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1. Introduction

In this paper, we study the following Hamiltonian system

J u̇+ A(t)u+∇H(t, u) = 0, (1.1)

where J is the standard symplectic matrix, A(t) is a symmetric 2N × 2N matrix continuous, A and H are 2π-periodic in t .
In past years, several authors studied the existence of periodic solutions to (1.1); see for instance [1–14].
Some of them, starting with Rabinowitz [12], established the existence of a nontrivial periodic solution in the case where

H is superquadratic. In particular, in [6,7,9], they used the fact that the local linking condition was satisfied.
Multiplicity results were obtained by adding a periodicity condition. The case where∇H(t, u) = h(t)+∇Ĥ(t, u) and Ĥ

is periodic with respect to the spectrum of J u̇+Auwas treated in [2,4,5,10]. More precisely, in [2,4], it was also assumed that
∇Ĥ and Ĥuu are bounded. The Hamiltonian did not have to be of class C2 in [5,10] but ∇Ĥ was asymptotic to 0 at infinity.
Their proofs rely on the notion of limit relative category introduced by Fournier, Lupo, Ramos and Willem [5].
Liu [8] and Daouas [3] obtained multiplicity results in the case where A = 0, ∇H is bounded and H is periodic in some

spatial variables.
A pioneering contribution is due to Conley and Zehnder [15]. Performing a Lyapunov–Schmidt reduction and using the

Conley index theory, they obtained the existence of 2N + 1 solutions in the case where A ≡ 0 and H is periodic of class C2.
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They also considered the case where A ≡ 0, H is periodic in q, and H(t, p, q) = 〈a, p〉 + 〈p, b(x)p〉/2 for ‖p‖ ≥ r > 0 with
a a constant and b ∈ L(RN). They established the existence of N + 1 periodic solutions. In [14], Szulkin considered the case
where A has the form

A(t) =
(
B(t) 0
0 0

)
(1.2)

with B(t) ≡ B non-singular. Assuming that H is periodic in q, ∇H is bounded, and H(t, p, q)→∞ (or−∞) uniformly in t
as ‖p‖ → ∞, he showed that (1.1) as at least N + 1 distinct periodic solutions. His proof relied on a new notion of relative
category.
In this paper, we combine periodic conditions with superquadratic growth to obtain an existence and a multiplicity

result. More precisely, we present a result establishing the existence of N + 1 distinct periodic solutions to (1.1). The matrix
A has the form (1.2) with B(t) non-singular. We assume also that H is periodic in q and H has a superquadratic growth in
p. Our existence results rely on the notion of limit relative category depending on a functional f (also called limit relative
f -category) introduced by the authors [16], (see also [17]). It is worth to mention that the limit relative f -category is always
larger or equal to the limit relative category introduced in [5]. This limit relative f -category takes advantage of linking-type
situation, and in particular, general linking pairs in the sense of [18].
Our paper is organized as follows. In Section 2, we recall the notion of limit relative f -category and results related to it,

obtained in [16]. In Section 3, we state our main theorem (Theorem 3.2). Technical results are obtained in the next section,
while in Section 5, an equivalent formulation of the problem is presented. Finally the proof of our main theorem is given in
the last section.

2. Category depending on a functional

The proof of our main theorem will rely on results on the category depending on a functional obtained by the authors
in [16] (see also [17]). We recall some of them for the sake of completeness.

2.1. The notion of f -category

Let X be a normal topological space, and f : X → R continuous.

Definition 2.1. Let A be a subset of X and ε > 0, we say that A is (f , ε)-contractible in X if there exist x̂ ∈ X and a continuous
deformation η : A× [0, 1] → X such that for all x ∈ A,
(a) η(x, 0) = x;
(b) η(x, 1) = x̂;
(c) f (η(x, t)) ≤ f (x)+ ε for all t ∈ [0, 1].

Using this notion of (f , ε)-contractibility, the authors introduced a notion of category depending on the functional f .

Definition 2.2. Let B ⊂ X . The f -category of B in X is defined by

f -catX (B) = sup
ε>0
nfε(B, X),

where nfε(B, X) is the smallest n ∈ N such that there exist closed subsets A1, . . . , An satisfying:
(a) B ⊂

⋃n
i=1 Ai;

(b) Ai is (f , ε)-contractible in X , for all i = 1, . . . , n.
If such an n does not exist, we set nfε(B, X) = ∞, and if B = ∅, we set n

f
ε(B, X) = 0.

The f -category satisfies the usual properties of the Lusternik–Schnirelman category. However
f -catX (B) ≥ catX (B) ∀B ⊂ X .

In general, this inequality is strict.
Observe that f -catX (B) = ∞ if inf f (B) = −∞. One sees that, as for the classical category, the f -category is not

appropriate to treat unbounded functional. For this reason, the authors introduced a notion of relative category depending
on the functional f . Denote

Nf = {η : X × [0, 1] → X : η is continuous, η(x, 0) = x and, f (η(x, t)) ≤ f (x) ∀x ∈ X, t ∈ [0, 1]} .

Definition 2.3. Let Y be a closed subset of X , and B ⊂ X . We define the f -category of B relative to Y in X by

f -catX,Y (B) = sup
ε>0
nfε(B, X, Y ),

where nfε(B, X, Y ) is the smallest n ∈ N ∪ {0} such that there exist closed subsets A0, . . . , An satisfying:
(a) B ⊂

⋃n
i=0 Ai;
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(b) Ai is (f , ε)-contractible in X , for all i = 1, . . . , n;
(c) there exists η0 ∈ Nf such that η0(Y , t) ⊂ Y , and η0(A0, 1) ⊂ Y .

If such an n does not exist, we set nfε(B, X, Y ) = ∞.

Again, most of the usual properties of the relative category are preserved by the relative f -category. Moreover

f -catX,Y (B) ≥ catX,Y (B) ∀B ⊂ X .

In general, this inequality is strict.
The relative f -category is related to the general notion of linking introduced in [18].

Definition 2.4. Let A ⊂ B ⊂ X , P ⊂ Q ⊂ X . We say that (B, A) links (Q , P) if B∩Q 6= ∅, A∩Q = ∅, B∩ P = ∅ and for every
η ∈ N (A), one of the following conditions is satisfied:

(a) η(B, 1) ∩ Q 6= ∅;
(b) η(B, ]0, 1[) ∩ P 6= ∅;

where

N (A) = {η : X × [0, 1] → X continuous : η(x, t) = x ∀(x, t) ∈ X × {0} ∪ A× [0, 1]} .

Observe that it is not assumed that A and P are nonempty. In the classical notion of linking, A = ∂B and P = ∅. In what
follows, we use the convention: inf∅ = ∞, sup∅ = −∞, and dist(∅,Q ) = ∞.

Theorem 2.5. Assume that (B, A) links (Q , P), A is closed, and there exists a ∈ R such that

sup f (A) ≤ a ≤ inf f (Q ) ≤ sup f (B) < inf f (P).

(i) If sup f (A) ≤ a < inf f (Q ), then

f -catX,f a(B) ≥ 1 and f -catX,A(B) ≥ 1.

(ii) If sup f (A) = inf f (Q ) and A ∩ Q = ∅, then f -catX,A(B) ≥ 1.

2.2. The f -category and critical points

In this section X is a metric space. As before f : X → R is continuous.
A subset K of X is given and called the set of critical points of f . We assume that K satisfies

K ∩ f −1(C) is compact for every compact set C ⊂ R. (2.1)

For c ∈ R and I ⊂ R, we denote

Kc = K ∩ f −1(c), KI = K ∩ f −1(I), and f c = {x ∈ X : f (x) ≤ c}.

Themetric spaceX is assumed to satisfy a condition of contractibility. This notion can be found for example in Borsuk [19].

Definition 2.6. We say that a metric space X is locally contractible if for every x ∈ X and everyU neighborhood of x, there
exists a closed neighborhood V ⊂ U of x contractible in U; that is there exist x̂ ∈ U and a continuous deformation
h : V × [0, 1] → U such that h(v, 0) = v and h(v, 1) = x̂ for every v ∈ V .

It is well known that deformation lemmas play a key role in critical point theory. In this abstract context, f has to satisfy
a suitable deformation property.

Definition 2.7. Let c ∈ R. We say that f satisfiesD(X, Kc) if for every ε̂, ρ > 0 and every neighborhoodU of Kc , there exist
ε ∈ ]0, ε̂[ and a continuous deformation η : X × [0, 1] → X such that

(a) η(x, t) = x for every (x, t) ∈ X × {0} ∪ f c−ε̂ × [0, 1];
(b) f (η(x, t)) ≤ f (x) for every (x, t) ∈ X × [0, 1];
(c) η(f c+ε \U, 1) ⊂ f c−ε;
(d) dist(x, η(x, t)) ≤ ρ for every (x, t) ∈ X × [0, 1].

The following result establishes that f -catX (X) is a lower bound to the cardinality of the set of critical points of f when f
is bounded from below.

Theorem 2.8. Assume (2.1) and assume that X is locally contractible, and f satisfiesD(X, Kc) for every c ∈ R. If f is bounded
from below, then f has at least f -catX (X) critical points.
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Combining the relative f -category and the notion of linking, the following result was obtained.

Theorem 2.9. Assume (2.1), X is locally contractible, and assume that (B, A) links (Q , P) where B and Q are closed. If

sup f (A) ≤ a ≤ inf f (Q ) ≤ sup f (B) = b ≤ inf f (P),

a, b ∈ R, dist(A,Q ) > 0 if sup f (A) = inf f (Q ), dist(B, P) > 0 if sup f (B) = inf f (P), and f satisfies D(X, Kc) for every
c ∈ [a, b], then

card(K[a,b]) ≥ f -catX,f a(B).

2.3. Limit relative f -category

In order to establish the existence of critical points of indefinite functional a notion of limit relative f -category was
introduced by the authors.
In this section, X is a metric space and {Xk} is a sequence of closed subspaces of X such that

X =
⋃
k∈N

Xk and X1 ⊂ X2 ⊂ · · · .

For B ⊂ X , we denote Bk = B ∩ Xk.
As before f : X → R is continuous and K ⊂ X satisfies (2.1). For k ∈ N, we denote fk = f |Xk .

Definition 2.10. Let B ⊂ X and Y closed in X . The limit f -category of B relative to Y in X is defined by

f -cat∞X,Y (B) = sup
ε>0
lim sup
k→∞

nfkε (Bk, Xk, Yk),

where nfkε (Bk, Xk, Yk) is defined in Definition 2.3.

The limit relative f -category satisfies most of the properties of the limit relative category introduced by Fournier, Lupo,
Ramos and Willem [5], and

f -cat∞X,Y (B) ≥ cat
∞

X,Y (B).

To relate this notion with critical points of f , a contractibility condition is imposed on the space, and a deformation
property is imposed on f .

Definition 2.11. We say that the metric space X is ∗-locally contractible if for every x ∈ X and everyU neighborhood of x,
there exists a neighborhood V ⊂ U of x such that there exists k0 ∈ N such that for every k ≥ k0, Vk is contractible inUk.

Definition 2.12. Let c ∈ R. We say that f satisfiesD?(X, Kc) if for every ε̂ > 0 and every neighborhoodU of Kc , there exist
ε ∈ ]0, ε̂[ and k0 ∈ N such that for every k ≥ k0 there exists a continuous deformation ηk : Xk × [0, 1] → Xk such that

(a) ηk(x, 0) = x for every (x, t) ∈ Xk × {0} ∪ f c−ε̂k × [0, 1];
(b) f (ηk(x, t)) ≤ f (x) for every (x, t) ∈ Xk × [0, 1];
(c) ηk(f c+εk \U, 1) ⊂ f c−εk .

Theorem 2.13. Assume (2.1), X is ∗-locally contractible. Let A ⊂ B ⊂ X, P ⊂ Q ⊂ X be such that B and Q are closed, and
(Bk, Ak) links (Qk, Pk) in Xk for k sufficiently large. If

sup f (A) ≤ a < inf f (Q ) ≤ sup f (B) = b < inf f (P),

and f satisfiesD∗(X, Kc) for every c ∈ [a, b], then

card(K[a,b]) ≥ f -cat∞X,f a(B) ≥ 1.

2.3.1. Particular case
Here is a particular case in which a lower estimate of the limit relative f -category is given.
Let E = E1 ⊕ E2 be a Banach space, and M a compact differentiable manifold. For i = 1, 2, assume that there exist

E i1 ⊂ E
i
2 ⊂ · · ·, a sequence of closed subspaces of E

i such that

E i =
⋃
k∈N

E ik,

with 0 < dim(E1k ) <∞. Denote

X = E ×M and Xk = Ek ×M, where Ek = E1k ⊕ E
2
k .
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For ri > 0, set

Bi = {x ∈ E i : ‖x‖ ≤ ri},
S i = {x ∈ E i : ‖x‖ = ri}.

Theorem 2.14. Let E, M, and X be as above. Let f : X → R be continuous and K satisfying (2.1). Assume that there exist
r1, r2 > 0 and a, b ∈ R such that

sup f (S1 ×M) ≤ a < inf f (B2 ×M) ≤ sup f (B1 ×M) ≤ b < inf f (S2 ×M).

If f satisfiesD∗(X, Kc) for every c ∈ [a, b], then

card(K[a,b]) ≥ f -cat∞X,f a(B1 ×M) ≥ lim sup
k→∞

cuplength(B1k ×M, S
1
k ×M)+ 1 ≥ cuplength(M)+ 1.

The reader is referred to [20] for the definition of relative cuplength.
Now, we recall a deformation lemma which insures that the deformation propertiesD∗(X, Kc) is satisfied.

Definition 2.15. Let X be as above, c ∈ R, and f : X → R of class C1. We say that f satisfies the Palais–Smale-star condition
at level c , denoted (PS)∗c , if every sequence (xnj) such that nj →∞, xnj ∈ Xnj , f (xnj)→ c and f ′nj(xnj)→ 0, has a convergent
subsequence.

Lemma 2.16. Let X be as above, and c ∈ R. Assume that f : X → R is C1 and satisfies (PS)∗c . If we consider K as the set of
critical points of f , then condition (2.1) is verified and f satisfiesD∗(X, Kc).

The reader is referred to [5] for a proof of this result.

3. Main theorem

Let us recall that we want to establish the existence of 2π-periodic solutions of the following problem

J u̇(t)+ A(t)u(t)+∇H(t, u(t)) = 0, (1.1)

where u(t) = (up(t), uq(t)) ∈ RN × RN ,

J =
(
0 −I
I 0

)
is the standard symplectic matrix, A(t) is an 2N × 2N matrix of the form

A(t) =
(
B(t) 0
0 0

)
with B(t) a symmetric N × N matrix, and

∇H(t, p, q) = (∇pH(t, p, q),∇qH(t, p, q)),

for (p, q) ∈ RN × RN .
Since we look for 2π-periodic solutions of (1.1), it is equivalent to look for solutions defined on the one-dimensional unit

sphere S. So, in the following, we identify [0, 2π ] to S. Every function u ∈ L2(S,R2N) can be written by a Fourier series∑
k∈Z

û(k)eikt , where û(k) =
1
2π

∫
S
u(t)e−ikt dt.

Define the fractionary Sobolev space

H1/2(S,R2N) =

{
u ∈ L2(S,R2N) :

∑
k∈Z

(1+ k2)1/2|û(k)|2 <∞

}
.

This space with the inner product

〈u, v〉1/2 =
∑
k∈Z

(1+ k2)1/2û(k)v̂(k)

is a Hilbert space. Let us denote the norm induced by this inner product by

‖u‖1/2 =

(∑
k∈Z

(1+ k2)1/2|û(k)|2
)1/2

.

By the usual Rellich Theorem, this fractionary Sobolev space, is compactly embedded in Lα(S,RN).
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Theorem 3.1. For all α ∈ [1,∞), H1/2(S,R2N) is compactly embedded in Lα(S,R2N). In particular, there exists a constant
γα > 0 such that

‖u‖Lα ≤ γα‖u‖1/2 ∀u ∈ H1/2(S,R2N).

We say that u ∈ H1/2(S,R2N) is a weak solution of the problem (1.1) if∫
S
J u̇ · v + Au · v +∇H(t, u) · v dt = 0 ∀v ∈ H1/2(S,R2N). (3.1)

We will assume the following conditions.

(H1) B(t) is an invertible self-adjoint N × N matrix, and t 7→ B(t) is continuous and 2π-periodic;
(H2) H : R × R2N → R is continuous, continuously differentiable with respect to z = (p, q) ∈ R2N , and 2π-periodic in t

and q;
(H3) there are constants a1, a2 > 0 and r > 1 such that

‖∇H(t, p, q)‖r ≤ a1 + a2p · ∇pH(t, p, q);

(H4) there are constants R > 0 and µ > 2 such that for all (p, q)with ‖p‖ ≥ R,

0 < µH(t, p, q) ≤ p · ∇pH(t, p, q);

(H5) ∇qH(t, p, q) is bounded;
(H6) H(t, z + (0, q))− H(t, 0, q) is o(‖z‖2) uniformly in t and in q as z → 0.

Let us state our main theorem.

Theorem 3.2. Suppose the conditions (H1)–(H6) are satisfied. Then (1.1) has at least one weak solution u ∈ H1/2(S,R2N).
Moreover, there exists β0 > 0 such that if

sup
q∈RN

{∫
S
H(t, 0, q) dt

}
− inf
q∈RN

{∫
S
H(t, 0, q) dt

}
< β0, (3.2)

then (1.1) has at least N + 1 distinct orbits of weak solutions.

Remark 3.3. Observe that (H2) implies that

sup
q∈RN

{∫
S
H(t, 0, q) dt

}
= max
q∈[0,2π ]N

{∫
S
H(t, 0, q) dt

}
,

inf
q∈RN

{∫
S
H(t, 0, q) dt

}
= min
q∈[0,2π ]N

{∫
S
H(t, 0, q) dt

}
.

Notice also that if

max{H(C)} −min{H(C)} <
β0

2π
, for C = S × {0} × [0, 2π ]N ,

then (3.2) is satisfied.

4. Technical results

In order to prove our main Theorem 3.2, we need to establish some technical results concerning the properties of the
function H . In the following, the necessary constants in the proofs will be noted c1, c2, . . . . The numeration will restart at c1
at the beginning of every proof.
Arguing in a classical manner, it is easy to prove the following lemma.

Lemma 4.1. Assume (H2) and (H3). Then there are constants a3, a4 such that

‖∇H(t, p, q)‖ ≤ a3 + a4‖p‖s

for all (t, p, q) ∈ R2N+1 where s = 1/(r − 1).

We obtain more precision on s if in addition (H4) is satisfied.

Lemma 4.2. If H satisfies (H2)–(H4), then s = 1/(r − 1) > 1.
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Proof. From assumption (H4), we obtain the existence of positive constants c1, c2 such that

H(t, p, 0) ≥ c1‖p‖µ − c2 ∀(t, p) ∈ RN+1.

This inequality combined with the fact that H is periodic in t gives the existence of a constant c3 such that

H(t, p, 0)− H(t, 0, 0) ≥ c1‖p‖µ − c3 ∀(t, p) ∈ RN+1. (4.1)

On the other hand, Lemma 4.1 implies that for all (t, p) ∈ RN+1,

H(t, p, 0)− H(t, 0, 0) =
∫ 1

0

d
dα
H(t, αp, 0)dα

=

∫ 1

0
p · ∇pH(t, αp, 0)dα

≤ a3‖p‖ + a4‖p‖s+1. (4.2)

Combining (4.1) and (4.2), we obtain

c1‖p‖µ − c3 ≤ a3‖p‖ + a4‖p‖s+1.

Since this inequality holds for all p and c1 > 0, we deduce that s+ 1 ≥ µ > 2. �

Lemma 4.3. Suppose H satisfies (H2) and (H4). Then there exists a constant k > 0 such that∫
S
H(t, u(t)) dt ≤ k+

1
µ

∫
S
up(t) · ∇pH(t, u(t)) dt

for all u = (up, uq) ∈ H1/2(S,R2N).

Proof. The periodicity in t and q implies that there exist c1 and c2 such that∣∣p · ∇pH(t, p, q)∣∣ ≤ c1
2π

and |H(t, p, q)| ≤
c2
2π
∀(t, p, q) ∈ R× [−R, R] × RN ,

where R is the constant given in (H4).
Let u = (up, uq) ∈ H1/2(S,R2N). SetA =

{
t ∈ S : ‖up(t)‖ ≤ R

}
. The previous inequalities imply that∣∣∣∣∫

A

up(t) · ∇pH(t, u(t)) dt
∣∣∣∣ ≤ c1, and

∣∣∣∣∫
A

H(t, u(t)) dt
∣∣∣∣ ≤ c2.

By (H4),∫
Ac
up(t) · ∇pH(t, u(t)) dt ≥

∫
Ac
µH(t, u(t)) dt.

Therefore, we obtain for every u ∈ H1/2(S,R2N),∫
S
H(t, u(t)) dt ≤ c2 +

1
µ

∫
Ac
up(t) · ∇pH(t, u(t)) dt

= c2 +
1
µ

∫
S
up(t) · ∇pH(t, u(t)) dt −

1
µ

∫
A

up(t) · ∇pH(t, u(t)) dt

≤ k+
1
µ

∫
S
up(t) · ∇pH(t, u(t)) dt,

where k = c2 − c1/µ. �

Lemma 4.4. Suppose (H2), (H3) and (H6) are satisfied. Then for all ε > 0, there exists cε > 0 such that

|H(t, z + (0, q))− H(t, 0, q)| ≤ ε‖z‖2 + cε‖z‖s+1

for all t ∈ R, z ∈ R2N and q ∈ RN .

Proof. Let ε > 0. By (H6), there is a constant Rε such that

|H(t, z + (0, q))− H(t, 0, q)| < ε‖z‖2, ∀ ‖z‖ < Rε. (4.3)
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Lemma 4.1 implies that

|H(t, z + (0, q))− H(t, 0, q)| =
∫ 1

0

d
dα
H(t, αz + (0, q))dα

=

∣∣∣∣∫ 1

0
z · ∇(H(t, αz + (0, q)))dα

∣∣∣∣
≤

∫ 1

0
a3‖z‖ + a4|α|s‖z‖s+1dα

= a3‖z‖ +
a4
s+ 1

‖z‖s+1.

Therefore, there exists cε > 0 such that

|H(t, z + (0, q))− H(t, 0, q)| ≤ cε‖z‖s+1, ∀‖z‖ > Rε. (4.4)

The conclusion follows from (4.3) and (4.4). �

5. Equivalent problem formulation and (PS)∗
c condition

Consider the bilinear operator a : H1/2(S,R2N)× H1/2(S,R2N)→ R defined by

a(u, v) =
∫
S
J u̇ · v + Au · v dt.

Since (H1) is satisfied, we can denote the eigenvalues associated with a by

· · · ≤ λ−2 ≤ λ−1 < λ0 = 0 < λ1 ≤ λ2 ≤, · · · ,

with λn →∞ and λ−n →−∞. This permits to obtain a decomposition of the space

H1/2(S,R2N) = X+ ⊕ X0 ⊕ X−,

where X+ (resp. X−) is the space generated by eigenvectors associated with positive (resp. negative) eigenvalues, and X0 is
the eigenspace associated with λ0 = 0. Observe that dim X+ = dim X− = ∞ and dim X0 <∞. More precisely

X0 = {u0 ∈ H1/2(S,R2N) : u0(t) ≡ (0, q) ∈ {0} × RN}.

Let us define the following inner product inducing an equivalent norm on H1/2(S,R2N) by:

〈〈u, v〉〉1/2 = a(u+, v+)− a(u−, v−)+ 〈u0, v0〉1/2, (5.1)

where u = u+ + u0 + u− ∈ X+ ⊕ X0 ⊕ X−. Observe that with this new scalar product the decomposition X+ ⊕ X0 ⊕ X− is
orthogonal, and with this new norm (still denoted ‖ · ‖1/2), we have

a(u, u) =
∫
S
(J u̇+ Au) · u dt = ‖u+‖21/2 − ‖u

−
‖
2
1/2,

see [6] for more details.
Let us introduce the equivalence relation on X0 defined by

x0 ∼ x̂0 ⇔ x0 − x̂0 = (0, q) ∈ {0} × 2πZN .

Denote [x0] the equivalence class of x0, and observe that

V = {[x0] : x0 ∈ X0} ≈ RN/2πZN ≈ TN ,

where TN denotes the N dimensional torus.
Consider the functional φ : H1/2(S,R2N)→ R defined by

φ(u) =
1
2

∫
S
J u̇ · u+ Au · u dt +

∫
S
H(t, u) dt. (5.2)

One can show that φ is C1 and

〈φ′(u), v〉 =
∫
S
J u̇ · v + Au · v +∇H(t, u) · v dt (5.3)

for all u, v ∈ H1/2(S,R2N). So weak solutions of (1.1) (see (3.1)) are critical points of the functional φ. By the periodicity of
A and H assumed in (H1) and (H2) respectively, we can easily show that for all u ∈ H1/2(S,R2N),

φ(u) = φ(u+ x0) and φ′(u) = φ′(u+ x0) ∀x0 such that [x0] = [0]. (5.4)
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Therefore, to each ū weak solution of (1.1) corresponds in fact an orbit of weak solutions {ū + x0 : [x0] = 0}. Hence, the
functional φ does not satisfy the Palais–Smale-star condition. To avoid this problem, we introduce another functional.
Let X = X+ ⊕ X−. Define f : X × V → R by

f (x, [x0]) = φ(x+ x0).

It follows from (5.4) that f is well defined. Moreover, f is C1, and critical points of f are in correspondence with critical orbits
of φ, (see [21,22] for more details).
For n ∈ N, choose e±n an eigenvector corresponding to λ±n and such that {. . . , e−1, e1, e2, . . .} is an orthonormal set.

Denote

X+n = span{e1, . . . , en},

X−n = span{e−1, . . . , e−n},

Xn = X+n ⊕ X
−

n ,

fn = f |Xn×V ,
φn = φ |Xn⊕X0 .

Theorem 5.1. Assume (H1)–(H6), then f satisfies (PS)∗c for all c ∈ R.

Proof. Consider {(xn, vn)} ∈ Xn × V a sequence such that

f (xn, vn)→ c and f ′n(xn, vn)→ 0. (5.5)

Choose x0n ∈ {0} × [0, 2π ]
N
⊂ X0 such that vn = [x0n], and denote un = xn + x

0
n ∈ H

1/2(S,R2N). To show that {(xn, vn)} has
a convergent subsequence, it is equivalent to show that {un} has a convergent subsequence.
The sequence {x0n} is bounded in the finite-dimensional space X

0. So, it has a subsequence still denoted {x0n} converging
to x0 ∈ X0.
Since f (xn, vn) = φ(un) and f ′n(xn, vn) = φ

′
n(un), it follows from (5.2), (5.3) and (5.5) that for n large enough,

1− 2c + ‖un‖1/2 ≥ 〈φ′n(un), un〉 − 2φ(un)

=

∫
S
∇H(t, un) · un − 2H(t, un) dt. (5.6)

By (H5) and Theorem 3.1, there exists a constant c1 such that∣∣∣∣∫
S
un,q · ∇qH(t, un) dt

∣∣∣∣ ≤ c1‖un,q‖1/2. (5.7)

On the other hand, (H3) and Lemma 4.3 imply that∫
S
un,p · ∇pH(t, un)− 2H(t, un) dt ≥

(
1−

2
µ

) ∫
S
un,p · ∇pH(t, un) dt − 2k

≥ c2‖∇H(t, un)‖rLr − c3. (5.8)

Combining (5.6)–(5.8) gives

1− 2c + ‖un‖1/2 ≥ c2‖∇H(t, un)‖rLr − c3 − c1‖un,q‖1/2.

Thus,

‖∇H(t, un)‖Lr ≤ c4(1+ ‖un‖
1/r
1/2). (5.9)

On the other hand, it follows from (5.5), (5.9) and Theorem 3.1 that for n large enough,

a(x+n , x
+

n ) = a(un, x
+

n )

= 〈φ′n(un), x
+

n 〉 −

∫
S
x+n · ∇H(t, un) dt

≤ ‖x+n ‖1/2 + ‖x
+

n ‖Lr′ ‖∇H(t, un)‖Lr

≤ ‖x+n ‖1/2 + c5‖x
+

n ‖1/2(1+ ‖un‖
1/r
1/2)

≤ c6 + c7‖un‖
1+1/r
1/2 , (5.10)
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where r ′ is the conjugate exponent of r . Similarly, we obtain

− a(x−n , x
−

n ) ≤ c6 + c7‖un‖
1+1/r
1/2 . (5.11)

We deduce from (5.1), (5.10), (5.11) and the fact that the sequence {x0n} is bounded, that

‖un‖21/2 ≤ c8 + 2c7‖un‖
1+1/r
1/2 .

Hence, since r > 1, the sequence {un} is bounded in the Hilbert space H1/2(S,R2N). Thus, {un} has a subsequence, still noted
{un}, weakly converging in H1/2(S,R2N) and converging strongly in L2(S,R2N) and in L2s(S,R2N) by Theorem 3.1. Let us
denote the limit u = x+ + x− + x0. Therefore, we deduce using in addition (5.1) and (5.5), that

±‖x±n − x
±
‖
2
1/2 = a(x±n − x

±, x±n − x
±)

= 〈φ′(un), x±n − x
±
〉 − 〈φ′(u), x±n − x

±
〉 −

∫
S

(
∇H(t, un)−∇H(t, u)

)
·

(
x±n − x

±

)
dt

→ 0.

Thus un → u strongly in H1/2(S,R2N) and hence {(xn, vn)} converges in X × V . �

6. Proof of the main theorem

In order to prove Theorem 3.2, we will first have to verify that f satisfies some appropriate inequalities on linking pairs.
Let r+ and r− be positive constants to be fixed later. Denote

B+ = {x ∈ X+: ‖x‖1/2 ≤ r+},

S+ = {x ∈ X+: ‖x‖1/2 = r+},

B− = {x ∈ X−: ‖x‖1/2 ≤ r−},

S− = {x ∈ X−: ‖x‖1/2 = r−}.

Theorem 6.1. Assume (H1)–(H3) and (H6) are satisfied. There exist v0 ∈ V and two positive constants r+ and r− such that

sup f (S− × V ) < inf f (B+ × {v0}) ≤ sup f (B− × V ) < inf f (S+ × {v0}). (6.1)

Moreover, there exists β0 > 0 such that if

max{f (0, V )} −min{f (0, V )} < β0, (6.2)

then

sup f (S− × V ) < inf f (B+ × V ) ≤ sup f (B− × V ) < inf f (S+ × V ). (6.3)

Proof. Let (x−, v) ∈ X− × V , and choose x0 ∈ X0 such that v = [x0]. By Theorem 3.1 and Lemma 4.4,

f (x−, v) =
1
2
a(x−, x−)+

∫
S
H(t, x− + x0) dt

=
−1
2
‖x−‖21/2 +

∫
S
H(t, x− + x0)− H(t, x0) dt +

∫
S
H(t, x0) dt

≤
−1
2
‖x−‖21/2 +

∫
S
ε‖x−‖2 + cε‖x−‖s+1 dt + f (0, v)

≤

(
−1
2
+ εγ2

)
‖x−‖21/2 + cεγs+1‖x

−
‖
s+1
1/2 + f (0, v). (6.4)

Similarly, we show that for all (x+, v) ∈ X+ × V ,

f (x+, v) ≥
(
1
2
− εγ2

)
‖x+‖21/2 − cεγs+1‖x

+
‖
s+1
1/2 + f (0, v). (6.5)

Since s > 1, (6.4) and (6.5) imply that for ε > 0 small enough, there exist positive constants r+, r−, k+ and k− such that

f (x−, v) ≤ −k− + f (0, v) ∀(x−, v) ∈ S− × V ,

f (x−, v) ≤ f (0, v) ∀(x−, v) ∈ B− × V ,

f (x+, v) ≥ k+ + f (0, v) ∀(x+, v) ∈ S+ × V ,

f (x+, v) ≥ f (0, v) ∀(x+, v) ∈ B+ × V .

(6.6)
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Set v0 ∈ V such that

f (0, v0) = max
v∈V
f (0, v).

This equality combined with (6.6) imply that

f (x+, v0) ≥ f (0, v0) > f (0, v0)− k− ≥ f (x−, v) ∀x+ ∈ B+,∀x− ∈ S−,∀v ∈ V ,
f (x+, v0) ≥ k+ + f (0, v0) > f (0, v0) ≥ f (x−, v) ∀x+ ∈ S+,∀x− ∈ B−,∀v ∈ V .

Thus

sup f (S− × V ) < inf f (B+ × {v0}) ≤ sup f (B− × V ) < inf f (S+ × {v0}).

Now, set β0 = min{k−, k+}. If (6.2) is satisfied and from (6.6), we have

f (x+, v1) ≥ inf f (0, V ) > sup f (0, V )− β0
≥ k− + f (x−, v2)− β0
≥ f (x−, v2) ∀x+ ∈ B+,∀x− ∈ S−,∀v1, v2 ∈ V ,

and

f (x−, v1) ≤ sup f (0, V ) < inf f (0, V )+ β0
≤ f (x+, v2)− k+ + β0
≤ f (x+, v2) ∀x− ∈ B−,∀x+ ∈ S+,∀v1, v2 ∈ V .

Thus,

sup f (S− × V ) < inf f (B+ × V ) ≤ sup f (B− × V ) < inf f (S+ × V ). �

We are now ready to prove the main theorem.

Proof of Theorem 3.2. It follows from Lemma 2.16 and Theorem 5.1 that f satisfiesD?(X, Kc) for all c ∈ R.
Observe that for all n ∈ N,(

(B− ∩ Xn)× V , (S− ∩ Xn)× V
)
links

(
(B+ ∩ Xn)× {v0}, (S+ ∩ Xn)× {v0}

)
,

where v0 is given in Theorem 6.1. Indeed, let η = (ηXn , ηv) : Xn × V × [0, 1] → Xn × V be continuous and such that

η(x, v, t) = (x, v) for every (x, v, t) ∈ (Xn × V × {0}) ∪ ((S− ∩ Xn)× V × [0, 1]).

Define H : (B− ∩ Xn)× V × [0, 1] → X−n × V by

H(x, v, t) =


(
PX−n (ηXn(x, v, 2t − 1)), ηV (x, v, 2t − 1)

)
, if t ∈

]
1
2
, 1
]
,(

2tPX−n (x)+ (1− 2t)x, v
)
, if t ∈

[
0,
1
2

]
,

where PX−n is the projection on X
−
n . By topological degree theory (see [23] or [24]), there exists a continuumC ⊂ (B−∩Xn)×

V×[0, 1] intersecting (B−∩Xn)×V×{t} for every t ∈ [0, 1] such thatH(x, v, t) = (0, v0) for every (x, v, t) ∈ C. Therefore,
{ηXn(x, v, 2t − 1) : (x, v, t) ∈ C, t ∈ [ 12 , 1]} is a connected subset of X

+
n such that {ηXn(x, v, 0) : (x, v,

1
2 ) ∈ C} = {0}. So, if

η((B− ∩Xn)×V , 1)∩ (B+n ×{v0}) = ∅, there exists t ∈ ]
1
2 , 1[ and (x, v, t) ∈ C such that η(x, v, 2t−1) ∈ (S+ ∩Xn)×{v0}.

This linking pairs combined with Theorem 6.1 permit to apply Theorem 2.13 to deduce that f has a critical point and
hence (1.1) has a 2π-periodic solution.
On the other hand, if (3.2) is satisfied with β0 obtained in Theorem 6.1. Theorem 2.14 implies that f has at least

cuplength(V ) + 1 critical points. It is well known that cuplength(V ) = cuplength(TN) = N (see [25, p. 161]). Therefore,
(1.1) has at least N + 1 distinct orbits of weak solutions. �
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