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a b s t r a c t

We introduce the notion of category depending on a fixed functional f defined on a
topological space. This notion permits us to obtain a better lower bound to the number
of critical points of f than the bound obtained with the Lusternik–Schnirelman category.
We also introduce the notion of truncated category depending on the functional f which
permits us to obtain a lower bound to the number of critical points of unbounded
functionals. Finally, we extend our result after having introduced the notions of relative
category and limit relative category depending on the functional f .
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1. Introduction

Lusternik and Schnirelman [1] introduced in 1934 a topological invariant for compact manifolds X called category and
noted cat(X). They showed using minimax methods that cat(X) gives a lower bound to the number of critical points of
C1 functionals f : X → R. This theory was extended to Riemannian manifolds by Schwartz [2] in 1964, and to Finsler
manifolds by Palais [3] in 1966. Themain ingredients to obtain critical point results to C1 functionals bounded frombeloware
a compactness condition (called Palais–Smale condition), and a deformation lemma ensuring the existence of a continuous
deformation η such that f (η(x, t)) ≤ f (x); see also [4]. The reader who wants to learn more on the Lusternik–Schnirelman
category is referred to the monograph [5].
In order to consider functionals unbounded from below, Reeken [6] introduced a notion of relative category. This notion

was forgotten and rediscovered by Fournier and Willem [7,8].
The relative category was hardly applicable to obtain a lower bound to the number of critical points of strongly indefinite

functionals. This could be understood by the fact that, in an infinite dimensional Hilbert space, the relative category of a
closed ball B relative to its boundary ∂B in B is trivial (catB,∂B(B) = 0). To overcome this problem, Fournier, Lupo, Ramos
and Willem [9] introduced the notion of limit relative category. Here the main ingredients were a Galerkin argument, a
deformation lemma ensuring the existence of a suitable family of deformations, and the compactness condition (called
Palais–Smale-star condition (PS)∗) introduced by Bahri and Berestycki [10], and independently by Liu and Li [11].
The notion of relative categorywas also extended tometric spaces X and applied to the critical point theory of continuous

functionals f : X → R by Canino and Degiovanni [12]. In this context, x is a critical point of f if |df |(x) = 0, where |df |
is the weak slope introduced by Degiovanni and Marzocchi [13]. Deformation lemmas obtained by Corvellec, Degiovanni
and Marzocchi [14] were used. In 1980, De Giorgi, Marino and Tosques [15] were the first to introduce a notion of slope for
discontinuous functionals defined on metric space.
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All those notions of category depend only on the space. Hence the lower bound to the number of critical points of f is the
same for every suitable functional f : X → R. So, in many cases, the number of critical points of f is much larger than the
lower bound given by the category. In this paper, following [16], we introduce notions of category which take into account
the functional. A first stepwasdone in this direction by Szulkin [17]. Our category is always bigger or equal than Szulkin’s one.
Our paper is organized as follows. In Section 3, we introduce the notion of category depending on a fixed functional f

defined on a topological space X . Roughly speaking, we cover a set by contractible sets with suitable deformations η. In
particular, it will be fine if f (η(x, t)) ≤ f (x). We also introduce the notions of relative category and truncated category
depending on the functional f . Their properties are studied. It is worthwhile to point out that with our notions, it cannot
be shown that a compact subset has a closed neighborhood with the same category. This fact was fundamental with the
Lusternik–Schnirelman category.
In Section 4, we discuss the relation between the category depending on f and the notion of linking introduced by

Frigon [18]. This notion of linking contains and extends the classical notions of linking. A particular attention is given to
the linking of (B1×M, S1×M)with (B2×M, S2×M), whereM is a compact manifold, X = E1⊕ E2 is a Banach space with
0 < dim(E1) <∞, Bi and Si are respectively the closed unit ball and the unit sphere in Ei. In fact, the linking of (B1, S1)with
(B2, S2) corresponds to the notion of splitting spheres introduced byMarino, Micheletti and Pistoia [19]. Let us mention that
the notion of splitting spheres generalizes the notion of local linking; see [20,11].
In Section 5, we consider a metric space X and f : X → R a continuous functional satisfying a suitable deformation

property. We show that our notions of category depending on f permit to obtain a lower bound to the number of critical
points of f . Let us mention that our notion of truncated category permits us to consider unbounded functionals (see
Theorem 5.9); there are no analogous result in the literature.
Finally, we introduce the notion of limit relative category depending on the functional f and we study its properties. An

application of our results to Hamiltonian systems is presented in [21] inwhich the existence and themultiplicity of solutions
are obtained.

2. Preliminaries

Let X be a topological space. For A, B ⊂ X , η1 : A×[0, 1] → X and η2 : B×[0, 1] → X continuous such that ηi(x, 0) = x
and η1(A, 1) ⊂ B, we define η2 ? η1 : A× [0, 1] → X by

η2 ? η1(x, t) =
{
η1(x, 2t), if t ∈ [0, 1/2],
η2(η1(x, 1), 2t − 1), if t ∈]1/2, 1].

Let f : X → R be a functional. For a ∈ R, we denote

f a = {x ∈ X : f (x) ≤ a},

and f∞ = X .
We define

Nf = {η : X × [0, 1] → X : η is continuous, η(x, 0) = x and, f (η(x, t)) ≤ f (x) ∀x ∈ X, t ∈ [0, 1]}.

It is well known that the Lusternik–Schnirelman category of B ⊂ X , noted catX (B), is the smallest n ∈ N such that B can
be covered by n closed contractible subsets of X . If such a n does not exist, set catX (B) = ∞.
Let us recall the definition of relative category presented in [17] which is a variant of the relative category introduced by

Reeken [6] and rediscovered by Fournier and Willem [7,8].

Definition 2.1. Let B, Y be closed in X . The category of B relative to Y in X , noted catX,Y (B), is the smallest n ∈ N ∪ {0} such
that there exist closed sets A0, . . . , An such that B ⊂

⋃n
i=0 Ai, A1, . . . , An are contractible in X , and there exists a continuous

deformation η0 : A0 ∪ Y × [0, 1] → X such that η0(x, 0) = x, η0(Y , t) ⊂ Y , and η0(A0, 1) ⊂ Y .

The notion of relative cuplength was introduced by Fournier and Willem [7]; see also [9] or [17]. For A ⊂ B two
closed subsets of Rm, we denote by H∗(B, A) the Čech cohomology of (B, A)with coefficients in Z2. For arbitrary metrizable
pair (X, Y ), we use the Alexander cohomology as defined in [22, Chapter 6] with the fact that the Alexander and Čech
cohomologies are isomorphic for paracompact spaces, and the tautness property for Alexander cohomology.

Definition 2.2. Let A, B be two closed subsets of Rm. The cuplength of B relative to A, noted cuplength(B, A), is the largest
n ∈ N ∪ {0} for which there exist α0, . . . , αn such that α0 ∈ Hq0(B, A), αk ∈ Hqk(B) and qk ≥ 1 for k ≥ 1, and

α0
⋃
· · ·

⋃
αn 6= 0 in Hq(B, A)with q = q0 + · · · + qn,

where ‘‘
⋃
’’ denotes the cup product. If such a n does not exist, we define cuplength(B, A) = −1.

Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) < ∞, and M a compact manifold. Let r1, r2 > 0, we denote for
i = 1, 2,

Bi = {x ∈ Ei : ‖x‖ ≤ ri}
Si = {x ∈ Ei : ‖x‖ = ri}.
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The next result follows from Marino [23].

Theorem 2.3. Let Y be a closed set such that S1 ×M ⊂ Y ⊂ (E \ B2)×M. Then

cat(E\S2)×M,Y (B1 ×M) ≥ cuplength(B1 ×M, S1 ×M)+ 1.

Proof. Assume that cat(E\S2)×M,Y (B1×M) = m <∞. There exits A0, . . . , Am as in Definition 2.1. Without lost of generality,
we can assume that B1 ×M = A0 ∪ · · · ∪ Am.
Let α0, . . . , αm be such that α0 ∈ Hq0(B1 ×M, S1 ×M), αk ∈ Hqk(B1 ×M)with qk ≥ 1 for k ≥ 1.
First of all, observe that the inclusion

l : (B1 ×M, S1 ×M)→ ((E \ S2)×M, (E \ B2)×M)

induces the isomorphism

lq0 : Hq0 ((E \ S2)×M, (E \ B2)×M)→ Hq0(B1 ×M, S1 ×M).

Indeed, B1×M and S1×M are respectively deformation retracts of (B1⊕ int(B2))×M and ((B1⊕ int(B2))\B2)×M . Observe
that

(B1 ⊕ int(B2), (B1 ⊕ int(B2)) \ B2) = ((E \ S2) \ Z, (E \ B2) \ Z) ,

where

Z = ((E1 ⊕ (E2 \ int(B2))) \ S2) ∪ ((E1 \ B1)⊕ E2) .

Those observations imply that lq0 is an isomorphism since the closure of Z in E \ S2 is contained in E \ B2. The fact that lq0 is
an isomorphism, and the exactness of the sequence associated to the inclusions permit us to deduce that the following map
κq0 is surjective

Hq0 ((E \ S2)×M, (E \ B2)×M) −→ Hq0 ((E \ S2)×M, Y )
κq0
−→ Hq0(B1 ×M, S1 ×M).

The properties of A0 imply that the inclusion

Hq0 ((E \ S2)×M, Y )→ Hq0(A0 ∪ Y , Y )

is trivial. Thus, from the exact sequence

Hq0 ((E \ S2)×M, A0 ∪ Y )
hq0
−→ Hq0 ((E \ S2)×M, Y )

0
−→ Hq0(A0 ∪ Y , Y ),

we deduce that hq0 is surjective.
Therefore from the inclusions, we obtain the commutative diagram

Hq0
(
(E\S2)M , A0 ∪ Y

) hq0
−−−−→ Hq0

(
(E\S2)M , Y

) 0
−−−−→ Hq0(A0 ∪ Y , Y )y yκq0 y

Hq0
(
BM1 , A0 ∪ S

M
1

) jq0
−−−−→ Hq0(BM1 , S

M
1 ) −−−−→ Hq0

(
A0 ∪ SM1 , S

M
1

)
where for a set S, SM means S ×M . So there exists α̃0 ∈ Hq0(BM1 , A0 ∪ S

M
1 ) such that α0 = j

q0 (̃α0).
Similarly, for k ≥ 1, Hqk((E \ S2)×M)→ Hqk(Ak) is trivial since Ak is contractible in (E \ S2)×M . Thus, from the exact

sequence

Hqk ((E \ S2)×M, Ak)
hqk
−→ Hqk ((E \ S2)×M)

0
−→ Hqk(Ak),

we deduce that hqk is surjective. Again, in the following commutative diagram

Hqk
(
(E\S2)×M, Ak

) hqk
−−−−→ Hqk

(
(E\S2)×M

) 0
−−−−→ Hqk(Ak)y yκqk y

Hqk(B1 ×M, Ak)
jqk

−−−−→ Hqk(B1 ×M) −−−−→ Hqk(Ak)

the contractibility of B1 ensures that κqk is surjective. Therefore, we deduce that there exists α̃k ∈ Hqk(B1×M, Ak) such that
αk = jqk (̃αk).
Consequently, the compactness of B1, S1,M , A0, . . . , Am, the theory of cohomology and the naturality of the cup product

(see [24,22]) imply that

α0
⋃
· · ·

⋃
αm = jq

(
α̃0
⋃
· · ·

⋃
α̃m

)
∈ Hq(B1 ×M, S1 ×M), q =

m∑
k=0

qm,
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where

jq : Hq (B1 ×M, A0 ∪ · · · ∪ Am ∪ (S1 ×M))→ Hq(B1 ×M, S1 ×M).

Since A0 ∪ · · · ∪ Am ∪ (S1 ×M) = B1 ×M , it follows that

α0
⋃
· · ·

⋃
αm = 0. �

The following result is due to Szulkin [17].

Lemma 2.4. Let B1, S1 and M be as above. Then

cuplength(B1 ×M, S1 ×M) ≥ cuplength(M).

3. Notions of category depending on a functional

We introduce notions of category depending on a given functional. Those notions will be useful to obtain a better lower
bound to the number of critical points of the functional than the lower bound given by the classical Lusternik–Schnirelman
category.
In what follows, X denotes a topological space, and f : X → R is a functional fixed from the beginning.

Definition 3.1. Let A be a subset of X and ε > 0, we say that A is (f , ε)-contractible in X if there exist x̂ ∈ X and a continuous
deformation η : A× [0, 1] → X such that for all x ∈ A,
(a) η(x, 0) = x;
(b) η(x, 1) = x̂;
(c) f (η(x, t)) ≤ f (x)+ ε for all t ∈ [0, 1].

The previous notion of (f , ε)-contractibility permits us to introduce the category depending on the functional f .

Definition 3.2. Let B ⊂ X . We define the f -category of B in X by

f -catX (B) = sup
ε>0
nfε(B, X),

where nfε(B, X) is the smallest n ∈ N such that there exist closed subsets A1, . . . , An satisfying:
(a) B ⊂

⋃n
i=1 Ai;

(b) Ai is (f , ε)-contractible in X , for all i = 1, . . . , n.

If such a n does not exist, we set nfε(B, X) = ∞, and if B = ∅, we set n
f
ε(B, X) = 0.

Remark 3.3. Observe that if f -catX (B) <∞, there exists ε0 > 0 such that for all ε ∈ ]0, ε0],

f -catX (B) = nfε(B, X).

Notice also that ε 7→ nfε(B, X) is nonincreasing and hence

f -catX (B) = lim
ε→0
nfε(B, X).

Examples 3.4. Very often, f -catX (B) > catX (B), we give two examples.
(1) Let f : R→ R be defined by f (x) = x4 − 5x2 + 4. Then f -catR(R) = 2 and catR(R) = 1.
(2) Let f : R→ R be defined by f (x) = x sin(1/x). Then f -catR([−r, r]) = ∞ and catR([−r, r]) = 1 for every r > 0.

Most of the usual properties of the category are satisfied by the f -category.

Theorem 3.5. Let A, B be subsets of X. The following properties are satisfied:
(i) catX (B) ≤ f -catX (B);
(ii) f -catX (B) = 0 if and only if B = ∅;
(iii) if f -catX (B) = 1, then B is (f , ε)-contractible for every ε > 0;
(iv) if A ⊂ B, then f -catX (A) ≤ f -catX (B);
(v) f -catX (A ∪ B) ≤ f -catX (A)+ f -catX (B);
(vi) if η : B× [0, 1] → X is continuous and satisfies η(x, 0) = x and f (η(x, t)) ≤ f (x), then f -catX (B) ≤ f -catX (η(B, 1));
(vii) if f -catX (B) < ∞, there exists ε > 0 such that for every ε ∈ ]0, ε[, and every η : B × [0, 1] → X continuous and

satisfying η(x, 0) = x and f (η(x, t)) ≤ f (x)+ ε, then f -catX (B) ≤ f -catX (η(B, 1));
(viii) if f -catX (B) = ∞, then for every k ∈ N, there exists ε > 0 such that for every ε ∈ ]0, ε[, and every η : B× [0, 1] → X

continuous and satisfying η(x, 0) = x and f (η(x, t)) ≤ f (x)+ ε, one has f -catX (η(B, 1)) ≥ k.
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Proof. (i) It is clear that for every ε > 0, catX (B) ≤ nfε(B, X) ≤ f -catX (B).
(ii) and (iii) are obvious.
(iv) and (v) follow directly from the fact that for every ε > 0, nfε(A, X) ≤ n

f
ε(B, X) when A ⊂ B, and n

f
ε(A ∪ B, X) ≤

nfε(A, X)+ n
f
ε(B, X).

(vi), (vii) and (viii): Observe that for every ε ≥ 0 and every η : B × [0, 1] → X continuous such that η(x, 0) = x and
f (η(x, t)) ≤ f (x)+ ε,

nfε+δ(B, X) ≤ n
f
δ(η(B, 1), X) ∀δ > 0. (3.1)

Indeed, if nfδ(η(B, 1), X) = k, for i = 1, . . . , k, there exists Ai closed and (f , δ)-contractible with a deformation ηi, and
such that η(B, 1) ⊂

⋃k
i=1 Ai. Denote Ci = {x ∈ B : η(x, 1) ∈ Ai}. It is easy to verify Ci is (f , ε + δ)-contractible with the

deformation ηi ? η and B ⊂
⋃k
i=1 Ci. Hence n

f
ε+δ(B, X) ≤ k.

Now, if for somem ∈ N, f -catX (B) ≥ m, there exists ε > 0 such that for every ε1 ∈ ]0, ε], nfε1(B, X) ≥ m. For ε ∈ [0, ε[
and η : B × [0, 1] → X continuous such that η(x, 0) = x and f (η(x, t)) ≤ f (x) + ε, we deduce from (3.1) that for every
δ ∈ ]0, ε − ε],

nfδ(η(B, 1)) ≥ n
f
ε+δ(B, X) ≥ m.

Therefore f -catX (η(B, 1)) ≥ m. �

Remark 3.6. Observe that f -catX (B) = 1 does not imply that there exists a continuous deformation η : B × [0, 1] → X
such that η(x, 0) = x, η(x, 1) = x̂, and f (η(x, t)) ≤ f (x). This can be easily seen with X = B = R and f (x) = ex.

The Lusternik–Schnirelman category depends only on the space X . Here, on the contrary, our notion of category depends
strongly on the functional. The next result establishes that if the f -catX (B) <∞, then small perturbations of the functional
increase the category of B associated to the perturbed functional.

Proposition 3.7. Let B ⊂ X, and f , g : X → R.
(i) For every k ∈ N such that f -catX (B) ≥ k, there exists δ > 0 such that if sup{|f (x)− g(x)| : x ∈ B} ≤ δ, then g-catX (B) ≥ k.
In particular, if f -catX (B) <∞, there exists δ > 0 such that if sup{|f (x)− g(x)| : x ∈ B} ≤ δ, then

f -catX (B) ≤ g-catX (B).

(ii) If sup{|f (x)− g(x)| : x ∈ B} = β , then for every ε > 0,

ngε(B, X) ≥ n
f
ε+2β(B, X).

Proof. (i) If f -catX (B) ≥ k ∈ N, there exists ε̂ > 0 such that for all ε ∈ ]0, ε̂], nfε(B, X) ≥ k. Choose δ < ε̂/2. If

sup{|f (x)− g(x)| : x ∈ B} ≤ δ and g-catX (B) = m < k,

there exists ε̄ such that for all ε ∈ ]0, ε̄], ngε(B, X) = m. Let ε < min{ε̄, ε̂− 2δ}. For i = 1, . . . ,m, there exist a closed set Ai
and an associated continuous deformation ηi : Ai× [0, 1] → X given by Definition 3.2 such that g(ηi(x, t)) ≤ g(x)+ ε, and
B ⊂

⋃k
i=1 Ai. Denote Ci = B ∩ Ai. For every x ∈ Ci and t ∈ [0, 1],

f (ηi(x, t)) ≤ g(ηi(x, t))+ δ ≤ g(x)+ ε + δ ≤ f (x)+ ε + 2δ.

Hence, nfε+2δ(B, X) ≤ m; contradiction.
(ii) The argument is analogous to the previous one. �

Examples 3.8. Here is a simple example to show that the previous proposition is optimal in the sense that equality cannot
be obtained. Take f (x) = x2 and g(x) = x2(1 + c sin(1/x)). Obviously f -catR([−1, 1]) = 1 and g-catR([−1, 1]) = ∞ for
every c 6= 0.

Observe that if the functional f is such that inf f (B) = −∞, f -catX (B) = ∞. Indeed, for every ε > 0, nfε(B, X) = ∞.
Otherwise there would exist a finite subset of X , S = {x1, . . . , xk} such that min f (S) ≤ f (x) + ε for every x ∈ B. From
this observation, we can expect that if the functional is not bounded from below, we will not be able to deduce a relation
between the f -catX (X) and the number of critical points of f ; this is also the case for the classical category. This leads us to
introduce the notion of truncated category depending on the functional f .

Definition 3.9. Let B ⊂ X . We define the truncated f -category of B in X by

f -cattX (B) = sup
ε>0
t fε (B, X),

where t fε (B, X) is the smallest n ∈ N ∪ {0} such that there exist closed subsets A0, . . . , An satisfying:
(a) B ⊂

⋃n
i=0 Ai;
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(b) Ai is (f , ε)-contractible in X , for all i = 1, . . . , n;
(c) there exists η0 ∈ Nf such that η0(A0, 1) ⊂ f −1/ε .

If such a n does not exist, we set t fε (B, X) = ∞.

Examples 3.10. (1) Take f (x) = x, f -cattR(R) = 0 while f -catR(R) = ∞.
(2) Take f (x) = −x2, f -cattR(R) = 1 while f -catR(R) = ∞.

The previous examples illustrate that the values of the two previous notions of f -category can be very different. However,
they coincide when the functional is bounded from below.

Proposition 3.11. Let B ⊂ X be such that inf f (X) > −∞. Then

f -cattX (B) = f -catX (B).

Properties satisfied by the truncated f -category are analogous to those of the f -category. The proof of the following result
is analogous to the proof of Theorem 3.5.

Theorem 3.12. Let A, B be subsets of X, the following properties are satisfied:
(i) if A ⊂ B, then f -cattX (A) ≤ f -cattX (B);
(ii) f -cattX (A ∪ B) ≤ f -cattX (A)+ f -catX (B);
(iii) for every η ∈ Nf , f -cattX (B) ≤ f -cattX (η(B, 1)).

As before, small perturbations of the functional increase the value the truncated category.

Proposition 3.13. Let B ⊂ X, and f , g : X → R. If f -cattX (B) < ∞, there exists δ > 0 such that if sup{|f (x) − g(x)| : x ∈
B} ≤ δ, then

f -cattX (B) ≤ g-catX (B).

Moreover, if f -cattX (B) = ∞, for every k ∈ N, there exists δ > 0 such that if sup{|f (x)− g(x)| : x ∈ B} < δ, g-cattX (B) ≥ k.

Proof. If f -cattX (B) = k <∞, there exists ε̂ > 0 such that for all ε ∈ ]0, ε̂], t fε (B, X) = k. Choose δ < ε̂/2. If

sup{|f (x)− g(x)| : x ∈ B} ≤ δ and g-cattX (B) = m < k,

there exists ε̄ such that for all ε ∈ ]0, ε̄], tgε (B, X) = m.
Let ε < min{ε̄, ε̂−2δ, 2ε̂/(2+ε̂2)}. For i = 0, . . . ,m, there exist a closed setAi and an associated continuous deformation

ηi given by Definition 3.9. Denote Ci = B∩ Ai. As in the proof of Proposition 3.7, f (ηi(x, t)) ≤ f (x)+ ε+ 2δ for every x ∈ Ci,
t ∈ [0, 1], and i = 1, . . . ,m. Also,

f (η0(x, 1)) ≤ g(η0(x, 1))+ δ ≤ δ −
1
ε
≤ −

1
ε̂
∀x ∈ C0.

Hence, t f
ε̂
(B, X) ≤ m; contradiction. The case f -cattX (B) = ∞ is analogous. �

A notion of relative category depending on the functional f can also be introduced.

Definition 3.14. Let Y be a closed subset of X , and B ⊂ X . We define the f -category of B relative to Y in X by

f -catX,Y (B) = sup
ε>0
nfε(B, X, Y ),

where nfε(B, X, Y ) is the smallest n ∈ N ∪ {0} such that there exist closed subsets A0, . . . , An satisfying:
(a) B ⊂

⋃n
i=0 Ai;

(b) Ai is (f , ε)-contractible in X , for all i = 1, . . . , n;
(c) there exists η0 ∈ Nf such that η0(Y , t) ⊂ Y , and η0(A0, 1) ⊂ Y .

If such a n does not exist, we set nfε(B, X, Y ) = ∞.

Examples 3.15. (1) Take X = R2, f (x, y) = (x2 − 1)2 − y2, Y = f a for some a < 0. Observe that f -catX,Y (X) = 2 while
catX,Y (X) = 1.
(2) Take X = R and f (x) = x3 + 3x2.

f -catX,f a(X) =
{
1, if a < 4,
0, otherwise; while catX,f a(X) =

{
1, if a ∈ [0, 4[,
0, otherwise.

Observe that f -cattX (X) = 1.

Again, most of the usual properties of the relative category are preserved in this new context.
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Theorem 3.16. Let Y be a closed subset of X, A, B ⊂ X. The following properties are satisfied:
(i) f -catX,Y (B) ≥ catX,Y (B);
(ii) f -catX,Y (B) ≤ f -catX (B);
(iii) if A ⊂ B, then f -catX,Y (A) ≤ f -catX,Y (B);
(iv) f -catX,Y (A ∪ B) ≤ f -catX,Y (A)+ f -catX (B);
(v) if η ∈ Nf satisfies η(Y , t) ⊂ Y , then f -catX,Y (B) ≤ f -catX,Y (η(B, 1));
(vi) if Y is such that for every η ∈ Nf , one has η(Y , t) ⊂ Y , and if Z ⊂ X is a closed set such that there exists η̂ ∈ Nf satisfying

η̂(Z, 1) ⊂ Y , then

f -catX,Y (B) ≤ f -catX,Z (B).

In particular, f -catX,Y (B) ≤ f -catX,Z (B) for every closed Z ⊂ Y .

Proof. (i) Observe that for every ε > 0, catX,Y (B) ≤ nfε(B, X, Y ).
(ii) If nfε(B, X) = k <∞, there exist A1, . . . , Ak given by Definition 3.2. Hence, A0, . . . , Ak with A0 = Y satisfy conditions

of Definition 3.14. So nfε(B, X, Y ) ≤ k. Hence, f -catX,Y (B) ≤ f -catX (B).
(iii) is obvious.
(iv) If f -catX,Y (A) = k <∞ and f -catX (B) = m <∞, there exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], nfε(A, X, Y ) = k

and nfε(B, X) = m. It follows that n
f
ε(A ∪ B, X, Y ) ≤ k+m, and hence f -catX,Y (A ∪ B) ≤ k+m.

(v) The proof is analogous to the proof of (vi) of Theorem 3.5.
(vi) Assume that f -catX,Z (B) = k <∞. There exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], there exist closed sets A0, . . . , Ak

with associated deformations η0, . . . , ηk as in Definition 3.14. Observe that η̂ ? η0(A0, 1) ⊂ η̂(Z, 1) ⊂ Y , and by assumption
η̂ ? η0(Y , t) ⊂ Y . So, nfε(B, X, Y ) ≤ k, and hence f -catX,Y (B) ≤ k. �

Remark 3.17. Assumptions of Theorem 3.16(vi) are satisfied for example with Y = f a and Z ⊂ Y .

Remark 3.18. A very important property of the Lusternik–Schnirelman category and the relative category is the following.
We state it for the relative category.
If Y ⊂ X is closed and both X, Y are absolute neighborhood extensor (ANE), then for every closed subset B of X , there exists a
closed neighborhood V of B such that

catX,Y (B) = catX,Y (V );

see [9]. Recall that X is an ANE if for every metric space G, every F closed in G, and every continuous map g : F → X there
exists a continuous extension of g on a neighborhood of F in G.
This property is no longer true for the f -category. For example, with X = R, Y = ∅, f (x) = x sin(1/x),

f -catR({0}) = 0 and f -catR(V ) = ∞ for every neighborhood V of 0.

Now, we would like to compare

f -catX,Y (B) with f -catX̂,Ŷ (B ∩ X̂)

for a closed pair (X̂, Ŷ ) ⊂ (X, Y ) satisfying some suitable properties.

Theorem 3.19. Let Y and Ŷ ⊂ X̂ be closed subsets of X, and let B ⊂ X.

(i) If (X̂, Ŷ ) is a retract of (X, Y ) for some retraction r : (X, Y )→ (X̂, Ŷ ) such that f (r(x)) ≤ f (x) for every x ∈ X, then

f -catX,Y (B) ≥ f -catX̂,Ŷ (B ∩ X̂).

(ii) If (X̂, Ŷ ) is a deformation retract of (X, Y ) for some continuous deformation η : (X, Y )×[0, 1] → (X, Y ) such that η ∈ Nf ,
(η(X, 1), η(Y , 1)) = (X̂, Ŷ ), and η(x, t) = x for every x ∈ X̂ , t ∈ [0, 1], then

f -catX,Y (B) = f -catX̂,Ŷ (B ∩ X̂).

Proof. (i) If f -catX,Y (B) = k < ∞, there exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], there exist A0, . . . , Ak with associated
deformations η0, . . . , ηk given by Definition 3.14. Define Âi = Ai∩ X̂ and η̂i = r ◦ηi for i = 0, . . . , k. Since r is a retraction of
(X, Y ) on (X̂, Ŷ ) such that f (r(x)) ≤ f (x), we verify that Âi is (f , ε)-contractible for i = 1, . . . , k, and that η̂0 ∈ Nf satisfies
η̂0(Ŷ , t) ⊂ Ŷ , and η̂0(Â0, 1) ⊂ Ŷ . Therefore, nfε(B ∩ X̂, X̂, Ŷ ) ≤ k, and hence f -catX̂,Ŷ (B ∩ X̂) ≤ k.
(ii) Assume that f -catX̂,Ŷ (B ∩ X̂) = k < ∞. As in (i), there exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], there exist

Â0, . . . , Âk with associated deformations η̂0, . . . , η̂k given by Definition 3.14 such that B ∩ X̂ ⊂
⋃k
i=0 Âi. For i = 0, . . . , k,

define Ai = {x ∈ X : η(x, 1) ∈ Âi}, and ηi = η̂i ? η. It is easy to verify that for i = 1, . . . , k, Ai is (f , ε)-contractible, and that
η0 ∈ Nf satisfies η0(Y , t) ⊂ Y , and η0(A0, 1) ⊂ Y . Therefore, nfε(B, X, Y ) ≤ k, and hence f -catX,Y (B) ≤ k. �
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It is natural to compare the relative category of homotopy equivalent spaces in our context. Obviously, the functionals
will be related by this equivalence.

Theorem 3.20. Let Y be a closed subset of X, B ⊂ X. Assume that V is a topological space A ⊂ V and W is a closed subset of V
such that there exist continuous maps φ : (X, Y )→ (V ,W ),ψ : (V ,W )→ (X, Y ) such that φ(B) ⊂ A, andψ ◦φ is homotopic
to the identity map on (X, Y ) with an homotopy h : (X, Y )× [0, 1] → (X, Y ) such that h ∈ Nf . Then

f -catX,Y (B) ≤ g-catV ,W (A),

where g = f ◦ ψ .
Moreover if ψ(A) ⊂ B and (X, Y ) and (V ,W ) are homotopy equivalent with φ and ψ as above and such that φ ◦ ψ is

homotopic to the identity map on (V ,W ) with an homotopy k : (V ,W )× [0, 1] → (V ,W ) such that k ∈ Ng , then

f -catX,Y (B) = g-catV ,W (A).

Proof. Assume that g-catV ,W (A) = m < ∞. Let ε̂ > 0 be such that for every ε ∈ ]0, ε̂], there exist closed sets A0, . . . , Am
associated to deformation η0, . . . , ηm given by Definition 3.14 such that A ⊂

⋃m
i=0 Ai. Denote Bi = φ−1(Ai). Obviously

B ⊂
⋃n
i=0 Bi. Define for i = 0, . . . ,m,

η̃i(x, t) =


h(x, 2t), if t ∈

[
0,
1
2

]
,

ψ(ηi(φ(x), 2t − 1)), if t ∈
]
1
2
, 1
]
.

Since h(x, 1) = ψ ◦ φ and f (h(x, t)) ≤ f (x), η̃i is continuous and f (η̃i(x, t)) ≤ f (x) for every x and t ∈ [0, 1/2]. For
t ∈ ]1/2, 1],

f (η̃i(x, t)) = g(ηi(φ(x), t))

≤

{
g(φ(x)), if i = 0,
g(φ(x))+ ε, if i = 1, . . . ,m

≤ f (x)+
{
0, if i = 0,
ε, if i = 1, . . . ,m.

On the other hand, for t ∈ [0, 1/2],

η̃0(Y , t) ⊂ h(Y , 2t) ⊂ Y ,

and for t ∈ ]1/2, 1],

η̃0(Y , t) ⊂ ψ(η0(W , 2t − 1)) ⊂ ψ(W ) ⊂ Y .

Also,

η̃0(B0, 1) ⊂ ψ(η0(A0, 1)) ⊂ ψ(W ) ⊂ Y .

Therefore nfε(B, X, Y ) ≤ m and hence f -catX,Y (B) ≤ m.
Now, if (X, Y ) and (V ,W ) are homotopy equivalent and satisfy the assumptions, the first part of the proof ensures that

f -catX,Y (B) = g-catV ,W (A). �

4. Linking and f -category

In this section, X is a normal topological space and f : X → R is a continuous functional. We study the relations between
the category depending on the functional f and the notion of linking.We use the general notion of linking introduced in [18].
By convention: inf∅ = ∞, sup∅ = −∞, and dist(∅,Q ) = ∞.

Definition 4.1. Let A ⊂ B ⊂ X , P ⊂ Q ⊂ X . Let us denote

N (A) = {η : X × [0, 1] → X continuous : η(x, t) = x ∀(x, t) ∈ X × {0} ∪ A× [0, 1]}.

We say that (B, A) links (Q , P) if B ∩ Q 6= ∅, A ∩ Q = ∅, B ∩ P = ∅ and for every η ∈ N (A), one of the following conditions
is satisfied:
(a) η(B, 1) ∩ Q 6= ∅;
(b) η(B, ]0, 1[) ∩ P 6= ∅.

This notion includes the classical notion of linking corresponding to the case where (B, ∂B) links (Q ,∅). It includes also
the notion of splitting spheres introduced by Marino, Micheletti and Pistoia [19] corresponding to the case where (B1, S1)
links (B2, S2) with X = E1 ⊕ E2 a Banach space such that 0 < dim(E1) < ∞, Bi and Si are respectively the closed unit ball
and the unit sphere in Ei.
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Theorem 4.2. Assume that (B, A) links (Q , P), A is closed, and

f (x) < f (y) for every x ∈ B, y ∈ P. (4.1)

(i) If there exists a ∈ R such that sup f (A) ≤ a < inf f (Q ), then

f -catX,f a(B) ≥ 1 and f -catX,A(B) ≥ 1.

(ii) If sup f (A) = inf f (Q ) and A ∩ Q = ∅, then f -catX,A(B) ≥ 1.

Proof. (i) Let δ > 0 be such that a + δ < inf f (Q ). Assume that f -catX,f a(B) = 0. There exists a continuous deformation
η ∈ Nf such that η(f a, t) ⊂ f a and η(B, 1) ⊂ f a.
Consider λ : X → [0, 1] an Urysohn function such that λ(f a) = {0} and λ(X \ f a+δ) = {1}. Define a deformation

η̂ by η̂(x, t) = η(x, tλ(x)). Obviously, η̂ ∈ N (A). Observe that η̂ does not satisfy condition (b) of Definition 4.1. Indeed,
f (η̂(x, t)) ≤ f (x) < f (y) for every x ∈ B and y ∈ P . Therefore, since (B, A) links (Q , P), there exists x̂ ∈ B such that
η̂(x̂, 1) ∈ Q , and hence

a+ δ < inf f (Q ) ≤ f (η̂(x̂, 1)) ≤ f (x̂).

So, λ(x̂) = 1. Thus η̂(x̂, 1) = η(x̂, 1) ∈ f a. Contradiction.
It follows from Theorem 3.16(vi) that f -catX,A(B) ≥ f -catX,f a(B) ≥ 1.
(ii) If f -catX,A(B) = 0, there exists η ∈ Nf such that η(A, t) ⊂ A and η(B, 1) ⊂ A. Let us denote

Z = {x ∈ X : η(x, t) ∈ Q for some t ∈ [0, 1]}.

Observe that A∩ Z = ∅. Indeed, otherwise if x0 ∈ A∩ Z , there exist sequences xn → x0 and tn → t0 such that η(xn, tn) ∈ Q ,
and by continuity, η(x0, t0) ∈ Q = Q \ A, which contradicts the fact that η(A, t0) ⊂ A.
As in (i), we consider λ : X → [0, 1] an Urysohn function such that λ(A) = {0}, λ(Z) = {1}, and we define a deformation

η̂ by η̂(x, t) = η(x, tλ(x)). Again, η̂ ∈ N (A) and there exists x̂ ∈ B such that η̂(x̂, 1) = η(x̂, 1) ∈ Q . It is a contradiction
since η(B, 1) ⊂ A. �

Examples 4.3. This result is obviously false for the classical relative category.

(1) Take X = R2, f (x, y) = −x2 + y3 − y2 − y + 1, B = S1, A = {(1, 0)}, Q = {0} × [0,∞[ and P = (0, 0). Observe that
(B, A) links (Q , P), f -catX,A(B) = 1 and catX,A(B) = 0.

(2) Take X = R2, f (x, y) = 4x2 − x4 − y2, B = {0} × [−1, 1], A = {0} × {−1, 1}, Q = [−1, 1] × {0}, P = {−1, 1} × {0}.
Observe that (B, A) links (Q , P), f -catX,f a(B) = 1, and catX,f a(B) = 0 for every a ∈ [−1, 0[ = [sup f (A), inf f (Q )[.

If we replace condition (4.1) by a stronger one, we can obtain results in the space X \ P .

Theorem 4.4. Assume that (B, A) links (Q , P), A is closed, and assume that sup f (B) < inf f (P).

(i) If there exists a ∈ R such that sup f (A) ≤ a < inf f (Q ), then

f -catX\P,f a(B) ≥ 1 and f -catX\P,A(B) ≥ 1.

(ii) If sup f (A) = inf f (Q ) and A ∩ Q = ∅, then f -catX\P,A(B) ≥ 1.

Proof. Let b = sup f (B) and γ > 0 such that inf f (P) > b + γ . Consider σ : X → [0, 1] an Urysohn function such that
σ(f b) = {1}, σ(X \ f b+γ ) = {0}. Observe that if η : X \P×[0, 1] → X \P is a continuous deformation such that η(x, 0) = x
and f (η(x, t)) ≤ f (x), then the deformation η̃ : X × [0, 1] → X defined by

η̃(x, t) =
{
x, if x ∈ P,
η(x, tσ(x)), if x ∈ X \ P;

is inNf . Moreover, η̃ satisfies η̃(x, t) = η(x, t) for x ∈ f b.
(i) (resp. (ii)) If f -catX\P,f a(B) = 0 (resp. f -catX\P,A(B) = 0), there exists a continuous deformationη : X\P×[0, 1] → X\P

such that η(x, 0) = x, f (η(x, t)) ≤ f (x), and η(f a, t) ⊂ f a, η(B, 1) ⊂ f a (resp. η(A, t) ⊂ A, η(B, 1) ⊂ A). Using η̃ defined
above and arguing as in the proof of Theorem 4.2, we deduce the conclusion. �

To conclude this section, we consider the particular case of linking of type splitting spheres [19]. For E = E1⊕E2 a Banach
space, we denote

Bi = {x ∈ Ei : ‖x‖ ≤ ri},
Si = {x ∈ Ei : ‖x‖ = ri},

for i = 1, 2.
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Theorem 4.5. Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) < ∞. Let f : E → R be continuous. Assume that there
exist r1, r2 > 0 such that

sup f (S1) < inf f (B2) ≤ sup f (B1) < inf f (S2).

Then for all a ∈ [sup f (S1), inf f (B2)[,

f -catE,S1(B1) ≥ f -catE,f a(B1) ≥ catB1,S1(B1).

Proof. Theorem 3.16(vi) implies that

f -catE,S1(B1) ≥ f -catE,f a(B1).

Assume that f -catE,f a(B1) = k <∞. There exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], there exist closed sets A0, . . . , Ak
with associate deformations η0, . . . , ηk satisfying conditions of Definition 3.14, and in particular B1 ⊂

⋃k
i=0 Ai.

Let ρ : E → B1 be a continuous retraction. Obviously, for i = 1, . . . , k, Ai ∩ B1 is contractible in B1 with the homotopy
hi : (Ai ∩ B1)× [0, 1] → B1 defined by ρ ◦ ηi.
Let δ > 0 be such that a + δ < inf f (B2). Consider λ : E → [0, 1] an Urysohn function such that λ(f a) = {0} and

λ(E \ f a+δ) = {1}. Define a deformation η̂ by η̂(x, t) = η0(x, tλ(x)). Write η̂ = η̂1 + η̂2 with η̂i(E × [0, 1]) ⊂ Ei. The
fact that η̂(x, t) = x for every x ∈ f a implies that η̂1(x, t) = x for every x ∈ S1. The topological degree theory ensures the
existence of a continuum C ⊂ (B1 \ S1)× [0, 1] such that C ∩ B1 × {0} 6= ∅, C ∩ B1 × {1} 6= ∅, and η̂1(x, t) = 0 for every
(x, t) ∈ C; that is η̂(C) ⊂ E2. We claim that

η̂(C) ⊂ B2 \ S2. (4.2)

Otherwise, there would exists (x0, t0) ∈ C such that η̂(x0, t0) ∈ S2. Indeed, C ∩ B1 × {0} = (0, 0) and η̂(C) is connected.
This leads to a contradiction since

inf f (S2) ≤ f (η̂(x0, t0)) ≤ f (x0) ≤ sup f (B1) < inf f (S2).

Let (x̄, 1) ∈ C. It follows from (4.2) that a + δ ≤ f (η̂(x̄, 1)) ≤ f (x̄). So λ(x̄) = 1, and η̂(x̄, 1) = η0(x̄, 1). Since
η0(A0, 1) ⊂ f a, x̄ 6∈ A0 ∩ B1. To conclude, we notice that S1 is a deformation retract of B1 \ {x̄} and hence of (A0 ∩ B1)∪ S1 in
B1.
So A0 ∩ B1, . . . , Ak ∩ B1 satisfy conditions of Definition 2.1, and hence

catB1,S1(B1) ≤ k. �

We conjecture that an analogous result holds in E ×M forM a compact manifold.

Conjecture 4.6. Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) <∞, and M a compact manifold. Let f : E × M → R
be continuous. Assume that there exist r1, r2 > 0 such that

sup f (S1 ×M) < inf f (B2 ×M) ≤ sup f (B1 ×M) < inf f (S2 ×M). (4.3)

Then for all a ∈ [sup f (S1 ×M), inf f (B2 ×M)[,

f -catE×M,f a(B1 ×M) ≥ catB1×M,S1×M(B1 ×M).

Even though we cannot prove this conjecture, we can obtain a partial result.

Theorem 4.7. Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) <∞, and M a compact manifold. Let f : E ×M → R be
continuous. Assume that (4.3) is satisfied for some r1, r2 > 0. Then for all a ∈ [sup f (S1 ×M), inf f (B2 ×M)[,

f -catE×M,S1×M(B1 ×M) ≥ f -catE×M,f a(B1 ×M)
≥ cuplength(B1 ×M, S1 ×M)+ 1 ≥ cuplength(M)+ 1.

In order to prove this theorem, the following result will be needed.

Proposition 4.8. Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) <∞, and M a compact manifold. Let f : E ×M → R
be continuous. Assume that (4.3) is satisfied for some r1, r2 > 0. Then for all a ∈ [sup f (S1 ×M), inf f (B2 ×M)[,

f -catE×M,f a(B1 ×M) ≥ catE\S2×M,f a(B1 ×M).

Proof. Assume that f -catE×M,f a(B1 × M) = k < ∞. There exists ε̂ > 0 such that for every ε ∈ ]0, ε̂], there exist
closed sets A0, . . . , Ak with associate deformations η0, . . . , ηk satisfying conditions of Definition 3.14, and in particular
B1 ×M ⊂

⋃k
i=0 Ai.

Let ρ : E × M → E1 × M be a continuous retraction. Obviously, for i = 1, . . . , k, Âi := Ai ∩ (B1 × M) is contractible in
E \ S2 with the homotopy hi : Âi × [0, 1] → E \ S2 defined by ρ ◦ ηi.
On the other hand, observe that since f (η0(x, t)) ≤ f (x),η0 : (Â0∪f a)×[0, 1] → E\S2 satisfies the desired properties. �
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Proof of Theorem 4.7. It follows from Theorem 3.16(vi) and the previous proposition that

f -catE×M,S1×M(B1 ×M) ≥ f -catE×M,f a(B1 ×M) ≥ catE\S2×M,f a(B1 ×M).

Theorem 2.3 and Lemma 2.4 imply that

catE\S2×M,f a(B1 ×M) ≥ cuplength(B1 ×M, S1 ×M)+ 1 ≥ cuplength(M)+ 1. �

Remark 4.9. From the previous results, it is easy to see that Conjecture 4.6 is true if we can show that for S1 × M ⊂ A ⊂
B1×M closed such that there exists a continuous deformation η : E×M×[0, 1] → E×M satisfying η(x, t) = x∀x ∈ S1×M ,
η(A, 1) ⊂ (E \B2)×M and η(B1×M×[0, 1]) ⊂ (E \S2)×M , there exists a continuous deformation h : A×[0, 1] → B1×M
such that h(x, 0) = x, h(S1 ×M × [0, 1]) ⊂ S1 ×M , and h(A, 1) ⊂ S1 ×M .

5. Critical point theory and f -category

In this section, we want to show that under suitable assumptions, the f -category gives a lower bound to the number of
critical points of f . We present our results in an abstract context. In particular, they can be seen in the classical critical point
theory of continuously differentiablemaps, aswell as in the generalized critical point theory of nondifferentiable functionals.
In this section X is a metric space, f : X → R is continuous, and K ⊂ X is given and called the set of critical points of f ,

and it satisfies

K ∩ f −1(C) is compact for every compact set C ⊂ R. (5.1)
For c ∈ R and I ⊂ R, we denote

Kc = K ∩ f −1(c) and KI = K ∩ f −1(I).
We say c is a critical value of f if Kc 6= ∅.

5.1. Local contractibility and deformation properties

Themetric space X will have to satisfy a condition of contractibility. This notion can be found for example in Borsuk [25].

Definition 5.1. We say that a metric space Y is locally contractible if for every y ∈ Y and everyU neighborhood of y, there
exists a closed neighborhood V ⊂ U of y contractible in U; that is there exist ŷ ∈ U and a continuous deformation
h : V × [0, 1] → U such that h(v, 0) = v and h(v, 1) = ŷ for every v ∈ V .

Lemma 5.2. Assume that X is locally contractible. Then for every ε > 0 and every x ∈ X, there exists V a closed neighborhood
of x which is (f , ε)-contractible.
Proof. Let ε > 0 and x ∈ X . The continuity of f guaranties that there exists U, a neighborhood of x such that f (U) ⊂
B(f (x), ε/2). Since X is locally contractible, there exist V a closed neighborhood of x contractible in U with a continuous
deformation h : V × [0, 1] → U. Observe that

f (h(y, t)) ≤ f (x)+
ε

2
≤ f (y)+ ε ∀y ∈ V, t ∈ [0, 1]. �

It is well known that deformation lemmas play a key role in critical point theory. In this abstract context, we will assume
that f satisfies a suitable deformation property.

Definition 5.3. Let c ∈ R. We say that f satisfiesD(X, Kc) if for every ε̂, ρ > 0 and every neighborhoodU of Kc , there exist
ε ∈ ]0, ε̂[ and a continuous deformation η : X × [0, 1] → X such that
(a) η(x, t) = x for every (x, t) ∈ X × {0} ∪ f c−ε̂ × [0, 1];
(b) f (η(x, t)) ≤ f (x) for every (x, t) ∈ X × [0, 1];
(c) η(f c+ε \U, 1) ⊂ f c−ε;
(d) dist(x, η(x, t)) ≤ ρ for every (x, t) ∈ X × [0, 1].

This property permits to deduce a noncritical interval deformation lemma.

Lemma 5.4. Let ε̂ > 0, a ∈ R, b ∈ ]a,∞]. Assume that f satisfiesD(X, Kc) and Kc = ∅ for every c ∈ [a, b] ∩ R. Then there
exists a continuous deformation η : X × [0, 1] → X such that
(i) η(x, t) = x for every (x, t) ∈ X × {0} ∪ f a−ε̂ × [0, 1];
(ii) f (η(x, t)) ≤ f (x) for every (x, t) ∈ X × [0, 1];
(iii) η(f b, 1) ⊂ f a;
(iv) if b <∞, there exists δ > 0 such that dist(x, η(x, t)) ≤ δ for every (x, t) ∈ X × [0, 1].
Proof. Assume that b <∞. The propertyD(X, Kc) guaranties the existence of εc andηc satisfyingDefinition 5.3withρ = 1.
The compactness of [a, b] implies that we can choose a ≤ c1 < c2 · · · < cn ≤ b such that c1 − εc1 < a < b < cn + εcn , and
ci+1 − εci+1 < ci + εci for i = 1, . . . , n− 1. It is easy to verify that η = ηc1 ? · · · ? ηcn satisfies (i)–(iv) with δ = n.
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Now consider the case b = ∞. From the previous case, for every n ∈ N, there exists ηn satisfying (i)–(iv) on the interval
[a+ (n− 1)ε̂, a+ nε̂]. Define

η(x, t) =


η1(x, t), if f (x) ≤ a,
η1 ? η2(x, t), if f (x) ∈ ]a, a+ ε̂],
η1 ? η2 ? η3(x, t), if f (x) ∈ ]a+ ε̂, a+ 2ε̂],
...

It is easy to verify that η is continuous and satisfies (i)–(iii). �

With an extra assumption, a can be a critical value.

Definition 5.5. Let c ∈ R. We say that f satisfiesD2(X, Kc) if for every ε̂ > 0 such that f (K) ∩ [c, c + ε̂] = {c}, there exist
ε ∈ ]0, ε̂[ and a continuous deformation η : X × [0, 1] → X such that

(a) η(x, 0) = x for every (x, t) ∈ X × {0} ∪ f c−ε̂ × [0, 1];
(b) f (η(x, t)) ≤ f (x) for every (x, t) ∈ X × [0, 1];
(c) η(f c+ε, 1) ⊂ f c .

Lemma 5.6. Let a ∈ R, b ∈ ]a,∞]. Assume that Kc = ∅ for every c ∈ ]a, b] ∩R, and f satisfiesD(X, Kc) andD2(X, Ka). Then
there exists a continuous deformation η : X × [0, 1] → X such that
(i) η(x, t) = x for every (x, t) ∈ X × {0};
(ii) f (η(x, t)) ≤ f (x) for every (x, t) ∈ X × [0, 1];
(iii) η(f b, 1) ⊂ f a.

The next result follows directly from Theorem 3.16(vi), and Lemmas 5.4 and 5.6.

Proposition 5.7. Under the assumptions of Lemma 5.4 or Lemma 5.6,

f -catX,f a(B) = f -catX,f b(B) for every B ⊂ X .

5.2. Results with the f -category and the truncated f -category

The following result establishes that f -catX (X) is a lower bound to the cardinality of the set of critical points of f when f
is bounded from below. Let us recall that the property stated in Remark 3.18 is crucial in the proof of the analogous result
for the Lusternik–Schnirelman category. This property is no longer true for the f -category.

Theorem 5.8. Assume (5.1) and assume that X is locally contractible, and f satisfiesD(X, Kc) for every c ∈ R. If f is bounded
from below, then f has at least f -catX (X) critical points.

An analogous result can be obtained in the casewhere f is not bounded from below considering the truncated f -category.
It is worthwhile to point out that there is no analogous result with the classical Lusternik–Schnirelman category.

Theorem 5.9. Assume (5.1) and assume that X is locally contractible, and f satisfies D(X, Kc) for every c ∈ R. Then f has at
least f -cattX (X) critical points.

To prove those results, we need the following lemma with the following notation. For n ∈ N, set

Γn = {B ⊂ X : f -catX (B) ≥ n}, (resp. Γ tn = {B ⊂ X : f -cattX (B) ≥ n}),

and

cn = inf
B∈Γn
sup f (B)

(
resp. ctn = inf

B∈Γ tn
sup f (B)

)
.

Lemma 5.10. Assume (5.1) and X is locally contractible. Assume also that c = ck = · · · = ck+m (resp. c = ctk = · · · = c
t
k+m) is

not an accumulation point of f (K), and f satisfiesD(X, Kc). Then card Kc ≥ m+ 1.

Proof. By assumption, there exists δ > 0 such that [c − δ, c + δ] ∩ f (K) = {c}.
Suppose that card Kc ≤ m. Observe that f c+δ ∈ Γk+m (resp. f c+δ ∈ Γ tk+m). Indeed, by definition, there exists B ⊂ Γk+m

(resp. B ⊂ Γ tk+m) such that sup f (B) < c + δ. Theorem 3.5(iv) (resp. Theorem 3.12(i)) implies that

f -catX (f c+δ) ≥ f -catX (B) (resp. f -cattX (f c+δ) ≥ f -cattX (B)).

Therefore, there exists ε̄ > 0 such that

nfε(f
c+δ, X) ≥ k+m(resp. t fε (f

c+δ, X) ≥ k+m) for every ε ∈ ]0, ε̄]. (5.2)
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Lemma 5.2 implies that for every y ∈ Kc , there exists Vy a (f , ε̄)-contractible, closed neighborhood of y. Denote

U =
⋃
y∈Kc

int(Vy).

Let ε ∈ ]0, δ[ and η be the continuous deformation given by Definition 5.3 such that

η(f c+ε \U, 1) ⊂ f c−ε. (5.3)

We claim that

f -catX (η(f c+ε \U, 1)) ≥ k (resp. f -cattX (η(f c+ε \U, 1)) ≥ k). (5.4)

Otherwise, if f -catX (η(f c+ε \U, 1)) = j < k (resp. f -cattX (η(f c+ε \U, 1)) = j < k), we can choose ε̃ ≤ ε̄ such that

nf
ε̃
(η(f c+ε \U, 1)) = j (resp. t f

ε̃
(η(f c+ε \U, 1)) = j).

According to Definition 3.2 (resp. Definition 3.9), there exist B1, . . . , Bj (f , ε̃)-contractible with deformations η1, . . . , ηj
(resp. and B0 with a deformation η0 such that f (η0(x, 1)) ≤ −1/ε̃ for all x ∈ B0) such that η(f c+ε \U, 1) ⊂ B1 ∪ · · · ∪ Bj
(resp. η(f c+ε \U, 1) ⊂ B0 ∪ · · · ∪ Bj). On the other hand, let η̂ : X × [0, 1] → X be a continuous deformation such that

η̂(f c+δ, 1) ⊂ f c+ε

given by Lemma 5.4 since K[c+ε,c+δ] = ∅. Set

Ai = {x ∈ X : η ? η̂(x, 1) ∈ Bi} for i = 1, . . . , j (resp. i = 0, . . . , j),

and if card Kc = l > 0 and Kc = {y1, . . . , yl}, set

Ai = {x ∈ X : η̂(x, 1) ∈ Vyi−j} for i = j+ 1, . . . , j+ l.

It is easy to verify that Ai is (f , ε̄)-contractible for i = 1, . . . , j+ card Kc (resp. and f (η0 ? η ? η̂(x, 1)) ≤ −1/ε̄ for all x ∈ A0).
The covering A1, . . . , Aj+cardKc (resp. A0, . . . , Aj+card Kc ) permits us to deduce that

nfε̄(f
c+δ, X) ≤ j+ card Kc < k+m, (resp. t fε̄ (f

c+δ, X) < k+m),

which contradicts (5.2).
Finally, combining (5.3) and (5.4), we deduce that ck ≤ c − ε; contradiction. �

Proof of Theorem 5.8. We can assume that card K < ∞ since otherwise the conclusion is obviously true. Thus, f (K) has
no accumulation points and f (K) ⊂ ] −∞, b] for some b ∈ R.
It follows from Theorem 3.5(iv), (vi) and Lemma 5.4 that f -catX (X) = f -catX (f b). Thus, ci ≤ b for every i ∈ N such that

i ≤ f -catX (X). Observe that

c1 ≥ inf f (X) > −∞.

The conclusion follows from Lemma 5.10. �

Proof of Theorem 5.9. We can assume that f -cattX (X) ≥ 1 otherwise the result is trivial. Also, as in the proof of
Theorem 5.8, we can assume that card K <∞, and we deduce that f (K) has no accumulation points, f (K) ⊂ ]−∞, b] for
some b ∈ R, and ci ≤ b for every i ∈ N such that i ≤ f -cattX (X).
Let a = min f (K). We claim that c1 ≥ a. Otherwise, there exists B ∈ Γ t1 such that sup f (B) = m < a. It follows

from Lemma 5.4 that for ε > 0 sufficiently small, t fε (B, X) = 0 since there are no critical values in [−1/ε,m]. Hence
f -cattX (B) = 0; contradiction.
The conclusion follows from Lemma 5.10. �

5.3. Results with the relative f -category

We already know that the cardinality of the set of critical points of f is bigger or equal to its truncated f -category. Using
the relative f -category permits us to get more precision on the number of critical points in a given interval [a, b].

Theorem 5.11. Let −∞ < a < b ≤ ∞. Assume (5.1), X is locally contractible, and f satisfiesD(X, Kc) for every c ∈ [a, b]∩R.
Then

card(K[a,b]) ≥ f -catX,f a(f b).

Proof. We assume that card(K[a,b]) <∞ and f -catX,f a(f b) ≥ 1, otherwise, the result is trivial. For n ∈ N, set

Γ an = {B ⊂ f
b
: f -catX,f a(B) ≥ n},
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and

cn = inf
B∈Γ an

sup f (B).

Observe that a ≤ c1 ≤ cn ≤ b for every n ≤ f -catX,f a(f b) since f -catX,f a(B) = 0 if B ⊂ f a.
We claim that

if a = c1 = · · · = cm, then card Ka ≥ m. (5.5)

Indeed, otherwise, card Ka < m. There exists δ > 0 such that f (K)∩[a, a+δ] = {a}. Let B ∈ Γ am be such that sup f (B) < a+δ.
There exists ε̄ > 0 such that

nfε(B, X, f
a) ≥ m for every ε ∈ ]0, ε̄].

Lemma 5.2 implies that for every y ∈ Ka, there exists Vy a (f , ε̄)-contractible closed neighborhood of y. Denote

Ua =
⋃
y∈Ka

int(Vy).

Let ε ∈ ]0, δ[ and η be the continuous deformation given by Definition 5.3, and η̂ given by Lemma 5.4 such that

η(f a+ε \Ua, 1) ⊂ f a−ε and η̂(f a+δ, 1) ⊂ f a+ε.

Therefore, arguing as in the proof of Lemma 5.10 yields

nfε̄(B, X, f
a) ≤ nfε̄(f

a+δ, X, f a) ≤ card Ka < m;

contradiction.
Now, we claim that

if a < c = ck+1 = · · · = ck+m < b, then card Kc ≥ m. (5.6)

Indeed, otherwise, card Kc < m. There exists δ > 0 such that f (K) ∩ [c − δ, c + δ] = {c}. Notice that f c+δ ∈ Γ ak+m. There
exists ε̄ > 0 such that

nfε(f
c+δ, X, f a) ≥ k+m for every ε ∈ ]0, ε̄].

Lemma 5.2 implies that for every y ∈ Kc , there exists Vy a (f , ε̄)-contractible, closed neighborhood of y. Denote

Uc =
⋃
y∈Kc

int(Vy).

Arguing as above, we deduce that there exists ε ∈ ]0, δ[ such that

nfε̄(f
c+δ, X, f c−ε) ≤ card Kc < m. (5.7)

Notice that f -catX,f a(f c−ε) ≤ k since c − ε < c. So,

nfε̄(f
c−ε, X, f a) ≤ k. (5.8)

Combining (5.7) and (5.8) lead to

nfε̄(f
c+δ, X, f a) ≤ k+ card Kc < k+m;

contradiction.
Finally, we claim that

if b = ck+1 = · · · <∞, then card Kb ≥ f -catX,f a(f b)− k. (5.9)

Indeed, otherwise, card Kb = m < f -catX,f a(f b)− k. Notice that f b ∈ Γ ak+m+1. There exists ε̄ > 0 such that

nfε(f
b, X, f a) ≥ k+m+ 1 for every ε ∈ ]0, ε̄].

Arguing as above, we can show that there exists ε > 0 such that nfε̄(f
b, X, f b−ε) ≤ card Kb and n

f
ε̄(f
b−ε, X, f a) ≤ k, hence

nfε̄(f
b, X, f a) ≤ k+ card Kb = k+m;

contradiction.
To conclude, we combine (5.5), (5.6) and (5.9). �

Imposing a stronger deformation property permits to obtain a lower bound to the number of critical points in ]a, b].



3370 N. Beauchemin, M. Frigon / Nonlinear Analysis 72 (2010) 3356–3375

Theorem 5.12. Let −∞ < a < b ≤ ∞. Assume (5.1) and assume that X is locally contractible, and f satisfiesD2(X, Ka) and
D(X, Kc) for every c ∈ ]a, b] ∩ R. Then

card(K]a,b]) ≥ f -catX,f a(f b).

Proof. If a is an accumulation point of f (K)∩[a, b], card(K]a,b]) = ∞. Otherwise, the proof is analogous to the previous one
after noticing that c1 > a. �

Now, we deduce the existence of critical points in presence of linking.

Theorem 5.13. Assume (5.1), X is locally contractible, and assume that (B, A) links (Q , P) where B and Q are closed. If

sup f (A) ≤ a ≤ inf f (Q ) ≤ sup f (B) = b ≤ inf f (P),

a, b ∈ R, dist(A,Q ) > 0 if sup f (A) = inf f (Q ), dist(B, P) > 0 if sup f (B) = inf f (P), and f satisfies D(X, Kc) for every
c ∈ [a, b], then

k := card(K[a,b]) ≥ f -catX,f a(B). (5.10)

Moreover,
(i) if a < inf f (Q ) ≤ b < inf f (P), then k ≥ 1;
(ii) if a < inf f (Q ) < b = inf f (P), and B ∩ Kb = ∅, then k ≥ 1+ card Kb;
(iii) if a = inf f (Q ) ≤ b < inf f (P), then k ≥ 1+ card(Ka ∩ (X \ Q ));
(iv) if a = inf f (Q ) < b = inf f (P), and B ∩ Kb = ∅, then k ≥ 1+ card Kb + card(Ka ∩ (X \ Q ));
(v) if a = inf f (Q ) = b = inf f (P), then k ≥ 1+ card(Ka ∩ (X \ Q ))+ card(Ka ∩ P).

Proof. Theorems 3.16(iii) and 5.11 ensure (5.10). This inequality combined with Theorem 4.2 lead to statement (i).
(ii) Let 2ε̂ = min{dist(B, P), dist(B, Kb), b − inf f (Q )} > 0. Take U = B(Kb, ε̂) and ρ = ε̂, and let ε ∈ ]0, ε̂[ and η a

continuous deformation given by Definition 5.3. Let λ be an Urysohn function such that λ(f b−2ε̂) = 0 and λ(X \ f b−ε̂) = 1.
Set η̂(x, t) = η(x, λ(x)t). It is easy to verify that (η̂(B, 1), A) links (Q , P),

sup f (A) ≤ a ≤ inf f (Q ) ≤ sup f (η̂(B, 1)) ≤ b− ε < inf f (P).

Again Theorems 4.2 and 5.11 combined with Theorem 3.16 give

card(K[a,b−ε]) ≥ f -catX,f a(η̂(B, 1)) ≥ 1.

(iii) Assume that k = card(Ka ∩ (X \ Q )), i.e. K[a,b] = Ka ∩ (X \ Q ). Let 3ε̃ = min{dist(A,Q ), dist(Q , Ka)} > 0. Take
U = B(Ka, ε̃) and ρ = ε̃. Combining Definition 5.3 with Lemma 5.4, and using an Urysohn function λ such that λ(A) = 0,
λ(X \ B(A, ε̃)) = 1, we obtain ε̄ ∈ ]0, ε̃[ and η̃ ∈ N (A) ∩Nf such that

η̃(B, 1) ⊂ f a−ε̄ ∪ B(Ka, 2ε̃) ∪ B(A, 2ε̃).

Since (B, A) links (Q , P) and since b < inf f (P), there exists x̄ ∈ B such that η̃(x̄, 1) ∈ Q ; contradiction since Q ∩ (f a−ε̄ ∪
B(Ka, 2ε̃) ∪ B(A, 2ε̃)) = ∅.
(iv) Argue as in (iii) with η̂(B, 1) instead of B, where η̂ is obtained in (ii).
(v) Assume Ka = (Ka ∩ (X \ Q )) ∪ (Ka ∩ P). Let 2δ = dist(B, P) and

3ε̃ = min{δ, dist(A,Q ), dist(Ka,Q ∩ B(B, δ))} > 0.

TakeU = B(Ka, ε̃) and ρ = ε̃. By Definition 5.3, and using an Urysohn function λ such that λ(A) = 0, λ(X \ B(A, ε̃)) = 1,
we obtain ε̄ ∈ ]0, ε̃[ and η̃ ∈ N (A) ∩Nf such that

η̃(B× [0, 1]) ⊂ B(B, ε̃) and η̃(B, 1) ⊂ f a−ε̄ ∪ B(Ka, 2ε̃) ∪ B(A, 2ε̃).

Since (B, A) links (Q , P) and since η̃(B × [0, 1]) ∩ P = ∅, there exists x̄ ∈ B such that η̃(x̄, 1) ∈ Q ∩ B(B, ε̃); contradiction
since Q ∩ B(B, ε̃) ∩ (f a−ε̄ ∪ B(Ka, 2ε̃) ∪ B(A, 2ε̃)) = ∅. �

The following result gives a lower bound to the number of critical points of f in presence of linking of type splitting
spheres. It is a direct consequence of Theorems 4.7 and 5.11.

Theorem 5.14. Let E = E1 ⊕ E2 be a Banach space with 0 < dim(E1) < ∞, and M a compact manifold. Let f : E × M → R
be continuous and K satisfying (5.1). Assume that there exist r1, r2 > 0 and a, b ∈ R such that

sup f (S1 ×M) ≤ a < inf f (B2 ×M) ≤ sup f (B1 ×M) ≤ b < inf f (S2 ×M).

If f satisfiesD(E ×M, Kc) for every c ∈ [a, b], then

card(K[a,b]) ≥ f -catE×M,f a(B1 ×M)
≥ cuplength(B1 ×M, S1 ×M)+ 1 ≥ cuplength(M)+ 1.
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5.4. Particular cases

The results of the previous subsection are satisfied if for example X is a C2-Finsler manifold, f is C1 and satisfies the
Palais–Smale condition (PS)c . Indeed, it is well known that K the set of critical points of f satisfies (5.1), and f satisfies
D(X, Kc) andD2(X, Kc); see for example [26,3,27].
The previous results also hold if X is a locally contractible complete metric space, f is continuous, K = {x ∈ X : |df |(x) =

0}, where |df |means theweak slope of f introduced byDegiovanni andMarzocchi [13], and f satisfies (PS)c , the Palais–Smale
condition in the sense of theweak slope; see [14,28]. It is worthmentioning that results can also be obtained for lower semi-
continuous functionals; see [14].

6. Limit f -category

We finished the last sectionwith a result giving a lower bound to the number of critical points of a functional f defined on
E×M where E = E1⊕E2 is a Banach spacewith 0 < dim(E1) <∞. It iswell known thatmany solutions to partial differential
equations, or Hamiltonian systems are critical points of suitable f defined on E×M with dim(E1) = dim(E2) = ∞. Fournier,
Lupo, Ramos and Willem [9] introduced the limit relative category to treat this type of problem. In order to obtain a better
lower bound to the number of critical points, we want to take into account the functional.
In this section, X is a topological space and {Xk} is a sequence of closed subspaces of X such that

X =
⋃
k∈N

Xk and X1 ⊂ X2 ⊂ · · · .

For B ⊂ X , we denote Bk = B ∩ Xk.
We consider a functional f : X → R and we denote fk = f |Xk . We define

N ∗f = {{ηk : Xk × [0, 1] → Xk} : for every k ∈ N, ηk is continuous, ηk(x, 0) = x,
f (ηk(x, t)) ≤ f (x) ∀x ∈ Xk, t ∈ [0, 1]} .

6.1. Definition and properties

Here are the definitions of the limit f -category, the limit truncated f -category and the relative limit f -category.

Definition 6.1. Let B ⊂ X .
(a) We define the limit f -category of B in X by

f -cat∞X (B) = sup
ε>0
lim sup
k→∞

nfkε (Bk, Xk),

where nfkε (Bk, Xk) is defined in Definition 3.2.
(b) We define the limit truncated f -category of B in X by

f -catt∞X (B) = sup
ε>0
lim sup
k→∞

t fkε (Bk, Xk),

where t fkε (Bk, Xk) is defined in Definition 3.9.
(c) Let Y be a closed subset of X . We define the limit f -category of B relative to Y in X by

f -cat∞X,Y (B) = sup
ε>0
lim sup
k→∞

nfkε (Bk, Xk, Yk),

where nfkε (Bk, Xk, Yk) is defined in Definition 3.14.

The limit f -category (resp. limit truncated f -category, limit relative f -category) satisfies analogous properties to the
f -category (resp. truncated f -category, relative f -category).

Theorem 6.2. Let Y be a closed subset of X, A, B ⊂ X the following properties are satisfied:
(i) f -cat∞X (B) ≥ cat

∞

X (B) and f -cat
∞

X,Y (B) ≥ cat
∞

X,Y (B);
(ii) f -cat∞X,Y (B) ≤ f -cat

∞

X (B);
(iii) if A ⊂ B, then f -cat∞X (A) ≤ f -cat

∞

X (B), f -catt
∞

X (A) ≤ f -catt
∞

X (B), and f -cat
∞

X,Y (A) ≤ f -cat
∞

X,Y (B);
(iv) f -cat∞X (A ∪ B) ≤ f -cat∞X (A) + f -cat

∞

X (B), f -catt
∞

X (A ∪ B) ≤ f -catt∞X (A) + f -cat
∞

X (B), and f -cat
∞

X,Y (A ∪ B) ≤
f -cat∞X,Y (A)+ f -cat

∞

X (B);
(v) if Y is such that for every {ηk} ∈ N ∗f for which there exists k0 ∈ N such that for every k ≥ k0, ηk(Ak, 1) ⊂ Bk (resp. and

ηk(Yk, t) ⊂ Yk), then f -cat∞X (A) ≤ f -cat
∞

X (B), f -catt
∞

X (A) ≤ f -catt
∞

X (B), (resp. f -cat
∞

X,Y (A) ≤ f -cat
∞

X,Y (B));
(vi) if Y is such that for every {ηk} ∈ N ∗f for which there exists k0 ∈ N such that for every k ≥ k0, one has ηk(Yk, t) ⊂ Yk; and if

Z is a closed set such that there exists {η̂k} ∈ N ∗f for which there exists k1 ∈ N such that for every k ≥ k1, η̂k(Zk, 1) ⊂ Yk;
then

f -cat∞X,Y (B) ≤ f -cat
∞

X,Z (B).
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Proof. Observe that if f -cat∞X (B) = j ∈ N (resp. f -catt∞X (B) = j, f -cat
∞

X,Y (B) = j), there exist ε̂ and an increasing sequence
{km} such that for every ε ∈ ]0, ε̂]

n
fkm
ε (Bkm , Xkm)→ j asm→∞

(resp. t
fkm
ε (Bkm , Xkm)→ j, n

fkm
ε (Bkm , Xkm , Ykm)→ j asm→∞),

and there exists kε > 0 such that

nfkε (Bk, Xk) ≤ j for every k ≥ kε
(resp. t fkε (Bk, Xk) ≤ j, n

fk
ε (Bk, Xk, Yk) ≤ j for every k ≥ kε).

Using this fact and arguing as in the proofs of Theorems 3.5, 3.12 and 3.16, we prove the result. �

As we did for the relative f -category, we can compare

f -cat∞X,Y (B) with f -cat
∞

X̂,Ŷ
(B ∩ X̂)

for a closed pair (X̂, Ŷ ) ⊂ (X, Y ). Arguing as in the proof of Theorem 3.19, we obtain the following result.

Theorem 6.3. Let Y and Ŷ ⊂ X̂ be closed subsets of X, and let B ⊂ X.

(i) If there exists k0 ∈ N such that for every k ≥ k0, (X̂k, Ŷk) is a retract of (Xk, Yk) for some retraction rk : Xk → X̂k such that
f (rk(x)) ≤ f (x) for every x ∈ Xk, then

f -cat∞X,Y (B) ≥ f -cat
∞

X̂,Ŷ
(B ∩ X̂).

(ii) If {ηk} ∈ N ∗f is such that there exists k0 ∈ N such that for every k ≥ k0, (X̂k, Ŷk) is a deformation retract of (Xk, Yk) with
the deformation ηk, i.e ηk(Yk × [0, 1]) ⊂ Yk, (ηk(Xk, 1), ηk(Yk, 1)) = (X̂k, Ŷk), and ηk(x, t) = x for every x ∈ X̂k, t ∈ [0, 1],
then

f -cat∞X,Y (B) = f -cat
∞

X̂,Ŷ
(B ∩ X̂).

6.2. Limit f -category and critical points

We assume that X is a metric space and f : X → R is continuous. As in Section 5, we consider K ⊂ X called the set of
critical points of f which satisfies (5.1).

Definition 6.4. We say that the metric space X is ∗-locally contractible if for every y ∈ X and every U neighborhood of y,
there exists a neighborhood V ⊂ U of y such that there exists k0 ∈ N such that for every k ≥ k0, Vk is contractible inUk.

In order to obtain critical points, we need a deformation property which is in some sense deformations property satisfied
by f |Xk and uniform with respect to k for k sufficiently large.

Definition 6.5. Let c ∈ R. We say that f satisfiesD?(X, Kc) if for every ε̂ > 0 and every neighborhoodU of Kc , there exist
ε ∈ ]0, ε̂[ and k0 ∈ N such that for every k ≥ k0 there exists a continuous deformation ηk : Xk × [0, 1] → Xk such that

(a) ηk(x, 0) = x for every (x, t) ∈ Xk × {0} ∪ f c−ε̂k × [0, 1];
(b) f (ηk(x, t)) ≤ f (x) for every (x, t) ∈ Xk × [0, 1];
(c) ηk(f c+εk \U, 1) ⊂ f c−εk .

This property permits to deduce a noncritical interval deformation lemma. The proof is analogous to the proof of
Lemma 5.4.

Lemma 6.6. Let ε̂ > 0, a ∈ R, b ∈ ]a,∞[. Assume that and f satisfiesD?(X, Kc) and Kc = ∅ for every c ∈ [a, b]. Then there
exists k0 ∈ N such that for every k ≥ k0 there exists a continuous deformation ηk : Xk × [0, 1] → Xk such that

(i) ηk(x, t) = x for every (x, t) ∈ Xk × {0} ∪ f a−ε̂k × [0, 1];
(ii) f (ηk(x, t)) ≤ f (x) for every (x, t) ∈ Xk × [0, 1];
(iii) ηk(f bk , 1) ⊂ f

a
k .

A result analogous to Theorem 5.11 is true in this context.

Theorem 6.7. Let a < b be real constants. Assume (5.1) and assume that X is ∗-locally contractible, and f satisfies D∗(X, Kc)
for every c ∈ [a, b]. Then

card(K[a,b]) ≥ f -cat∞X,f a(f
b).
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Proof. We assume that card(K[a,b]) <∞ and f -cat∞X,f a(f
b) ≥ 1, otherwise, the result is trivial. For n ∈ N, set

Γ an = {B ⊂ f
b
: f -cat∞X,f a(B) ≥ n},

and

cn = inf
B∈Γ an

sup f (B).

Observe that a ≤ c1 ≤ cn ≤ b for every n ≤ f -cat∞X,f a(f
b) since f -cat∞X,f a(B) = 0 if B ⊂ f

a.
We claim that

if a = c1 = · · · = cm, then card Ka ≥ m. (6.1)

Indeed, otherwise, card Ka < m. There exists δ > 0 such that f (K)∩[a, a+δ] = {a}. Let B ∈ Γ am be such that sup f (B) < a+δ.
There exist ε̄ and an increasing sequence {kj} such that for every ε ∈ ]0, ε̄]

n
fkj
ε (Bkj , Xkj f

a
kj) ≥ m as j→∞,

and there exists kε > 0 such that

nfkε (Bk, Xk, f
a
k ) ≤ f -cat

∞

X,f a(B) for every k ≥ kε.

Since X is ∗-locally contractible and f is continuous, it is easy to show that there exists k̄ ∈ N such that for every y ∈ Ka,
there exists Vy a closed neighborhood of y such that Vyk is (fk, ε̄)-contractible for every k ≥ k̄. Denote

Ua
=

⋃
y∈Ka

int(Vy).

Let ε ∈ ]0, δ[, k̂ ≥ k̄ and for every k ≥ k̂, ηk be the continuous deformation given by Definition 6.5, and η̂k given by
Lemma 6.6 such that

ηk(f a+εk \Ua, 1) ⊂ f a−εk and η̂k(f a+δk , 1) ⊂ f a+εk .

Therefore, for every kj ≥ k̂,

n
fkj
ε̄ (Bkj , Xkj , f

a
kj) ≤ n

fkj
ε̄ (f

a+δ
kj

, Xkj , f
a
kj) ≤ card Ka < m;

contradiction.
Arguing as above and as in the proof of Theorem 5.11, we can show that

if a < c = ck+1 = · · · = ck+m < b, then card Kc ≥ m, (6.2)

and

if b = ck+1 = · · · <∞, then card Kb ≥ f -cat∞X,f a(f
b)− k. (6.3)

To conclude, we combine (6.1)–(6.3). �

In this context, we can also deduce the existence of critical points in presence of linking.

Theorem 6.8. Let A ⊂ B ⊂ X, P ⊂ Q ⊂ X be such that B and Q are closed. Assume (5.1), X is ∗-locally contractible, and assume
that (Bk, Ak) links (Qk, Pk) in Xk for k sufficiently large. If

sup f (A) ≤ a < inf f (Q ) ≤ sup f (B) = b < inf f (P),

and f satisfiesD∗(X, Kc) for every c ∈ [a, b], then

card(K[a,b]) ≥ f -cat∞X,f a(B) ≥ 1.

Proof. It follows from Theorems 6.2 and 6.7 that the conclusion holds if we can show that f -cat∞X,f a(B) ≥ 1.
Let δ > 0 be such that a + δ < inf f (Q ). Assume that f -cat∞X,f a(B) = 0. There exists {ηk} ∈ N ∗f for which there exists

k0 ∈ N such that for every k ≥ k0, ηk(f ak , t) ⊂ f
a
k and ηk(Bk, 1) ⊂ f

a
k .

Consider λ : X → [0, 1] an Urysohn function such that λ(f a) = {0} and λ(X \ f a+δ) = {1}. Define a deformation η̂k by
η̂k(x, t) = ηk(x, tλ(x)). It is easy to check that η̂k ∈ N (Ak) for the space Xk. Observe that η̂k does not satisfy condition (b) of
Definition 4.1. Indeed, f (η̂k(x, t)) ≤ f (x) ≤ b < inf f (P) ≤ inf f (Pk) for every x ∈ Bk.
Therefore, for k ≥ k0 such that (Bk, Ak) links (Qk, Pk) in Xk, there exists x̂k ∈ Bk such that η̂k(x̂k, 1) ∈ Qk, and hence

a+ δ < inf f (Q ) ≤ inf f (Qk) ≤ f (η̂k(x̂k, 1)) ≤ f (x̂k).

So, λ(x̂k) = 1. Thus η̂k(x̂k, 1) = ηk(x̂k, 1) ∈ f ak . Contradiction. �

We can extend Theorem 5.14 to the case where E = E1 ⊕ E2 with dim(E1) = ∞.
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Let E = E1 ⊕ E2 be a Banach space, and M a compact manifold. For i = 1, 2, assume that there exist E i1 ⊂ E
i
2 ⊂ · · · , a

sequence of closed subspaces of E i such that

E i =
⋃
k∈N

E ik,

with 0 < dim(E1k ) <∞. Denote

X = E ×M and Xk = Ek ×M, where Ek = E1k ⊕ E
2
k .

For ri > 0, set

Bi = {x ∈ E i : ‖x‖ ≤ ri},
S i = {x ∈ E i : ‖x‖ = ri}.

Theorem 6.9. Let E, M, and X be as above. Let f : X → R be continuous and K satisfying (5.1). Assume that there exist r1, r2 > 0
and a, b ∈ R such that

sup f (S1 ×M) ≤ a < inf f (B2 ×M) ≤ sup f (B1 ×M) ≤ b < inf f (S2 ×M).

If f satisfiesD∗(X, Kc) for every c ∈ [a, b], then

card(K[a,b]) ≥ f -cat∞X,f a(B1 ×M)

≥ lim sup
k→∞

cuplength(B1k ×M, S
1
k ×M)+ 1 ≥ cuplength(M)+ 1.

Proof. It follows from Theorems 6.2(iii) and 6.7 that

card(K[a,b]) ≥ f -cat∞X,f a(f
b) ≥ f -cat∞X,f a(B1 ×M).

The proof of Proposition 4.8 permits to see that

nfkε (B
1
k ×M, Xk, f

a
k ) ≥ catEk\S2k×M,f ak (B

1
k ×M) ∀ε > 0.

This inequality combined with Theorem 2.3 leads to

nfkε (B
1
k ×M, Xk, f

a
k ) ≥ cuplength(B

1
k ×M, S

1
k ×M)+ 1.

The conclusion follows from the definition of f -cat∞X,f a(B1 ×M) and Lemma 2.4. �

6.3. Particular cases

The results of the previous subsection are satisfied if for example X is a C2-Finsler manifold, f is C1 and satisfies the
Palais–Smale-star condition (PS)∗c . Indeed, K , the set of critical points of f , satisfies (5.1), and f satisfiesD

∗(X, Kc); see [11].
The results of Section 6.2 also hold if X is a ∗-locally contractible, complete metric space, f is continuous, K = {x ∈ X :

|df |(x) = 0}, where |df |means the weak slope of f introduced in [13], and f satisfies (PS)∗c the Palais–Smale-star condition
in the sense of the weak slope; see [29] or [30].

References

[1] L. Lusternik, L. Schnirelman, Méthodes topologiques dans les problèmes variationnels, in: Actualités scientifiques et industrielles, 188, in: Exposé sur
l’analyse mathématique et ses applications, 3, Hermann, Paris, 1934.

[2] J.T. Schwartz, Generalizing the Lusternik–Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964) 307–315.
[3] R.S. Palais, Lusternik–Schnirelman theory on Banach manifolds, Topology 5 (1966) 115–132.
[4] D.C. Clark, A variant of the Lusternik–Schnirelman theory, Indiana Univ. Math. J. 22 (1972–1973) 65–74.
[5] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik–Schnirelmann category, in: Mathematical Surveys and Monographs, vol. 103, American
Mathematical Society, Providence, 2003.

[6] M. Reeken, Stability of critical points under small perturbations, Part I: Topological theory, Manuscripta Math. 7 (1972) 387–411.
[7] G. Fournier, M.Willem, Relative category and the calcul of variations, in: Variational Methods, (Paris 1988), in: Progr. Nonlinear Differential Equations
Appl., vol. 4, Birkhäuser, Boston, 1990, pp. 95–104.

[8] G. Fournier, M. Willem, Multiple solutions of the forced double pendulum equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 259–281.
[9] G. Fournier, D. Lupo, M. Ramos, M. Willem, Limit relative category and critical point theory, in: Dynamics Reported, in: Expositions in Dynamical
Systems, vol. 3, Springer-Verlag, Berlin, 1994, pp. 1–24.

[10] A. Bahri, H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984) 403–442.
[11] J.Q. Liu, S.J. Li, An existence theorem for multiple critical points and its application, Kexue Tongbao 29 (1984) 1025–1027.
[12] A. Canino, M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equations, in: Topological Methods in Differential Equations and

Inclusions, (Montréal, 1994), in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1–50.
[13] M. Degiovanni, M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4) 167 (1994) 73–100.
[14] J.-N. Corvellec, M. Degiovanni, M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear

Anal. 1 (1993) 151–171.



N. Beauchemin, M. Frigon / Nonlinear Analysis 72 (2010) 3356–3375 3375

[15] E. De Giorgi, A. Marino, M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (8) 68 (1980) 180–187.

[16] N. Beauchemin, Catégorie assujettie à une fonctionnelle et une application aux systèmes hamiltonniens, Ph.D. Thesis, Université de Montréal,
Montréal, 2006.

[17] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal. 15 (1990) 725–739.
[18] M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999) 96–120.
[19] A. Marino, A.M. Micheletti, A. Pistoia, A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 4 (1994) 289–339.
[20] H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991) 939–963.
[21] N. Beauchemin,M. Frigon, On a notion of category depending on a functional. Part II: An application to Hamiltonian systems, Nonlinear Anal. 72 (2010)

3376–3387.
[22] E.H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1981.
[23] A. Marino, personnal communication.
[24] A. Dold, Lectures on Algebraic Topology, Springer, Berlin, 1972.
[25] K. Borsuk, Sur un espace compact localement contractile qui n’est pas un rétracte absolu de voisinage, Fund. Math. 35 (1948) 175–180.
[26] K.C. Chang, Infinite-dimensionalMorse theory andmultiple solution problems, in: Progress in Nonlinear Differential Equations and their Applications,

vol. 6, Birkhäuser, Boston, 1993.
[27] R.S. Palais, Critical point theory and minimax principle, in: Proc. Symp. Pure Math, vol. 15, American Mathematical Society, Providence, 1970,

pp. 185–212.
[28] J.-N. Corvellec, Morse theory for continuous functionals, J. Math. Anal. Appl. 196 (1995) 1050–1072.
[29] J.-N. Corvellec, On critical point theory with the (PS)∗ condition, in: Calculus of Variations and Differential Equations, (Haifa, 1998), in: Chapman &

Hall/CRC Res. Notes Math., vol. 410, Chapman & Hall/CRC, Boca Raton, 2000, pp. 65–81.
[30] M. Frigon, Remarques sur l’enlacement en théorie des points critiques pour des fonctionnelles continues, Canad. Math. Bull. 47 (2004) 515–529.


	On a notion of category depending on a functional, Part I: Theory and application to critical point theory
	Introduction
	Preliminaries
	Notions of category depending on a functional
	Linking and  f -category
	Critical point theory and  f -category
	Local contractibility and deformation properties
	Results with the  f -category and the truncated  f -category
	Results with the relative  f -category
	Particular cases

	Limit  f -category
	Definition and properties
	Limit  f -category and critical points
	Particular cases

	References


