote S := {t ∈ �
κ
0 : t = σ(t) and ‖x(σ(t)) − v(σ(t))‖ = M(σ(t))} and It = {k ∈ � :

‖xk(σ(t)) − v(σ(t))‖ ≤ M(σ(t))}. As before, it is easy to check that Δ-almost everywhere on
{t ∈ S : card It = ∞},

g
(
t, xk(σ(t)), xΔ

k (t)
)
−→ g

(
t, x(σ(t)), xΔ(t)

)
as k ∈ It goes to infinity. (4.15)

On the other hand, Proposition 2.11 implies that

〈
x(σ(t)) − v(σ(t)), xΔ(t) − vΔ(t)

〉
= M(σ(t))MΔ(t) Δ-a.e. t ∈ S. (4.16)
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So, Δ-almost everywhere on {t ∈ S : card(� \ It) = ∞},

x̃Δ
k (t) = x̂Δ

k (t)

+

⎛
⎜⎝MΔ(t) −

〈
xk(σ(t)) − v(σ(t)), x̂Δ

k (t) − vΔ(t)
〉

‖xk(σ(t)) − v(σ(t))‖

⎞
⎟⎠
(

xk(σ(t)) − v(σ(t))
‖xk(σ(t)) − v(σ(t))‖

)

−→ x̂Δ(t)

+

⎛
⎜⎝MΔ(t) −

〈
x(σ(t)) − v(σ(t)), x̂Δ(t) − vΔ(t)

〉

‖x(σ(t)) − v(σ(t))‖

⎞
⎟⎠
(

x(σ(t)) − v(σ(t))
‖x(σ(t)) − v(σ(t))‖

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂Δ(t) +
MΔ(t)
M(σ(t))

(
1 − K

‖xΔ(t) − vΔ(t)‖
)
(x(σ(t)) − v(σ(t)))

if ‖xΔ(t) − vΔ(t)‖ > K,

x̂Δ(t)

if ‖xΔ(t) − vΔ(t)‖ ≤ K,

= x̃Δ(t),

(4.17)

as k ∈ � \ It goes to infinity. Thus, Δ-almost everywhere on {t ∈ S : card(� \ It) = ∞},

g
(
t, xk(σ(t)), xΔ

k (t)
)
−→ g

(
t, x(σ(t)), xΔ(t)

)
as k ∈ � \ It goes to infinity. (4.18)

By Remark 4.3(4), we have

‖g
(
t, xk(σ(t)), xΔ

k (t)
)
‖ ≤ h(t) Δ-a.e. t ∈ �κ

0 . (4.19)

Theorem 2.8 implies that

G(xk) −→ G(x) in L1
Δ

(
�
κ
0 ,�

n). (4.20)

Lemma 4.5. Assume (H1), then x ∈ T(v,M) for every solution x of (4.4).

Proof. Observe that xΔΔ(t) (resp., vΔΔ(t), MΔΔ(t)) exists Δ-almost everywhere on �κ2
, since

x ∈ W2,1
Δ (�,�n) (resp., v ∈ W2,1

Δ (�,�n),M ∈ W2,1
Δ (�,�)). Denote

A =
{
t ∈ �κ2

0 : ‖x(σ(t)) − v(σ(t))‖ > M(σ(t))
}
. (4.21)
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Observe that by (H1) and Remark 4.3(2), for Δ-almost every t ∈ A,

〈x(σ(t)) − v(σ(t)), xΔΔ(t) − vΔΔ(t)〉

= 〈x(σ(t)) − v(σ(t)), g
(
t, x(σ(t)), xΔ(t)

)
+ x(σ(t)) − vΔΔ(t)〉

= 〈x(σ(t)) − v(σ(t)), f
(
t, x(σ(t)), x̃Δ(t)

)
− vΔΔ(t)〉

+MΔΔ(t)(‖x(σ(t)) − v(σ(t))‖ −M(σ(t)))

+ ‖x(σ(t)) − v(σ(t))‖ −M(σ(t))

> 〈x(σ(t)) − v(σ(t)), f
(
t, x(σ(t)), x̃Δ(t)

)
− vΔΔ(t)〉

+MΔΔ(t)(‖x(σ(t)) − v(σ(t))‖ −M(σ(t)))

≥
⎧
⎨
⎩
MΔΔ(t)‖x(σ(t)) − v(σ(t))‖ if t < σ(t),

MΔΔ(t)‖x(σ(t)) − v(σ(t))‖ + (MΔ(t)
)2 − ‖x̃Δ(t) − vΔ(t)‖2 if t = σ(t).

(4.22)

This inequality with Lemma 2.4(1) imply that forΔ-almost every t ∈ {t ∈ A : t < σ(t)},

(‖x(t) − v(t)‖ −M(t))ΔΔ > 0. (4.23)

Also, (4.22), Lemma 2.4(2), and Remark 4.3(3) imply that for Δ-almost every t ∈ {t ∈ A : t =
σ(t)},

(‖x(t) − v(t)‖ −M(t))ΔΔ

>

(
MΔ(t)

)2 − ‖x̃Δ(t) − vΔ(t)‖2 + ‖xΔ(t) − vΔ(t)‖2
‖x(t) − v(t)‖

− 〈x(t) − v(t), xΔ(t) − vΔ(t)〉2
‖x(t) − v(t)‖3

=
‖xΔ(t) − vΔ(t)‖2 − ‖x̂Δ(t) − vΔ(t)‖2

‖x(t) − v(t)‖

+
〈x(t) − v(t), x̂Δ(t) − vΔ(t)〉2 − 〈x(t) − v(t), xΔ(t) − vΔ(t)〉2

‖x(t) − v(t)‖3

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if ‖xΔ(t) − vΔ(t)‖ ≤ K,
(
1 − K2

‖xΔ(t) − vΔ(t)‖2
)(

‖xΔ(t) − vΔ(t)‖2
‖x(t) − v(t)‖ − 〈x(t) − v(t), xΔ(t) − vΔ(t)〉2

‖x(t) − v(t)‖3
)

if ‖xΔ(t) − vΔ(t)‖ > K,

≥ 0. (4.24)
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Let us denote r(t) = ‖x(t) − v(t)‖ − M(t). Inequalities (4.23) and (4.24) imply that

rΔΔ(t) > 0 forΔ-almost every t ∈ {t ∈ �κ2

0 : r(σ(t)) > 0}. Arguing as in the proof of Lemma 3.4,
we can show that

r(a) ≤ 0 or a0r(a) − rΔ(a) ≤ 0,

r(b) ≤ 0 or a1r(b) + γ1r
Δ(ρ(b)) ≤ 0.

(4.25)

Theorem 2.19 implies that x ∈ T(v,M).

We can now prove the existence theorem of this section.

Proof of Theorem 4.2. We first show that for every solution x of (4.4), there exists a constant
K > 0 such that

‖xΔ(t) − vΔ(t)‖ ≤ K for every t ∈ �κ. (4.26)

By (H2), Proposition 2.13 and Lemma 4.5, for any x solution of (4.4), we have for Δ-almost
every t ∈ �κ,

‖xΔ(t)‖ ≤ ‖xΔ(a)‖ +
∫

[a,t)∩�
‖xΔΔ(s)‖Δs

= ‖x0 − a0x(a)‖ +
∫

[a,t)∩�

∥∥∥f
(
s, x(σ(s)), x̃Δ(s)

)∥∥∥Δs

≤ c0 +
∫

[a,t)∩�
c + d‖x̃Δ(s)‖Δs

≤ c0 +
∫

[a,t)∩�
c + d

(
‖x̂Δ(s) − vΔ(s)‖ + ‖vΔ(s)‖ +

∣∣∣MΔ(s)
∣∣∣
)
Δs

≤ c0 +
∫

[a,t)∩�
c + d

(
‖xΔ(s) − vΔ(s)‖ + ‖vΔ(s)‖ +

∣∣∣MΔ(s)
∣∣∣
)
Δs

≤ c1 +
∫

[a,t)∩�
d‖xΔ(s)‖Δs,

(4.27)

where

c0 := ‖x0‖ + a0(M(a) + ‖v(a)‖),

c1 := c0 +
∫

[a,b)∩�
c + d

(
2‖vΔ(s)‖ +

∣∣∣MΔ(s)
∣∣∣
)
Δs.

(4.28)

Fix K ≥ ‖vΔ‖0 + c1‖ed(·, a)‖0. By Theorem 2.5,

‖xΔ(t) − vΔ(t)‖ ≤ ‖xΔ(t)‖ + ‖vΔ(t)‖ ≤ ‖vΔ(t)‖ + c1ed(t, a) ≤ K ∀t ∈ �κ. (4.29)
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Consider the operator

T = j1 ◦ L−1 ◦G : C1(�,�n) −→ C1(�,�n), (4.30)

where L and j1 are defined, respectively, in (2.34) and Proposition 2.16. By Propositions 2.16,
2.20, and 4.4, T is continuous. Moreover, T is compact. Indeed, by Remark 4.3(4), there exists
h ∈ L1

Δ(�
κ
0 , [0,∞)) such that for every z ∈ T(C1(�,�n)), there exists x ∈ C1(�,�n) such that

z = T(x) and

‖G(x)(s)‖ ≤ h(s) Δ-a.e. t ∈ �κ
0 . (4.31)

Since j1 and L−1 are continuous and affine, they map bounded sets in bounded sets. Thus,
there exists a constant k0 > 0 such that

‖z‖1 ≤ k0. (4.32)

Moreover, z ∈ W2,1
Δ (�,�n) and

L(z)(s) = zΔΔ(s) − z(σ(s)) = G(x)(s) Δ-a.e. s ∈ �κ2
. (4.33)

So, for every t < τ in �κ,

‖zΔ(t) − zΔ(τ)‖ ≤
∫

[t,τ)∩�
‖z(σ(s)) +G(x)(s)‖Δs ≤

∫

[t,τ)∩�
k0 + h(s)Δs. (4.34)

Thus, T(C1(�,�n)) is bounded and equicontinuous in C1(�,�n). By an analog of the Arzelà-
Ascoli Theorem for our context, T(C1(�,�n)) is relatively compact in C1(�,�n).

By the Schauder fixed point theorem, T has a fixed point xwhich is a solution of (4.4).
By Lemma 4.5, x ∈ T(v,M). Also, x satisfies (4.26). Hence, x is also a solution of (4.1).

Here is an example in which one cannot find a solution-tube of the form (0, R).
Moreover, Assumption (A2) stated in the introduction and assumed in [9] is not satisfied.

Example 4.6. Let � = [0, 1] ∪ {2} ∪ [3, 4] and consider the system

xΔΔ(t) = x(σ(t))
(
l(t) + ‖xΔ(t)‖

)
+ k(t) Δ-a.e. t ∈ �0,

xΔ(0) = x0, xΔ(4) = x1,

(4.35)

where x0, x1 ∈ �n are such that ‖x0‖ ≤ 1, ‖x1‖ ≤ 1, l ∈ L1
Δ(�0, [0,∞)), and k ∈ L1

Δ(�0,�n) such
that l(1) ≥ 1, l(2) ≥ 1, ‖k(t)‖ ≤ 2, and l(t) ≤ r for Δ-almost every t ∈ �0 for some r > 0.
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Take v(t) ≡ 0 and

M(t) =

⎧
⎨
⎩
5 − t if t ∈ [0, 2] ∩ �,

t if t ∈ [3, 4] ∩ �.
(4.36)

So, v ∈ W2,1
Δ (�,�n),M ∈ W2,1

Δ (�, (0,∞)), and

MΔ(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if t ∈ [0, 1],

0 if t = 2,

1 if t ∈ [3, 4],

MΔΔ(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ∈ [0, 1),

1 if t ∈ {1, 2},
0 if t ∈ [3, 4].

(4.37)

One has ‖x0‖ ≤ −MΔ(0) and ‖x1‖ ≤ MΔ(4). Observe that Δ-almost everywhere on [0, 1) ∪
[3, 4] if ‖x‖ = M(t) and 〈x, y〉 = M(t)MΔ(t), one has ‖y‖ ≥ 1 and

〈x, f(t, x, y)〉 + ‖y‖2 = ‖x‖2(l(t) + ‖y‖) + 〈x, k(t)〉 + ‖y‖2

≥ M(t)(M(t) − ‖k(t)‖) + 1

≥ 1

= M(t)MΔΔ(t) +
(
MΔ(t)

)2
.

(4.38)

If t ∈ {1, 2} and ‖x‖ = M(σ(t)) = 3,

〈x, f(t, x, y)〉 = ‖x‖2(l(t) + ‖y‖) + 〈x, k(t)〉
≥ 9l(t) − 3‖k(t)‖
≥ 3

= M(σ(t))MΔΔ(t).

(4.39)

So, (v,M) is a solution-tube of (4.35). Moreover,

‖f(t, x, y)‖ ≤ 2 + 5r + 5‖y‖ Δ-a.e. t ∈ �0, all
(
x, y

)
such that ‖x‖ ≤ M(t). (4.40)

Theorem 4.2 implies that (4.35) has at least one solution x such that ‖x(t)‖ ≤ M(t). Observe
that if x0 /= 0 or x1 /= 0, this problem has no solution-tube of the form (0, R) with R a positive
constant since Definition 4.1(iii) would not be satisfied. This explains why Henderson and
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Tisdell [9] did not consider the Neumann boundary condition. Notice also that the restriction
d(ρ(b) − a) in (A2) is not satisfied in this example.
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