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Abstract

In this paper, we establish the existence of solutions to systems of second order differential inclusions
with maximal monotone terms. Our proofs rely on the theory of maximal monotone operators and the
Schauder degree theory. A notion of solution-tube to these problems is introduced. This notion generalizes
the notion of upper and lower solutions of second order differential equations.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we establish existence results for the following system of second order differen-
tial inclusions:

x′′(t) ∈ B
(
x(t)

) + f
(
t, x(t), x′(t)

)
, a.e. t ∈ [0,1],

x ∈ BC. (1.1)

Here B : dom(B) ⊂ Rn → Rn is a multi-valued maximal monotone operator, f : [0,1] × R2n →
Rn is a Carathéodory function, and BC denotes the periodic or the Sturm–Liouville boundary
conditions:
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x(0) = x(1), x′(0) = x′(1); (1.2)

A0x(0) − β0x
′(0) = θ0, A1x(1) + β1x

′(1) = θ1, (1.3)

where for i = 0,1, θi ∈ Rn, βi ∈ {0,1}, and Ai is an n × n matrix such that there exists αi � 0
satisfying 〈Aix, x〉 � αi‖x‖2, and αi + βi > 0.

In the literature, this problem was studied with topological methods in the case where B = 0
for example by Erbe and Palamides [3], Fabry and Habets [4], Frigon [5–7], Frigon and Mon-
toki [8], Gaprindashvili [9], Granas, Guenther and Lee [11], and Mawhin [15].

Here, incorporating a multi-valued maximal monotone operator permits us to consider second
order systems with convex potential (see, for example, [16]), as well as nonsmooth potential.
A natural example is the case where B is the subdifferential of a convex function. Also, it permits
us to include second order variational inequalities which are useful in mechanics and engineering,
and which appear also in problems with constraints (see, for example, [1]).

In [13], Halidias and Papageorgiou obtained solutions to this problem under more general
boundary conditions and with B a maximal monotone operator. Here, we establish the existence
of solutions to this problem in considering more general or different assumptions to theirs but
with the boundary condition BC (see also [17]). We assume that B is bounded on bounded sets
or B satisfies an appropriate inequality as in [13] (see (H5)).

The proofs rely on degree theory. Therefore, we need to obtain a priori bounds on the solutions
of a suitable family of problems. Different conditions are considered to obtain a priori bounds in
C1-norm or in W 1,2-norm. In particular, we extend the notion of solution-tube introduced in [5]
to problem (1.1). This notion generalizes the notion of upper and lower solutions of differential
equations. It generalizes also the condition introduced by Hartman [12] for systems of differential
equations:

∃M ∈ ]0,∞[ such that
〈
x,f (t, x, y)

〉 + ‖y‖2 � 0 for ‖x‖ = M and 〈x, y〉 = 0.

Also, when f satisfies a Nagumo–Wintner type growth condition, it is well known that for
systems of differential equations an extra assumption is needed in order to bound ‖x′‖ in L1-
norm. We may assume a condition introduced by Hartman [12] (see (H10)). However, since
this extra assumption is not needed in the particular case where our system is in fact a single
differential inclusion, it is interesting to find a condition for systems of n differential inclusions
which is trivially satisfied when n = 1. This is what permits our assumption (H11). It slightly
generalizes a condition introduced in [6] (see also [8]).

2. Preliminaries

In what follows, we will use the following notations: I = [0,1], C(I,Rn) (respectively
C1(I,Rn)) is the space of continuous (respectively continuously differentiable) functions en-
dowed with the usual norm that we denote ‖ · ‖0 (respectively ‖ · ‖1). For p ∈ [1,∞], Lp(I,Rn)

is the space of Lp-integrable functions with the usual norm ‖ ·‖Lp ; and for k = 1,2, Wk,p(I,Rn)

is the Sobolev space {x ∈ Ck−1[0,1]: x(k−1) is absolutely continuous and x(k) ∈ Lp(I,Rn)} en-
dowed with the usual norm ‖ · ‖k,p; W

k,p
B (I,Rn) is the subset of x in Wk,p(I,Rn) satisfying the

boundary condition BC.
We say that f : [0,1]×R2n → Rn, a single-valued map, is L2-Carathéodory if t �→ f (t, x,p)

is measurable for all x,p; (x,p) �→ f (t, x,p) is continuous for a.e. t ∈ I ; for every k > 0, there
exists hk ∈ L2(I ) such that f (t,B(0, k),B(0, k)) ⊂ B(0, hk(t)) a.e. t ∈ I , where B(0, r) is the
closed ball of radius r centered at the origin.



1136 M. Frigon, E. Montoki / J. Math. Anal. Appl. 323 (2006) 1134–1151
Let H be a Hilbert space and M : dom(M) ⊂ H → H a multi-valued maximal monotone
operator. Let us recall that M is a monotone operator, if〈

x∗ − y∗, x − y
〉
� 0 ∀x, y ∈ dom(M), ∀x∗ ∈ M(x), ∀y∗ ∈ M(y);

and it is maximal if〈
x∗ − y∗, x − y

〉
�0 ∀y ∈ dom(M), ∀y∗ ∈ M(y) �⇒ x ∈ dom(M) and x∗ ∈ M(x).

This definition implies that M has closed, convex values, and Gr(M) := {(x, x∗): x∗ ∈ Mx} is
closed in (H,Ts) × (H,Tw) and in (H,Tw) × (H,Ts), where Ts and Tw denote respectively the
strong and the weak topologies of H .

We define for λ > 0,

Jλ = (id + λM)−1 (the resolvent of M),

Mλ = 1

λ
(id − Jλ) (the Yosida approximation of M).

It is well known that dom(Jλ) = dom(Mλ) = H , Jλ and Mλ are single-valued, Jλ is non-
expansive, Mλ is monotone and Lipschitzian with constant 1/λ, and hence maximal monotone.
Moreover, Mλ(x) ∈ M(Jλ(x)), and |Mλ(x)| � |y| for all y ∈ M(x).

We recall some results on monotone operators. For their proofs and more information on
monotone operators the reader is referred to [2,14] or [18].

Lemma 2.1. Let M : dom(M) ⊂ H → H be a multi-valued monotone operator. Then the follow-
ing statements are equivalent:

(a) M is maximal;
(b) id + M is surjective.

Lemma 2.2. Let M : dom(M) ⊂ H → H and N : dom(N) ⊂ H → H be multi-valued maximal
monotone operators such that dom(M) ∩ dom(N) �= ∅. Then

(a) Mλ + N is maximal for every λ > 0;
(b) y ∈ Im(id + M + N) if and only if {Mλ(xλ)} is bounded as λ → 0+, where y = (id +

Mλ + N)(xλ).

Lemma 2.3. Let M : dom(M) ⊂ H → H be a multi-valued maximal monotone operator and
N :H → H a single-valued Lipschitzian monotone operator. Then M +N is maximal monotone.

We can associate to M the operator M̂ : dom(M̂) ⊂ L2(I,H) → L2(I,H) defined by

M̂(x) = {
y ∈ L2(I,H): y(t) ∈ M

(
x(t)

)
a.e. t ∈ I

}
,

where

dom(M̂) = {
x ∈ L2(I,H): x(t) ∈ dom(M) a.e. t ∈ I and

∃y ∈ L2(I,Rn
)

such that y(t) ∈ M
(
x(t)

)
a.e. t ∈ I

}
.

The operator M̂ is maximal monotone, as well as M̂λ. In order to simplify the notation, in what
follows we will write M (respectively Mλ) instead of M̂ (respectively M̂λ) when there will be
no confusion.
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3. Existence results

Our goal is to establish existence results for the problem (1.1). By a solution we mean a
function x ∈ W

2,2
B (I,Rn) satisfying (1.1).

We introduce the notion of solution-tube of the problem (1.1). This notion will play a funda-
mental role in our main result. It extends the notion of solution-tube introduced in [5] for systems
of differential equations, which generalizes naturally to systems the well-known notion of upper
and lower solutions.

Definition 3.1. Let v ∈ W 2,2(I,Rn) and r ∈ W 2,2(I,R). We say that (v, r) is a solution-tube
of (1.1) if there exists b ∈ L2(I,Rn) such that

(i) b(t) ∈ Bv(t) a.e. t ∈ I ;
(ii) for a.e. t ∈ I and every (x,p) ∈ R2n such that ‖x − v(t)‖ = r(t) and 〈x − v(t),p − v′(t)〉 =

r(t)r ′(t),

〈
x − v(t), f (t, x,p) + b(t) − v′′(t)

〉 + ∥∥p − v′(t)
∥∥2 � r(t)r ′′(t) + r ′(t)2;

(iii) v′′(t) = b(t) + f (t, v(t), v′(t)) a.e. on {t ∈ [0,1]: r(t) = 0};
(iv) if BC denotes (1.2),

r(0) = r(1), v(0) = v(1),
∥∥v′(0) − v′(1)

∥∥ � r ′(1) − r ′(0);
and if BC denotes (1.3),∥∥A0v(0) − β0v

′(0) − θ0
∥∥ � α0r(0) − β0r

′(0),∥∥A1v(1) + β1v
′(1) − θ1

∥∥ � α1r(1) + β1r
′(1).

We denote

T (v, r) = {
x ∈ C

(
I,Rn

)
:

∥∥x(t) − v(t)
∥∥ � r(t) ∀t ∈ I

}
.

Remark 3.2. If B ≡ 0, this definition coincides with the definition of solution-tube introduced
in [5] for systems of differential equations.

Remark 3.3. If φ : Rn → R is a convex function, B = ∂φ the subdifferential of φ, and (v, r) is a
solution-tube of (1.1), then

φ(x) + 〈
x − v(t), f (t, x,p)

〉 + ∥∥p − v′(t)
∥∥2

� φ
(
v(t)

) + 〈
x − v(t), v′′(t)

〉 + r(t)r ′′(t) + r ′(t)2

for a.e. t ∈ I and every (x,p) ∈ R2n such that∥∥x − v(t)
∥∥ = r(t) and

〈
x − v(t),p − v′(t)

〉 = r(t)r ′(t).
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In particular, if f (t, x,p) = f (t, x), then

φ(x) + 〈
x − v(t), f (t, x)

〉
� φ

(
v(t)

) + 〈
x − v(t), v′′(t)

〉 + r(t)r ′′(t)

for a.e. t ∈ I and every x ∈ Rn such that ‖x − v(t)‖ = r(t).

Example 3.4. Consider the system(
x′′

y′′

)
∈ ∂φ(x, y) +

(
3x + a1(t, x, y) sin((x − 1)2 + y2) + cos t

3y + a2(t, x, y) sin((x − 1)2 + y2) − sin t

)
,

x(0) = x(1), x′(0) = x′(1),

y(0) = y(1), y′(0) = y′(1), (3.1)

where φ(x, y) = ‖(x, y)‖ and a1, a2 are Carathéodory functions. It is easy to check that (v, r) is
a solution-tube of (3.1) with v(t) = (1,0) and r(t) = √

π .

Our results will rely on some of the following assumptions:

(H1) f : I × R2n → Rn is L2-Carathéodory;
(H2) the operator B : dom(B) ⊂ Rn → Rn is a multi-valued maximal monotone operator such

that dom(B̂) ∩ W
2,2
B (I,Rn) �= ∅, i.e., there exist w ∈ W

2,2
B (I,Rn) and bw ∈ L2(I,Rn)

such that w(t) ∈ dom(B) and bw(t) ∈ B(w(t)) a.e. t ∈ I ;
(H3) there exists (v, r) ∈ W 2,2(I,Rn) × W 2,2(I, [0,∞[) a solution-tube of (1.1);
(H4) B is bounded on bounded sets;
(H5) 0 ∈ B0; moreover, if BC denotes (1.3), then

β0
〈
Bλ(x),A0(x)

〉 + β1
〈
Bλ(y),A1(y)

〉
� 0 ∀x, y ∈ Rn, ∀λ > 0,

where Bλ is the Yosida approximation of B;
(H6) for every m > 0, l ∈ L2(I, [0,∞[), there exists R ∈ L2(I, [0,∞[) such that for every

x ∈ Rn, y ∈ L2(I,Rn) satisfying ‖x‖ � m,‖y(t)‖ � l(t) a.e. t ∈ I , one has∥∥f
(
t, x, y(t)

)∥∥ � R(t) a.e. t ∈ I ;
(H7) there exist k � 0, μ ∈ [0,2[ (respectively k ∈ [0,1[, μ = 2), h ∈ L1(I, [0,∞[), and

z ∈ W 2,2(I,Rn) ∩ dom(B̂) such that〈
x − z(t), f (t, x, y)

〉
� −k

∥∥y − z′(t)
∥∥μ − h(t)

a.e. t ∈ I and for all (x, y) ∈ R2n satisfying ‖x − v(t)‖ � r(t); moreover, z ∈ BC, or BC
denotes (1.3) with β0 = β1 = 1;

(H8) there exist γ ∈ L1(I, [0,∞[) and φ : [0,∞[ → [1,∞[ a Borel measurable function such
that ∥∥f (t, x,p)

∥∥ � γ (t)φ
(‖p‖)

a.e. t ∈ I and for all (x,p) ∈ R2n such that ‖x − v(t)‖ � r(t), and

∞∫
c

ds

φ(s)
= ∞ ∀c � 0;
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(H9) there exist a Borel measurable function φ : [0,∞[ → ]0,∞[ and γ ∈ L1(I, [0,∞[) such
that ∣∣〈p,f (t, x,p)

〉∣∣ � φ
(‖p‖)(γ (t) + ‖p‖)

a.e. t ∈ I and for all (x,p) ∈ R2n such that ‖x − v(t)‖ � r(t), and
∞∫
c

s ds

φ(s) + s
= ∞ ∀c � 0;

(H10) there exist a � 0 and h ∈ L1(I, [0,∞[) such that∥∥f (t, x,p)
∥∥ � a

(〈
x,f (t, x,p)

〉 + ‖p‖2) + h(t)

a.e. t ∈ I and for all (x,p) ∈ R2n such that ‖x − v(t)‖ � r(t);
(H11) there exist R > 0, δ > 0, d � 0, and h ∈ L1(I ) such that(

δ + d‖x‖)σ(t, x,p) + d〈x,p〉2

‖x‖‖p‖ � ‖p‖ − h(t),

for a.e. t ∈ I and for all (x,p) ∈ R2n such that ‖x − v(t)‖ � r(t),‖p‖ � R, where

σ(t, x,p) = 〈x,f (t, x,p)〉 + ‖p‖2

‖p‖ − 〈p,f (t, x,p)〉〈x,p〉
‖p‖3

.

Remark 3.5. (1) Observe that (H11) is trivially satisfied in the scalar case (n = 1).
(2) Hypothesis (H7) with z = 0 becomes

(H7′) 0 ∈ dom(B) and there exist k � 0, μ ∈ [0,2[ (respectively k ∈ [0,1[, μ = 2), and h ∈
L1(I, [0,∞[) such that〈

x,f (t, x, y)
〉
� −k‖y‖μ − h(t)

a.e. t ∈ I and for all (x, y) ∈ R2n satisfying ‖x − v(t)‖ � r(t); moreover, 0 ∈ BC, or BC
denotes (1.3) with β0 = β1 = 1.

This condition is more general than hypothesis H(f)(iii) imposed in [13].

The aim of this paper is to establish the following existence results. The first one generalizes
Halidias and Papageorgiou’s result [13] in the case of the boundary condition BC.

Theorem 3.6. Assume (H1)–(H3), (H6), (H7). Assume also that (H4) or (H5) is satisfied. Then
the problem (1.1) has a solution x ∈ W 2,2(I,Rn) ∩ T (v, r).

We can replace assumptions (H6) and (H7) if we assume that f satisfies some appropriate
growth conditions.

Theorem 3.7. Let BC denote (1.3) with β0 + β1 > 0. Assume that (H1)–(H4) and (H8) are
satisfied, then the problem (1.1) has a solution x ∈ W 2,2(I,Rn) ∩ T (v, r).

Observe that if f is quadratic with respect to its last variable, it does not satisfy (H8). In order
to permit a growth condition more general than (H8), an extra assumption has to be imposed.
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Theorem 3.8. Assume (H1)–(H4), (H9). Assume also that (H10) or (H11) is satisfied, then the
problem (1.1) has a solution x ∈ W 2,2(I,Rn) ∩ T (v, r).

The previous theorem is also true if we replace (H9) by (H8).

Remark 3.9. We could have consider the problem

x′′ ∈ B̂(x) + F(x),

x ∈ BC, (3.2)

where F(x)(t) = f (t, x(t), x′(t)) and B̂ (not necessarily defined from B) satisfies

(H2′) the operator B̂ : dom(B̂) ⊂ L2(I,Rn) → L2(I,Rn) is a multi-valued maximal monotone
operator such that dom(B̂) ∩ W

2,2
B (I,Rn) �= ∅.

In this case, the previous results are true if we replace (H4) by

(H4′) B̂ maps bounded sets of W 1,2(I,Rn) in bounded sets of L2(I,Rn).

4. A priori bounds

To prove our existence theorems, we will consider an appropriate family of problems for
which we need to establish a priori bounds on the solutions.

Let (v, r) and b be given in (H3) and Definition 3.1. For λ ∈ [0,1], we define

fλ : I × R2n → Rn by fλ = λf̄ + gλ − (1 − λ)v,

where

f̄ (t, x,p) =
{

r(t)
‖x−v(t)‖f (t, x̃, p̂) − x̃, if ‖x − v(t)‖ > r(t),

f (t, x,p) − x, if ‖x − v(t)‖ � r(t);

gλ(t, x,p) =
⎧⎨⎩

(
1 − λr(t)

‖x−v(t)‖
)(

v′′(t) − b(t) + r ′′(t)
‖x−v(t)‖ (x − v(t))

)
, if ‖x − v(t)‖ > r(t),

(1 − λ)
(
v′′(t) − b(t) + r ′′(t)

r(t)
(x − v(t))

)
, otherwise;

with

x̃ = v(t) + r(t)

‖x − v(t)‖
(
x − v(t)

)
,

p̂ = p +
(

r ′(t) − 〈x − v(t),p − v′(t)〉
‖x − v(t)‖

)(
x − v(t)

‖x − v(t)‖
)

,

and where we mean r ′′(t)(x − v(t))/r(t) = 0 on {t ∈ [0,1]: r(t) = 0}.

Remark 4.1. For (x,p) ∈ R2n such that ‖x − v(t)‖ > 0,∥∥x̃ − v(t)
∥∥ = r(t),

〈
x̃ − v(t), p̂ − v′(t)

〉 = r(t)r ′(t),∥∥p̂ − v′(t)
∥∥2 = ∥∥p − v′(t)

∥∥2 + (
r ′(t)

)2 − 〈x(t) − v(t),p − v′(t)〉2

2
;
‖x(t) − v(t)‖
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and for x ∈ C1(I,Rn),(
x̃(t), x̂′(t)

) = (
x(t), x′(t)

)
a.e. on

{
t ∈ I :

∥∥x(t) − v(t)
∥∥ = r(t) > 0

}
.

We consider for λ ∈ [0,1], the problem

x′′(t) − x(t) ∈ B
(
x(t)

) + fλ

(
t, x(t), x′(t)

)
a.e. t ∈ [0,1],

x ∈ BC. (Pλ)

A priori bounds can be obtained for the solutions of (Pλ).

Proposition 4.2. Assume that (H1)–(H3) are satisfied. Then every solution x ∈ W 2,2(I,Rn)

of (Pλ) with λ ∈ [0,1], is such that x ∈ T (v, r).

Proof. For λ ∈ [0,1], let x be a solution of (Pλ). There exists bx ∈ L2(I,Rn) such that bx(t) ∈
B(x(t)) and x′′(t) − x(t) = bx(t) + fλ(t, x(t), x′(t)) a.e. t ∈ I . Since B is a maximal monotone
operator, by (H3) and Remark 4.1, we deduce that for almost every t ∈ E := {t ∈ I : ‖x(t) −
v(t)‖ > r(t)},

1

‖x(t) − v(t)‖
(〈
x(t) − v(t), x′′(t) − v′′(t)

〉 + ∥∥x′(t) − v′(t)
∥∥2)

− 〈x(t) − v(t), x′(t) − v′(t)〉2

‖x(t) − v(t)‖3
− ∥∥x(t) − v(t)

∥∥
= 1

‖x(t) − v(t)‖
(〈

x(t) − v(t),
λr(t)

‖x(t) − v(t)‖
(
f

(
t, x̃(t), x̂′(t)

) + b(t) − v′′(t)
)〉

− 〈
x(t) − v(t), λx̃(t) + (1 − λ)v(t) − x(t)

〉)
+

(
1 − λr(t)

‖x(t) − v(t)‖
)

r ′′(t) + 〈x(t) − v(t), bx(t) − b(t)〉
‖x(t) − v(t)‖

+ ‖x′(t) − v′(t)‖2

‖x(t) − v(t)‖ − 〈x(t) − v(t), x′(t) − v′(t)〉2

‖x(t) − v(t)‖3
− ∥∥x(t) − v(t)

∥∥
� λ

‖x(t) − v(t)‖
(〈
x̃ − v(t), f

(
t, x̃(t), x̂′(t)

) + b(t) − v′′(t)
〉 + ∥∥x̂′(t) − v′(t)

∥∥2)
+ ‖x′(t) − v′(t)‖2 − λ‖x̂′(t) − v′(t)‖2

‖x(t) − v(t)‖

− 〈x(t) − v(t), x′(t) − v′(t)〉2

‖x(t) − v(t)‖3
+

(
1 − λr(t)

‖x(t) − v(t)‖
)

r ′′(t) − λr(t)

� λ

‖x(t) − v(t)‖
(
r(t)r ′′(t) + r ′(t)2) +

(
1 − λr(t)

‖x(t) − v(t)‖
)

r ′′(t)

+ 1

‖x(t) − v(t)‖
(
(1 − λ)

∥∥x̂′(t) − v′(t)
∥∥2 − r ′(t)2) − λr(t)

� r ′′(t) − r(t).
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So, w′′(t) − w(t) � 0 a.e. t ∈ E, where w(t) := ‖x(t) − v(t)‖ − r(t). This implies that for all
]t0, t1[ ⊂ E,

0 �
t1∫

t0

w′′(t) − w(t) dt � w′(t1) − w′(t0). (4.1)

Observe that if

w(t0) = 0 �⇒ w′(t0) � 0,

w(t1) = 0 �⇒ w′(t1) � 0. (4.2)

On the other hand, in the case where BC denotes (1.2), by (H3) we have

d

dt

∥∥x(t) − v(t)
∥∥∣∣∣∣

t=1
− d

dt

∥∥x(t) − v(t)
∥∥∣∣∣∣

t=0

= 〈x(1) − v(1), x′(1) − v′(1)〉
‖x(1) − v(1)‖ − 〈x(0) − v(0), x′(0) − v′(0)〉

‖x(0) − v(0)‖
= 〈x(0) − v(0), v′(0) − v′(1)〉

‖x(0) − v(0)‖
�

∥∥v′(1) − v′(0)
∥∥

� r ′(1) − r ′(0).

So,

w(0) = w(1) and w′(1) � w′(0). (4.3)

In the case where BC denotes (1.3), again by (H3),

α0
∥∥x(0) − v(0)

∥∥ − β0
d

dt

∥∥x(t) − v(t)
∥∥∣∣∣∣

t=0

= α0
∥∥x(0) − v(0)

∥∥ − β0〈x(0) − v(0), x′(0) − v′(0)〉
‖x(0) − v(0)‖

� 〈x(0) − v(0),A0(x(0) − v(0)) − β0(x
′(0) − v′(0))〉

‖x(0) − v(0)‖
= −〈x(0) − v(0),A0v(0) − β0v

′(0) − θ0〉
‖x(0) − v(0)‖

� α0r(0) − β0r
′(0).

Similarly for t = 1, and hence

α0w(0) − β0w
′(0) � 0 and α1w(1) + β1w

′(1) � 0. (4.4)

The conclusions follows from (4.1)–(4.4). �
Now, we want to obtain a priori bounds on the derivative of the solution to (Pλ) for λ ∈ [0,1].

We first establish an a priori bound in L2-norm.

Proposition 4.3. Assume (H1)–(H3) and (H7) are satisfied. Then there exists K > 0 such that
‖x′‖L2 < K for all x solution to (Pλ) for λ ∈ [0,1].
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Proof. Let x be a solution to (Pλ) then there exits bx ∈ L2(I,Rn) such that bx(t) ∈ B(x(t)) and
x′′(t) − x(t) = bx(t) + fλ(t, x(t), x′(t)) a.e. t ∈ I . From Proposition 4.2, ‖x(t) − v(t)‖ � r(t)

for all t ∈ I . Let z be given in (H7) and fix bz ∈ L2(I,Rn) such that bz(t) ∈ Bz(t) a.e. t ∈ I . By
(H7) and since B is a maximal operator,〈

x(t) − z(t), x′′(t) − z′′(t)
〉

= 〈
x(t) − z(t), bx(t) − bz(t) + λf

(
t, x(t), x′(t)

) − z′′(t) + bz(t)
〉

+ (1 − λ)

〈
x(t) − z(t), v′′(t) − b(t) +

(
1 + r ′′(t)

r(t)

)(
x(t) − v(t)

)〉
� −k

∥∥x′(t) − z′(t)
∥∥μ − h(t)

− ∥∥x(t) − z(t)
∥∥(

r(t) + ∣∣r ′′(t)
∣∣ + ∣∣v′′(t)

∣∣ + ∣∣b(t)
∣∣ + ∣∣bz(t)

∣∣ + ∣∣z′′(t)
∣∣)

= −k
∥∥x′(t) − z′(t)

∥∥μ − h0(t),

where h0 ∈ L1(I,Rn). So,∫
I

∥∥x′(t) − z′(t)
∥∥2 − k

∥∥x′(t) − z′(t)
∥∥μ

dt

� ‖h0‖L1 + 〈
x(1) − z(1), x′(1) − z′(1)

〉 − 〈
x(0) − z(0), x′(0) − z′(0)

〉
.

Observe that if BC denotes (1.2), z ∈ BC and〈
x(1) − z(1), x′(1) − z′(1)

〉 − 〈
x(0) − z(0), x′(0) − z′(0)

〉 = 0.

On the other hand, in the case where BC denotes (1.3), if β0 = 0, z ∈ BC and x(0) = z(0) =
A−1

0 θ0. If β0 = 1,∣∣〈x(0) − z(0), x′(0) − z′(0)
〉∣∣ = ∣∣〈x(0) − z(0),A0x(0) − θ0 − z′(0)

〉∣∣ � c0

for some constant c0 not depending on x. Similarly at t = 1, and hence there is a constant c1 not
depending on x such that∣∣〈x(1) − z(1), x′(1) − z′(1)

〉 − 〈
x(0) − z(0), x′(0) − z′(0)

〉∣∣ � c1.

This concludes the proof. �
The remaining part of this section concerns the existence of a priori bounds in the norm of the

uniform convergence of the derivative of solutions to (Pλ).

Proposition 4.4. Let BC denote (1.3) with β0 + β1 > 0. Under (H1)–(H4) and (H8), there exists
K > 0 such that ‖x′‖0 < K for all x solution to (Pλ) for λ ∈ [0,1].

Proof. The assumption (H4) implies that there exists C � 0 such that ‖B(x(t))‖ � C for t ∈ I

for all x ∈ T (v, r). Also, for all x ∈ T (v, r),

min
{∥∥x′(0)

∥∥,
∥∥x′(1)

∥∥}
� c := min

{
1

β0
max
y∈E0

{‖A0y‖}, 1

β1
max
y∈E1

{‖A1y‖}},

where Ei = {y ∈ Rn: ‖y − v(i)‖ � r(i)}, i = 0,1.
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So, for x a solution to (Pλ) and bx ∈ L2(I,Rn) such that bx(t) ∈ B(x(t)) and x′′(t) − x(t) =
bx(t) + fλ(t, x(t), x′(t)) a.e. t ∈ I , we have that x ∈ T (v, r) by Proposition 4.2. Therefore,
a.e. t ∈ {t ∈ I : ‖x′(t)‖ > 0},∣∣∣∣ 〈x′(t), x′′(t)〉

‖x′(t)‖
∣∣∣∣ �

∥∥bx(t)
∥∥ + ∥∥f

(
t, x(t), x′(t)

)∥∥ + r(t) + ∥∥v′′(t)
∥∥ + ∥∥b(t)

∥∥ + ∣∣r ′′(t)
∣∣

� γ (t)φ
(∥∥x(t)

∥∥) + γ0(t),

with

γ0(t) = 2C + r(t) + ∥∥v′′(t)
∥∥ + ∥∥r ′′(t)

∥∥. (4.5)

It follows that for all t0, t1 ∈ I such that ‖x′(t0)‖ = c and ‖x′(t)‖ > c for all t between t0 and t1,

‖x′(t1)‖∫
c

ds

φ(s)
=

∣∣∣∣∣
t1∫

t0

‖x′(t)‖′

φ(‖x′(t)‖) dt

∣∣∣∣∣ � ‖γ + γ0‖L1 .

We conclude in choosing K such that

K∫
c

ds

φ(s)
> ‖γ + γ0‖L1 . �

In order to obtain a priori bounds on the derivative of the solutions under the Wintner–Nagumo
growth condition (H9), we recall the following results of [6].

Lemma 4.5. [6, Lemma 3.4] Let c, κ � 0, l ∈ L1(I ), and ψ : [0,∞[ → ]0,∞[ a Borel measur-
able function such that

∞∫
c

s ds

ψ(s)
> ‖l‖L1 + κ.

Then there exists K > 0 such that ‖x′‖0 < K for every x ∈ W 2,1(I,Rn) satisfying

(i) mint∈I ‖x′(t)‖ � c;
(ii) ‖x′‖L1[t0,t1] � κ if ‖x′(t)‖ � c on [t0, t1];

(iii) |〈x′(t), x′′(t)〉| � ψ(‖x′(t)‖)(l(t) + ‖x′(t)‖) a.e. on {t ∈ I : ‖x′(t)‖ � c}.

To apply the previous result in order to obtain a priori bounds of the derivative x′ with respect
to norm of the uniform convergence, we need to obtain a priori bounds of x′ in the L1-norm. The
two following results give sufficient conditions to ensure that. The first one relies on a condition
introduced by Hartman [12], while the second one generalizes and simplifies [6, Lemma 3.3]
(see also [8]).

Lemma 4.6. Let c � 0 and k ∈ L1(I ). Then there exists ρ : [0,∞[ → ]0,∞[ an increasing func-
tion such that for every x ∈ W 2,1(I,Rn) satisfying∥∥x′′(t)

∥∥ � c
(〈
x(t), x′′(t)

〉 + ∥∥x′(t)
∥∥2) + k(t) a.e. t ∈ I ,

we have ‖x′‖L1 � ρ(‖x‖0).
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Lemma 4.7. Let k > 0, κ � 0, c > 0, m ∈ L1(I ). Then there exists ρ : [0,∞[ → [0,∞[ an
increasing function such that we have for any interval [t0, t1] on which ‖x′(t)‖ � c,

‖x′‖L1[t0,t1] � ρ
(‖x‖0

)
,

and

min
t∈I

∥∥x′(t)
∥∥ � max

{
c,ρ

(‖x‖0
)}

,

for every x ∈ W 2,1(I,Rn) satisfying almost everywhere on {t ∈ I : ‖x′(t)‖ � c},(
k + κ

∥∥x(t)
∥∥)

ς(t, x) + κ〈x(t), x′(t)〉2

‖x(t)‖‖x′(t)‖ �
∥∥x′(t)

∥∥ − m(t),

where

ς(t, x) = 〈x(t), x′′(t)〉 + ‖x′(t)‖2

‖x′(t)‖ − 〈x′(t), x′′(t)〉〈x(t), x′(t)〉
‖x′(t)‖3

.

We are now ready to obtain a priori bounds for ‖x′‖0 with x solution to (Pλ) under the
Wintner–Nagumo growth condition (H9).

Proposition 4.8. Assume (H1)–(H4), (H9), and (H10) or (H11). Then there exists K > 0 such
that every solution x to (Pλ) satisfies ‖x′‖0 < K .

Proof. By (H4), there exists C � 0 such that ‖B(x(t))‖ � C for t ∈ I and for all x ∈ T (v, r).
Let x be a solution of (Pλ) and bx ∈ L2(I,Rn) such that bx(t) ∈ B(x(t)) and x′′(t) − x(t) =
bx(t) + fλ(t, x(t), x′(t)) a.e. t ∈ I . From Proposition 4.2, we know that x ∈ T (v, r). We have
by (H9) that∣∣〈x′(t), x′′(t)

〉∣∣ = ∣∣〈x′(t), fλ

(
t, x(t), x′(t)

) + x(t) + bx(t)
〉∣∣

� λ
∣∣〈x′(t), f

(
t, x(t), x′(t)

)〉∣∣
+ ∥∥x′(t)

∥∥(
r(t) + ∥∥v′′(t)

∥∥ + ∣∣r ′′(t)
∣∣ + ∥∥bx(t)

∥∥ + ∥∥b(t)
∥∥)

� φ
(∥∥x′(t)

∥∥)(
γ (t) + ∥∥x′(t)

∥∥) + γ0(t)
∥∥x′(t)

∥∥,

where γ0 is defined in (4.5). So,∣∣〈x′(t), x′′(t)
〉∣∣ �

(
φ
(∥∥x′(t)

∥∥) + ∥∥x′(t)
∥∥)(

γ (t) + γ0(t) + ∥∥x′(t)
∥∥)

. (4.6)

Now, to verify assumptions (i) and (ii) of Lemma 4.5, we consider two cases.

Case 1: (H10) is satisfied. We have∥∥x′′(t)
∥∥ = ∥∥fλ

(
t, x(t), x′(t)

) + x(t) + bx(t)
∥∥

� λ
∥∥f

(
t, x(t), x′(t)

)∥∥ + r(t) + ∥∥v′′(t)
∥∥ + ∣∣r ′′(t)

∣∣ + ∥∥b(t)
∥∥ + ∥∥bx(t)

∥∥
� aλ

(〈
x(t), f

(
t, x(t), x′(t)

)〉 + ∥∥x′(t)
∥∥2) + h(t) + γ0(t)

� a
(〈
x(t), fλ

(
t, x(t), x′(t)

) + x(t) + bx(t)
〉 + ∥∥x′(t)

∥∥2) + h(t) + γ0(t)

− a

〈
x(t), bx(t) + (1 − λ)

(
v′′(t) + b(t) +

(
r ′′(t)
r(t)

+ 1

)(
x(t) − v(t)

))〉
� a

(〈
x(t), x′′(t)

〉 + ∥∥x′(t)
∥∥2) + h1(t),
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with

h1(t) = h(t) + γ0(t)
(
1 + a

(
r(t) + ∥∥v(t)

∥∥))
.

This inequality with (4.6), and Lemmas 4.5 and 4.6 lead to the conclusion.

Case 2: (H11) is satisfied. Let ς be the function introduced in Lemma 4.7. Observe that

ς(t, x) = 〈x(t), x′′(t)〉 + ‖x′(t)‖2

‖x′(t)‖ − 〈x′(t), x′′(t)〉〈x(t), x′(t)〉
‖x′(t)‖3

= λ

( 〈x(t), f (t, x(t), x′(t))〉 + ‖x′(t)‖2

‖x′(t)‖ − 〈x′(t), f (t, x(t), x′(t))〉〈x(t), x′(t)〉
‖x′(t)‖3

)
+ (1 − λ)

[∥∥x′(t)
∥∥ + 〈x(t), v′′(t) − b(t)〉

‖x′(t)‖ − 〈x′(t), v′′(t) − b(t)〉〈x(t), x′(t)〉
‖x′(t)‖3

+
(

1 + r ′′(t)
r(t)

)( 〈x(t), x(t) − v(t)〉
‖x′(t)‖ − 〈x′(t), x(t) − v(t)〉〈x(t), x′(t)〉

‖x′(t)‖3

)]
+ 〈x(t), bx(t)〉

‖x′(t)‖ − 〈x′(t), bx(t)〉〈x(t), x′(t)〉
‖x′(t)‖3

� λ

( 〈x(t), f (t, x(t), x′(t))〉 + ‖x′(t)‖2

‖x′(t)‖ − 〈x′(t), f (t, x(t), x′(t))〉〈x(t), x′(t)〉
‖x′(t)‖3

)
+ (1 − λ)

∥∥x′(t)
∥∥ − 2

‖x(t)‖γ0(t)

‖x′(t)‖ .

It follows from (H11) that on {t ∈ [0,1]: ‖x′(t)‖ � R},(
δ + d

∥∥x(t)
∥∥)

ς(t, x) + d〈x(t), x′(t)〉2

‖x(t)‖‖x′(t)‖
� λ

(∥∥x′(t)
∥∥ − h(t)

) + δ(1 − λ)
∥∥x′(t)

∥∥ − h2(t), (4.7)

with

h2(t) = 2

R

(
δ + d

(
r(t) + ∥∥v(t)

∥∥))(
r(t) + ∥∥v(t)

∥∥)
γ0(t).

The conclusion follows from (4.6), (4.7) and Lemmas 4.5 and 4.7. �
5. Operators

We associate to fλ an operator defined by

F(λ,x)(t) = −fλ

(
t, x(t), x′(t)

)
.

The following result establishes some properties of F .

Proposition 5.1. Assume (H1)–(H3).

(a) The operator F : I × C1(I,Rn) → L2(I,Rn) is continuous and integrably bounded on
bounded sets of C1(I,Rn); that is for every bounded set V in C1(I,Rn), there exists
k ∈ L2(I,R) such that ‖F(λ,y)(t)‖ � k(t) a.e. t ∈ I for all y ∈ V and all λ ∈ [0,1].



M. Frigon, E. Montoki / J. Math. Anal. Appl. 323 (2006) 1134–1151 1147
(b) In addition, if (H6) is satisfied then F : I × W 1,2(I,Rn) → L2(I,Rn) is continuous and
integrably bounded on bounded sets of W 1,2(I,Rn).

Proof. (a) The reader is referred to [6, Proposition 3.5].
(b) It follows from (H6) that F is integrably bounded on bounded sets of W 1,2(I,Rn).
Assume that there exists a sequence {xn} converging to x in W 1,2(I,Rn), and a sequence

{λn} converging to λ such that F(λn, xn) � F(λ,x) in L2(I,Rn). So, there exists δ > 0 and
sequences {xnk

} and {λnk
} such that∥∥F(λnk

, xnk
) − F(λ,x)

∥∥
L2 > δ.

Since {xnk
} converge to x in W 1,2(I,Rn), there exists a subsequence still denoted {xnk

} such that

xnk
(t) → x(t) and x′

nk
(t) → x′(t) a.e. t ∈ I .

Observe that〈
x(t) − v(t), x′(t) − v′(t)

〉 = r(t)r ′(t) a.e. on
{
t :

∥∥x(t) − v(t)
∥∥ = r(t) > 0

}
,

and

x(t) = v(t), x′(t) = v′(t), r ′(t) = 0, r ′′(t) = 0

a.e. on
{
t :

∥∥x(t) − v(t)
∥∥ = r(t) = 0

}
.

So,

x̂′
nk

(t) → x̂′(t) a.e. t ∈ I ,

and hence,

fλnk

(
t, xnk

(t), x′
nk

(t)
) → fλ

(
t, x(t), x′(t)

)
a.e. t ∈ I ,

which is a contradiction. �
Let us define L :W 2,2

B (I,Rn) ⊂ L2(I,Rn) → L2(I,Rn) by Lx = −x′′ and denote
M : dom(M) ⊂ L2(I,Rn) → L2(I,Rn) by

M = L + B̂.

Obviously, dom(M) = W
2,2
B (I,Rn) ∩ dom(B̂).

Proposition 5.2. Under (H2), (H4), M is a multi-valued maximal monotone operator.

Proof. Let us show that M is monotone. First of all observe that dom(M) �= ∅. It is sufficient to
show that L is monotone. Take x, y ∈ W

2,2
B (I,Rn). We have

〈−x′′ + y′′, x − y〉L2 =
∫
I

〈
y′′(t) − x′′(t), x(t) − y(t)

〉
dt

= 〈
x(0) − y(0), x′(0) − y′(0)

〉 − 〈
x(1) − y(1), x′(1) − y′(1)

〉
+

∫
I

∥∥x′(t) − y′(t)
∥∥2

dt

�
〈
x(0) − y(0), x′(0) − y′(0)

〉 − 〈
x(1) − y(1), x′(1) − y′(1)

〉
.
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Therefore, if BC denotes (1.2),

〈−x′′ + y′′, x − y〉L2 � 0.

On the other hand, if BC denotes (1.3), if β0 = 0 then α0 > 0 and hence A0 is invertible and
x(0) = y(0) = A−1

0 θ0. So,〈
x(0) − y(0), x′(0) − y′(0)

〉 = 0.

If β0 = 1,〈
x(0) − y(0), x′(0) − y′(0)

〉 = 1

β0

〈
x(0) − y(0),A0

(
x(0) − y(0)

)〉
� α0

β0

∥∥x(0) − y(0)
∥∥2 � 0.

Similarly,〈
x(1) − y(1), x′(1) − y′(1)

〉
� 0.

So,

〈−x′′ + y′′, x − y〉L2 � 0,

and hence L and M are monotone.
Now, we have to show that M is maximal. By Lemma 2.1, we have to show that id + M

is surjective. It is well known that id + L is invertible and hence surjective. By Lemma 2.1,
L is maximal monotone. Since for λ > 0, Bλ is single-valued, monotone and Lipschitzian, L+Bλ

is maximal monotone, and hence id + L + Bλ is surjective by Lemmas 2.1 and 2.3. So, for
h ∈ L2(I,Rn), there exists xλ ∈ W

2,2
B (I,Rn) such that

(id + L + Bλ)xλ = h. (5.1)

Let w be the function given in (H2), and denote

hλ,w := (id + L + Bλ)w.

Using the fact that xλ ∈ BC, and Bλ is monotone, we have that∫
I

〈
h(t) − hλ,w(t), xλ(t) − w(t)

〉
dt

=
∫
I

〈
xλ(t) − w(t) − (

x′′
λ(t) − w′′(t)

) + Bλ

(
xλ(t)

) − Bλ

(
w(t)

)
, xλ(t) − w(t)

〉
dt

= ‖xλ − w‖2
1,2 + 〈

xλ(0) − w(0), x′
λ(0) − w′(0)

〉 − 〈
xλ(1) − w(1), x′

λ(1) − w′(1)
〉

+
∫
I

〈
Bλ

(
xλ(t)

) − Bλ

(
w(t)

)
, xλ(t) − w(t)

〉
dt

� ‖xλ − w‖2
1,2.

So, {xλ} is bounded in W 1,2(I,Rn) as λ → 0+, and hence in C(I,Rn) by a constant c. Since B

is bounded on bounded sets,
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∥∥Bλ

(
xλ(t)

)∥∥ � inf
{‖y‖: y ∈ B(z) with ‖z‖ � c

}
.

So {Bλ(xλ)} is bounded in L2(I,Rn). If follows from Lemma 2.2 that M is maximal. �
When M is maximal monotone, id + M is surjective and invertible, so we denote for

x ∈ L2(I,Rn),

S(x) := (id + M)−1(x) ∈ W
2,2
B

(
I,Rn

)
.

Proposition 5.3. Under (H2) and (H4), the operator S :L2(I,Rn) → W 2,2(I,Rn), where
W 2,2(I,Rn) is endowed with the topology of C1(I,Rn) is continuous and completely contin-
uous.

Proof. Since L2(I,Rn) is a Hilbert space, it is sufficient to show that if xn ⇀ x weakly in
L2(I,Rn), yn = S(xn) → y = S(x) in C1(I,Rn). There exists un ∈ B(yn) such that xn = yn −
y′′
n + un. Let w, bw be given in (H2) and denote hw := w − w′′ + bw . So, using the boundary

condition and the fact that B is monotone, we obtain

〈yn − w,xn − hw〉L2 = ‖yn − w‖2
1,2 + 〈

yn(0) − w(0), y′
n(0) − w′(0)

〉
− 〈

yn(1) − w(1), y′
n(1) − w′(1)

〉 + 〈yn − w,un − bw〉L2

� ‖yn − w‖2
1,2.

It follows that {yn} is bounded in W 1,2(I,Rn). The compactness of the inclusion W 1,2(I,Rn) ↪→
L2(I,Rn) implies that up to a subsequence still denoted {yn}, yn → y weakly in W 1,2(I,Rn) and
strongly in L2(I,Rn). We know that since id +M is maximal monotone Gr(id +M) is closed in
(L2(I,Rn),Ts) × (L2(I,Rn),Tw). So, (y, x) ∈ Gr(id + M); i.e., y = S(x).

Now, we want to show that yn → y in C1(I,Rn). We deduce that {un} is bounded in L2(I,Rn)

from (H4). Therefore, {yn} is bounded in W 2,2(I,Rn). So, there are subsequence still denoted
{yn} and {un} such that un ⇀ u weakly in L2(I,Rn), and yn → y weakly in W 2,2(I,Rn) and
strongly in C1(I,Rn). Since B is maximal monotone, we deduce that (y,u) ∈ Gr(B) which is
closed in (L2(I,Rn),Ts) × (L2(I,Rn),Tw). It follows that yn = S(xn) → y = S(x) strongly in
C1(I,Rn). �
Remark 5.4. This result is true if we consider the problem (3.2) with B̂ satisfying (H2′)
and (H4′).

If we do not assume that B is bounded on bounded sets, it can be shown that M is maximal
monotone under an extra assumption. The reader is referred to [13, Propositions 2 and 3] for the
proof (see also [17]).

Proposition 5.5. Under (H2), (H5), M is a multi-valued maximal monotone operator. Moreover,
the operator S :L2(I,Rn) → W 2,2(I,Rn), where W 2,2(I,Rn) is endowed with the topology of
W 1,2(I,Rn) is continuous and completely continuous.

6. Proofs of existence results

In order to prove our main theorem, we first establish the following general result.
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Theorem 6.1. Assume (H1)–(H3). Assume also that one of the following conditions is satisfied:

(i) (H4) is satisfied and there exists a constant K > 0 such that every solution x of (Pλ) with
λ ∈ [0,1], satisfies ‖x′‖0 < K ;

(ii) (H6) holds and there exists a constant K > 0 such that every solution x of (Pλ) with λ ∈
[0,1], satisfies ‖x′‖L2 < K ; moreover, (H4) or (H5) is satisfied.

Then the problem (1.1) has a solution x ∈ T (v, r).

Proof. Denote X = C1(I,Rn) (respectively W 1,2(I,Rn)). Let us define

H,H : [0,1] × X → X

by H(λ,x) = S ◦ F(λ,x), and H(λ,x) = λH(0, x), respectively. Propositions 5.1 and 5.3 (re-
spectively 5.5) imply that H , and hence H , are continuous and completely continuous. Observe
that H is bounded, so we can find an open bounded set W ⊂ X such that H([0,1] × X) ⊂ W .
Without lost of generality, we can assume that{

x ∈ X: x ∈ T (v, r), ‖x‖X < K
} ⊂ W.

From Proposition 4.2 and by assumption, H(λ, ·) has no fixed point on ∂W . Therefore, degree
theory (see [10]) implies

1 = deg(id,W,0) = deg
(
id − H(1, ·),W,0

) = deg
(
id − H(1, ·),W,0

)
.

Hence, there exists x ∈ T (v,M) a solution of (P1), and hence of (1.1). �
With this general result, we can prove our existence theorems.

Proof of Theorem 3.6. The proof is a direct consequence of Proposition 4.3 and Theo-
rem 6.1. �
Proof of Theorem 3.7. The proof is a direct consequence of Proposition 4.4 and Theo-
rem 6.1. �
Proof of Theorem 3.8. The proof is a direct consequence of Proposition 4.8 and Theo-
rem 6.1. �
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