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Abstract.

This paper presents some generalizations of two modern ap-
proaches to fixed point theory of maps defined on Fréchet spaces.

1. Introduction.

This paper presents some generalizations of recent fixed point theorems
for maps defined on Fréchet spaces (complete metrizable locally convex linear
topological spaces). The literature on fixed point theory in Fréchet spaces
usually begins with the Schauder—Tychonoff theorem (or its multivalued

analogue).

Theorem 1.1. Let C be a convez subset of a Fréchet space and F : C — C
a compact, continuous map. Then F has a fized point in C.

In applications to construct a set C so that F takes C back into C
is very difficult and sometimes impossible. As a result it makes sense to
discuss maps F : C — E. In the literature to discuss maps F : C —
E many authors present variations of the Leray-Schauder alternative. A
typical theorem is the following (see for example [17]).

Theorem 1.2. Let E be a Fréchet space, C_‘a convex subset of E, U an
open subset of C and 0 € U. Suppose F : U — C (here U denotes the
closure of U in C) is a continuous, compact map. Then either

(A1). F has a fired point in U, or

(A2). there exists u € U (the boundary of U in C) and X € (0,1) with
u=A\F(u).
PROOF: Suppose (A42) does not occur and F has no fixed points in 9U.

Let

A:{.‘EEUZ r=1F(z) for some tG{O,l}}.
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Now A # @ since 0 € A and A is closed since F is continuous. Also notice
AnNo8U = 0. Thus there exists a continuous function p : U — [0,1] with
w(A) =1 and u(oU) = 0. Let

viny _ ) w@)F(z), z€U
‘\(z)_{o, zeC\U.

Clearly N :C — C' is a continuous, compact map. Theorem 1.1 guarantees
the existence of an = € C with £ = N (z). Notice z € U since 0 € U. As
aresult z = p(z) F(z),s0 £ € A. Thus p(z) =1 and so z = F(z). O

In the Banach space setting Theorem 1.2 is applicable to wide classes of
problems. However in the non-normable situation Theorem 1.2 is rarely of
interest from an application viewpoint (this point seems to be overlooked
by many authors) since in applications usually C = E and the set U
constructed is usually bounded, and so has empty interior. As a result from
an application viewpoint, Theorem 1.2 needs to be adjusted.

There are only a handful of “applicable” results in the literature. The
first applicable result was due to Furi and Pera [11] in 1987 and we present
for completeness this result at the end of this section. This paper presents
two recent approaches which are based on the fact that a Fréchet space can
be viewed as a projective limit of a sequence of Banach spaces {Ep}nen
(here N = {1,2,...}). Both approaches are based on constructing maps F,
defined on subsets of E,, whose fixed points converge to a fixed point of F.
In the first approach [6-10] for n € N a specific map F, is discussed. This
differs from the second approach [1, 4, 15] where the maps {F,},cn only
need to satisfy a closure type property. Both approaches have advantages
and disadvantages over the other. For example the results in approach one
are easier and nicer to state than the results in approach two (compare, for
example, Theorem 2.3 with Theorem 2.5). On the other hand even though
the conditions in the second approach seem quite technical they are in fact
easier to check in practice than the conditions in the first approach and
moreover the second approach seems to apply to a wider class on problems.

For the remainder of this section we gather together some definitions and
known results. Let (X, d) be a metric space and Qx the bounded subsets of
X. The Kuratowski measure of noncompactness is the map « : Qx — [0, o0]

defined by
a(B) =inf{r >0: BCUL, B; and diam (B;) <r}.

Let S be a nonempty subset of X. For each z € X, define d(z,S) =
infyes d(z,y). We say a set is countably bounded if it is countable and
bounded. Now suppose G : S — 2% here 2% denotes the family of
nonempty subsets of X. Then G:S — 2V is

(i). countably A-set contractive (here & > 0) if G(S) is bounded and
o(G(W)) < ka(W) for all countably bounded sets W of S,

(ii). countably condensing if G(S) is bounded, G is countably 1-set con-
tractive and o{G{W)) < a(W) for all countably bounded sets W of

S with (W) # 0.



(iii). hemicompact if each sequence {z,},cny in S has a convergent subse-
quence whenever d(z,,G (z,)) = 0 as n — oc.

We now present a result from the literature [1, 18] which will be needed
in Section 2 (this result was first established in [12]).

Theorem 1.3. Let (X,d) be a metric space, D a nonempty, complete
subset of X, and G : D — 2¥ a countably condensing map. Then G is
hemicompact.

PROOF: Let {r,}ncn be asequence in D such that d(z,,G(z,)) — 0 as

n — oo. Note since G(D) is bounded and d(z,,G(z,)) = 0 as n —
then {z,}nen is bounded. Let

M={z,: ne N} so G(M)=UZ,G(z,).
Next let € > 0 be given. Then there exists ng € N such that for each
n > ng there is a y, € G(z,) with d(z,,y,) < ¢. Now let

M* = U3l {yn € G(zn) : d(zn,yn) < €}.
Then B(M*,¢€) contains all but a finite number of elements of M. Also
since B(M*,¢) C M* +¢B(0,1) and M* C G(M) we have
a(M) < o B(M*,€)) < a(M*) +2¢ < a(G(M)) + 2e.
“Since. ¢ > 0 is arbitrary we have
a(M) < a(G(M)).

Now G is countably condensing and M is countable, so a(M) =0 ie. M
is compact. Since D is complete we deduce that {r,}neny has a convergent
subsequence. 0O

Finally in this section, as promised, we present the Furi-Pera fixed point
theorem [11, 14].

Theorem 1.4. Let E be a Fréchet space, Q a closed, conver subset of E
and 0 € Q. Suppose F : Q — E is a continuous, compact map with the
following condition holding:

if {(z;,A)}nen is a sequence in OQ x [0,1]
(1.1) converging to (z,A) with x = AF(z) and 0 <\ <1,
then \; F(x;) € Q@ for j sufficiently large.
Then F has a fixed point in Q.
PROOF: Let 7 : E — @ be a continuous retraction (the existence of r is
immediate from Dugundji’s extension theorem). Note if 0 € int ) we may
take
(ix) . for € E
r(r) = —————— for = ,
max{1, u(z)} P ’
where p is the Minkowski functional on @. On the other hand if int Q = @
then 0@ = Q. So we choose the retraction r so that r(z) € 8Q for
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z € E\ Q. Consider
B={ze€E: xt=For(z)}

Notice For : E — E is a continuous, compact map, so Theorem 1.1
guarantees that F or has a fixed point. Thus B # ¢. In addition B is
closed and in fact compact since B C For(B) C F (Q). It remains to show
BN Q@ # 0. Suppose this is not true i.e. suppose BN @ = @. Then since B
is compact and @ is closed there exists § > 0 with d(B,Q) > ¢, here d is
the metric associated with E. Choose m € N such that 1 < dm. Let

Ui:{:l:EE: d(z,Q) < 1} for i€ {m,m+1,..}.
1

Fix i € {m,m+1,...}. Since d(B,Q) > § then BNU; = 0. In addition U;
isopen, 0 € U; and For:U; — E is a continuous, compact map. Theorem
1.2 guarantees, since B NU; = 0, that there exists

(yi, M) € OU; x (0,1) with y; = A\ For (y;).
Consequently
(1.2) AjFor(y;)¢Q foreach je& {m,m+1,..}.
We now look at
D={zeE:z=AFor(z) forsome X€[0,1]}.
Notice D # @ is closed and compact. This together with

d(y;, Q) = ]l and |[M\;| <1 for je{mm+1,..}

implies that we may assume without loss of generality that

Aj =AY e€[0,1] and y; — y* € 9Q.
In addition we have

yj =AjFor(y;) = X For(y),

so y* = A*For(y*). Note A\* # 1 since BNQ =@. Thus 0 < \* < 1.
However (1.1) with

z; =71(y;) € 0Q and = =y* =r(y*)
implies that A; For(y;) € Q for j sufficiently large. This contradicts (1.2).
Thus BNQ # 0 ie. thereexists £ € Q with z=For(z)=F(z). O
2. Fixed point theory in Fréchet spaces.

Let E = (E,{] |.}nen) be a Fréchet space with the topology generated
by a family of seminorms {| |, : n € N}. We assume that the family of
seminorms satisfies

(2.1 lzh <lz|p <lzxls < .ol for every z € E.

To E we associate a sequence of Banach spaces {(E",|-|,)} described as
follows. For every n € N we consider the equivalence relation ~, defined



by

(2.2) z~py iff lz—yl,=0

We denote by E™ = (E / ~p,|-1n) the quotient space, and by (E".|-|,) the
completion of E™ with respect to ||, (the norm on E" induced by |- |,
and its extension to E" are still denoted by |-|,). This construction defines
a continuous map g, : £ — E*. Foreach X C F and each n € N we
set X" = pn(X), and we let X™ and X" denote respectively the closure

and the boundary of X" with respect to |-|, in E". Also for X C E and
neN welet

diam, (X) =sup{lz —yln: =,y € X}
and we define a multimap S, : X —+ X by
Sn(z) = {y € X : |z —yln =0},
For >0 and z € E" we let
Bp(z,r) ={y € E™: |z —yln <r}.
Also the pseudo-interior of X is defined by [7]
pseudo — int (X) = {2 € X : pn(z) € X*\ X" for every n € N}.

Now since (2.1) is satisfied the seminorm |- |, induces a seminorm on E™
for every m > n (again this seminorm is denoted by |- [,). Also (2.2)
defines an equivalence relation on E™ from which we obtain a continuous
map finn, : E™ — E" since E,, /~, can be regarded as a subset of E™
Observe that E is the projective limit of {E"},cn i.e. E =N, E® where
N$° is the generalized intersection as described in [13 pp. 439]

We will need the following lemma [7].

Lemma 2.1. Let X be a closed subset of E. Then for every sequence
{zn}nen with z, € X" such that for every n € N, {ttnm(zm) tm>n 18
a Cauchy sequence in X", there exists z € X such that {bnm(zm) }m>n
converges to pn(z) € X" for every n € N.

Next we give a slight generalization of the notion of an admissible map
introduced in [7].

Definition 2.1. Let X be a subset of F. A map f: X — E is called
admissible if for every n € N,

(i). the multimap F": X" — E" defined by
F™(pn(x)) = @0 (pn o f o Sp(x))
admits an upper semicontinuous countably condensing extension F" :

X" — E™ with convex, compact values,

(ii). for every € > 0, Im > n such that for every r € X we have
diamn(f(57n($))) <e€



Following the ideas in (7], we now present a Schauder-Tychonoff type
theorem and a nonlinear alternative of Leray-Schauder type for admissible

maps.
Theorem 2.2. Let X be a closed subset of a Fréchet space
E = (E{] |n}nen) and f : X — X an admissible map. Then f has
a fized point.

PROOF: From [2, Theorem 2.2] we know for each n € N that F" has a
fixed point z, € X7,

Fix n € N. It is easy to check that for m > n we have p,m(zm) €
F™(ptn m(zm)). Now F! is upper semicontinuous and countably condens-
ing (so in particular hemicompact) so we can deduce that the sequence
{p1.m(2m)}men has a subsequence {uim(zm)}men, which converges to
r1 € X! with z; € Fl(z;). Take Nf = {m € Ny : m > 2}. The same
argument applied to {p2m(2m)}men; guarantees the existence of a subse-
quence {p2m{zm)}men, which converges to z; € X2 with 79 € F(z,).
Moreover (by uniqueness of limits) gy 2(z2) = ;. Repeating this argument
we obtain

CN3CN;,CN,CNFCNCEN

and for every n € N, z, € X" with
zn € F(zp) and {ptnm(2m)}men, converges to z,.

By a diagonalization process we deduce the existence of a sequence {zm }men,
such that {pn m(zm)}men, converges to z, for every n € N. Lemma 2.1
guarantees the existence of a z € X with pu,(z) € F*(un(z)) for every
néeEN.

To finish the proof it remains to show z = f(x). If it was false then there
exists a n € N with |z — f(z)|n = d > 0. Now since f is admissible there
exists m > n with

g > diamg(f(Sm(@)) = diama (co( f(Sm(x))).

Also pm(z) € F™(un(z)) guarantees that there exists y € co(f(Sm(z))
with |z — ylm < g. Thus

d=le~ f)l < fe = b +ly~ f@n <lz— vt o <

a contradiction. O

Theorem 2.3. Let X be a closed subset of a Fréchet space
E = (E{] |l1}nen), f: X = E an admissible map and 0 € pseudo —
int (X). In addition assume for each n € N that

2@ AF"(z) for A€[0,1] and z € dX™

Then f has a fixed point.



PROOF: From [2, Theorem 2.5] we know for each n € N that F" has a
fixed point 2z, € X". Essentially the same argument as in Theorem 2.2
guarantees the existence of an z € X with z = F(z). O

Next we present a Krasnoselskii type theorem for k-admissible maps {de-
scribed below). We use the notation introduced in [10]. For every n € N,
let D{n) C E™ and we define

D(x) = {z € E:3Ny C N infinite and z, € D(n) for n € Ny such that
V€N, inm(zm) = pn(z) as m — oo with m € Ny and m > n}.

Definition 2.2. Let X be a subset of E. A map f: X — E is called
k-admissible if 0 <k <1 and if for every n € N,

(i). the multimap F™: X" — E" defined by
F™(pn(z)) = 20 (1in 0 f 0 Sn(z))

admits an upper semicontinuous countably k-set contractive extension
F* . X" — E" with convex, compact values,

(ii). for every € > 0, Jm > n such that for every £ € X we have
diam, (f(Sm(z))) < e

Remark 2.1. Notice that if Y is a closed convex subset of £ and f :
X — FE an admissible (or k-admissible) map such that f(X) C Y, then
for every n € N, the extension F™ can be chosen such that F*(X") C Y™
since F™"(X") C Y. Indeed, otherwise, its intersection with Y7 is also an
extension of F™.

We now present a slight generalization of a result in [10] (the argument
is essentially the same).

Theorem 2.4. Let E = (E,{| - |a}nen) be a Fréchet space, C a closed
conein E, f:C—>C a k-admissz’bleﬂap, and assume for every n € N
that |- |n is increasing with respect to C™. Suppose there exists R >r >0
such that for every n € N,

(1). lyln>r Yy€eF(z), Vz€dB,(0,7)NC";

(2). lyln <R YyeF(z), YedB,(0,R)NCY;

or

(1). . <r Yy€eF*a), Y edB,(0,r)NC";

(2). lyln >R VyeFYx), Yz €9B,(0,R)NC".
Then there exists © € C N B(0,R) N D(cc) with © = f(x), here D(n) =
C"N B,(0,R)\ B,(0,7) and B(O,R) = {x: |z, <rVn&N}.

PROOF: Now since f: C - C is k-admissible, for every n € N we have
F" an upper semicontinuous countably k-set contractive extension of F”
defined by

F™(pn(z)) = @ (ty o f o Spl(z)) C cr.
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Observe for every n € N _ﬂlat @ is a cone and from Remark 2.1 we can
consider F" : B, (0, R) N C™ — C™. From [3, Theorem 3.3 or Theorem 3.6]
we have for each n € N that F" has a fixed point 2z, € D(n). Essentially
the same argument as in Theorem 2.2 guarantees the existence of an z €
D{oc)NC N B(0,R) with z = f(z). O
Remark 2.2. The last theorem is true for f defined on C N B(0,R) if
(a). C*"NBy(0,R) C uy(CNB(0,R)) for every n € N;
or
b). the condition (i) in Definition 2.2 is replaced by:
(i"). C™" N By(0,R) C pup(C N B(0O,R)) and the multimap F™ : C™ N
B, (0, R) — E" defined by

F™(pn(x)) = @0 (ptn o f o Sp(x))

admits an upper semicontinuous countably k-set contractive extension F7 :
C" N Br(0, R) — E™ with convex, compact values.

For the remainder of this section we present the second approach from
the literature which is based also on assuming that there exists a sequence
of maps, {F,}, whose fixed points converge to a fixed point of the map, F,
we are examining; to fulfill this a particular closure type property (see, for
example, (2.7)) must be satisfied. In this approach this closure type property
specifies the relationship between the maps F,, and F. This differs from
the first approach where a specific map F, was chosen for each n € N.

Let E = (E,{|-|n}nen) be a Fréchet space with (2.1) holding. Assume
for each n € N that (E,,|-|n) is a Banach space and suppose

with |z}, < [#lp41 for all 2 € Epyy. Also assume E = N2, E, where
M{° is the generalized intersection as described in {13 pp 439] (i.e. E is the
projective limit of {E,}nen) with the embedding p, : E — E,. We are
interested in showing that the inclusion

(2.3) y € F(y)

has a solution in F.
We begin by presenting a Leray-Schauder nonlinear alternative [1].

Theorem 2.5. For each n € N, let U, be an open subset of E, with
0el, and

U20,2 .. :

here U, denotes the closure of Uy in E,. Let F:Y = FE forsome Y CE
and suppose the following conditions are satisfied:

for each n€ N, F, : U, = AC(E,) is upper semicontinuous
(2.4) (here AC(E,) denotes the family of nonempty, compact,
acyclic subsets of EyJ;



(25) for each ne N, yg AF,(y) in E, forall X€(0,1) and
) y € 0U, ( here QU, denotes the boundary of U, in E,):

for each n € N, the map Kn:U, — 257, given by
(2.6) Knly) = U, Fnly) (see Remark 2.3), is
countably condensing,

and

if there ezists a w € E and a sequence {yn}nen
with y, € U, and y, € Fo(yn) in E, such that

(2.7) for every k € N there exists a subsequence
SC{k+1,k+2,...} of N with y, »w in E;
as n—oc in S, then w € F(w) in E.

Then (2.3) has a solution y in E (in fact pn(y) € U, for every n € N).

Remark 2.3. The definition of K, is as follows. If y € U, and y ¢ Unt;
then K,(y) = F,(y), whereas if y € Uy, and y € U,io then K,(y) =
F.(y) U Fr41(y), and so on.

PROOF: From [5] we know for each n € N that F, has a fixed point
yn € U, ie y, € Fy(yn) in E,. Lets look at {yn}nen. Now Theorem
1.3 (with X = E;, G = K;, D = U; and note di(yn,Ki(yn)) = 0 for
each n € N since [z|; < |z|, for all z € E, and y, € F,(yn) in Ey;
here dy(z,Z) = infyecz |z — y|i for Z C X) guarantees that there exists
a subsequence N} of N and z; € E; with y, — 2; in By as n — oo
in Nf. Let Ny = Nf\{1}. Look at {yn}nen,. Now Theorem 1.3 (with
X = FEy, G = Ky and D = U,) guarantees that there exists a subsequence
N3 of Ny and z € Ey with y, = 22 in Ey as n — oo in NJ. Note
[z2 — z1]; = 0 since Ny C Nf and E; D E;. Thus 29 = z; in E;. Let
Ny = N3\ {2}. Proceed inductively to obtain subsequences of integers

NfDONF Dy NEC{kk+1,..)

and z; € Ey with y, = 2 in E; as n — oo in Ni. Note 2341 = 2 in
Ey for k=1,2,.... Also let Ny = N\ {k}.

Fix k€ N. Let y = 2z in Ey (i.e. pxp(y) = zi). Notice y is well defined
and y € E. Now y, € F(yn) in E, for n € Ny and y, —» y in E; as
n — oc in N (since y = 2z in Ey) together with (2.7) implies y € F(y)
in E. O

Let F' be defined on E). If F,, = Flg, for each n € N then a slight
modification of the argument in Theorem 2.5 yields the following result.

Theorem 2.6. For each n € N, let U, be an open subset of E, with
0€U,. Let F: Ey — E, and suppose the following conditions are satisfied:

(2.8) for each ne N, F:U, = AC(E,) is upper semicontinuous
o and countably condensing;



for each ne N, y¢ ANF(y) in E, for all
A€(0,1) and y e dU,;

and

(2.10) for each n€{2.3,....} if yeU, solves y € F(y) in E,
' then y € Uy, for ke {l,.,n—1}.

Then (2.3) has a solution y in E (in fact pn(y) € U, for every n € N).

PROOF: As in Theorem 2.5 we know for each n € N that F has a fixed
point y, € U,. Lets look at {yntnen. Now y; € U} and y € U, for
ke N\ {1} from (2.10). Now Theorem 1.3 (with X = E;, D=U,, G=F
and note di(y,, F(y,)) = 0 for each n € N since [z|; < |z|, for all
z € E,, and y, € F(yn) in Ey; here di(z, Z) = infycz |z —y|; for Z C X)
guarantees that there exists a subsequence N} of N and z; € E; with
Yn — z1 In By as n — oo in Nf. Essentially the same reasoning as in
Theorem 2.5 now establishes the result. O
Remark 2.4. The map in (2.4) (or (2.8)) can be replaced by any other map
where there is a corresponding Leray-Schauder alternative in the Banach
space setting (for example we could consider approximable maps); see [5] for
other classes of maps.

Next we present a Schauder-Tychonoff type theorem in this setting. The

proof is the same as that in Theorem 2.5 except in this case we quote the
corresponding result for self maps in the Banach space setting [16].

Theorem 2.7. For each n € N, let C,, be a closed conver subset of F,
with
C, D Co2DC3D.......... .

Let F:Y = E for some Y C E and suppose the following conditions are
satisfied:

(2.11)  for each ne€ N, F,, : Cp, = AC(Cy,,) is upper semicontinuous;

(2.12)

for each n € N, the map K, :C, — 2E~,  given by
Kaly) = UX_,, Ful(y) is countably condensing;

and

if there exists a w € E and a sequence {yn}nen
with yn € Cp, and yn € Fy(yn) in E, such that

(2.13) for every k € N there exists a subsequence
SC{k+Lk+2,...} of N with y, »w in E
as n-—>oc wn S, then w € F(w) in E.

Then (2.3) has a solution y in E (in fact u,(y) € Cn for every n € N ).
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Theorem 2.8. For each n € N, let C,, be a closed convex subset of E,,
F: Ey = E;, and suppose the following conditions are satisfied:

(2.11) for each ne N, F:C, — AC(C,) is upper semicontinuous
o and countably condensing,

and

(2.15) for each n€ {2,3....} if ye C, solves ye F(y) in E,
then y€ Cy for ke {l,..,n—1}.

Then (2.3) has a solution y in E (in fact py(y) € C,, for every n € N).

Finally we present a Krasnoselskii-Petryshyn type result [15] in this set-
ting. For this result for n € N, C, will be a cone in E,, and for p > 0 we
will let

Unp={z € E,: |z]p <p} and Q,,=U,,NCh.
Notice
3¢, Qnp =0g,Unp,nNCyp and $,,=U,,NCy,

(the first closure is with respect to C, whereas the second is with respect
to E,).

Theorem 2.9. For each n € N, let C,, be a cone in E, and assume ||,
18 1ncreasing with respect to C,, and also that

012022032 ........ .

Also F:Y = FE for some Y C E. Let v, r, R be constants with 0 < y <
r < R and we suppose the following conditions are satisfied:

foreach ne N, F, : U, N C, = CK(Cy)
(2.16) s a upper semicontinuous map (here CK(C,) denotes the
family of nonempty, convez, compact subsets of C,);

(2.17)  for each n €N, |yln < |z|n Yy € Fy (z), Vz € 0p,Upnyr N Cy;
(2.18)  for each n €N, lyln > |z|p Vy € F, (), Yz € 8g, Uy g N Ch;

for each ne N, the map K, : U, rnCp, — 2Cn
(2.19) gwen by K, (y) = UX_ Fuly) is countably k-set
m=n
contractive (here 0 <k < 1});

for every k€ N and any subsequence A C {kk+1,...}
(2.20) if z€Ch, n€A, issuchthat R> x|, >r
then |zfx >

11



and

if there exists @ w € E and a sequence {yn}nen

with y, € (@\Un,r) NC, and y, € Folyn) in E,
(2.21) such that for every k € N there exists a subsequence

SClk+1,k+2,....} of N with y, »w in Eg

as n—oc in S, then we F(w) in E.

Then (2.3) has a solution y in E (in fact pu,(y) € (m\Unﬁ) NC, for
every n € N J.

PROOF: From (3] we have for each n € N that F;, has a fixed point
yn € (W\Un,r) N C,. Lets look at {yn}nen. Note y, € Uy g\Ui, for
each n € N. To see this notice |y,lp, < R and |z|; < |z|, for all z € E,
implies |y,/1 < R, and so y, € U; g for each n € N. On the other hand
[Ynln > 7, yn € Cp together with (2.20) implies |yn|1 > v. Now Theorem 1.3
(with X = Ey, G=K;, D= (z‘f{j,;\Um)mc1 and note dy (yn, K1(yn)) =0
for each n € N) guarantees that there exists a subsequence Ny of N and
21 € (m\lfm) NC; with y, = z; in E; as n — oo in Ny. Notice in
particular that v < [z1); < R.

Proceed inductively to obtain subsequences of integers

NfONED oy NEC{kk+1,..)

and z, € (Uk,R \U;m) N Cy with y, = 2z in E; as n — oc in IN;. Note
zk+1 = 2¢ in By for k=1,2,.... Alsolet Ny = Ny\ {k}.

Essentially the same reasoning as in Theorem 2.5 now establishes the
result. O
Remark 2.5. Of course there is an analogue of Theorem 2.9 when U, , is
replaced by U, g in (2.17) and Uy g is replaced by U, , in (2.18).
Remark 2.6. It is also possible to replace (2.18) in Theorem 2.9 by a Leggett
Williams condition; see [4].
Remark 2.7. Applications of special cases of the theorems in this paper may
be found in [1, 4, 7, 10, 15].
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