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Abstract. We give generalizations in complete gauge spaces of the fol-
lowing results: Bishop-Phelps’ theorem, Ekeland’s variational principle,
Caristi’s fixed point theorem, the drop theorem and the flower petal the-
orem. We show that our generalizations are equivalent. We apply those
results to obtain fixed point theorems for multivalued contractions de-
fined on a closed subset of a complete gauge space and satisfying a
generalized inwardness condition.
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1. Introduction and preliminaries

In 1963, Bishop and Phelps [3] established the following principle. We state
the formulation which appeared in [12] (see also [18] and [28]).

Theorem 1.1 (Bishop–Phelps’ theorem). Let M be a complete metric space,
φ : M → R lower semicontinuous and bounded from below and c > 0. Then
for any x0 ∈ M , there exists x∗ ∈ M such that

(i) φ(x∗) + cd(x0, x
∗) ≤ φ(x0);

(ii) φ(x∗) < φ(x) + cd(x, x∗) for every x �= x∗.

The well-known Ekeland variational principle [13] obtained in 1972 is
one of the most frequently applied results of nonlinear analysis (see also [14]).

Theorem 1.2 (Ekeland’s variational principle). Let M be a complete metric
space, and φ : M → R∪{∞} proper, lower semicontinuous and bounded from
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below. For each c > 0, δ > 0 and x0 ∈ M such that φ(x0) ≤ inf φ(M) + cδ,
there exists x∗ ∈ M such that

(i) φ(x∗) ≤ φ(x0);
(ii) d(x0, x

∗) ≤ δ;
(iii) φ(x∗) < φ(x) + cd(x, x∗) for all x �= x∗.

The same year, Daneš [8] established the so-called drop theorem. Here
is the generalized version published in 1985 in [9].

Theorem 1.3 (Drop theorem). Let E be a Banach space, A a closed subset
of E and B a closed bounded convex subset of E with d(A,B) > 0. Then, for
every x0 ∈ A, there exists x∗ ∈ A∩K(x0, B) such that {x∗} = A∩K(x∗, B),
where

K(x,B) = co
(
B ∪ {x}) = {u = (1− θ)x+ θy : θ ∈ [0, 1], y ∈ B}.

In 1976, Caristi [5] established the existence of a fixed point for maps f
for which the distance between x and f(x) is suitably controlled. Here is the
generalized formulation presented by Caristi and Kirk [6].

Theorem 1.4 (Caristi’s theorem). Let M be a complete metric space, f :
M → M a map, and φ : M → R lower semicontinuous and bounded from
below such that

d(x, f(x)) ≤ φ(x)− φ(f(x)) ∀x ∈ M.

Then f has a fixed point.

Ten years later, the flower petal theorem was obtained by Penot [27].

Theorem 1.5 (Flower petal theorem). Let A be a complete subset of a metric
space M . Let x0 ∈ A and b ∈ M\{x0}. Then, for every δ > 0, there exists
x∗ ∈ Pδ(x0, b) such that Pδ(x

∗, b) ∩A = {x∗}, where
Pδ(x, b) = {u ∈ M : d(u, b) + δd(x, u) ≤ d(x, b)}.

It appeared that the five previous theorems are equivalent; see [4, 9, 27].
Many generalizations of those results were obtained. One approach was

to consider more general spaces such as locally convex spaces [7, 19], or
suitable uniform spaces or gauges spaces [2, 15, 20, 22, 24]. Another approach
was to generalize Ekeland’s variational principle to maps φ : X → Y ∪ {∞}
defined on a metric space or, more generally, on a suitable uniform space,
with values in an ordered vectorial topological space Y [17, 20, 26, 30].

The results presented in this paper lie between those two approaches.
Indeed, we consider a gauge space (X, {dn}) with {φn : X → R ∪ {∞}}, a
family of lower semicontinuous maps bounded from below, and we look for
x∗ ∈ X such that

φn(x
∗) + cndn(x

∗, x0) ≤ φn(x0) ∀n.
This new approach leads us to generalize the previous five theorems. Then,
we show that our generalizations are equivalent results.
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Our results permit us to obtain fixed point theorems for multivalued
contractions defined on a closed subset of X and satisfying generalized in-
wardness conditions. Fixed point theorems for multivalued contractions in
Banach spaces satisfying different inwardness conditions were obtained by
Downing and Kirk [10] and by Lim [21]. Some generalizations of their results
to metric spaces were obtained by Song [29], Maciejewski [23], and recently
in [16]. Here, our generalized inwardness conditions, combined with our ap-
proach presented above, permit us to extend their results to gauge spaces.
However, some of our fixed point theorems are new even in metric spaces. Let
us mention that fixed point results were also obtained for inward multivalued
contractions in the sense of the measure of noncompactness in Fréchet spaces
by Agarwal and O’Regan [1].

Finally, in the last section, we apply our generalization of Ekeland’s
principle to obtain a Palais–Smale-star (PS∗) type sequence of an extended
real-valued map defined on a gauge space X.

We start with some preliminary definitions.
In what follows, X is a gauge space endowed with a complete gauge

structure {dn : n ∈ N} satisfying the following condition:

d1(x, y) ≤ d2(x, y) ≤ · · · for every x, y ∈ X; (1.1)

see [11] for definitions. Let us mention that conditions on the family of gauges
are imposed for the sake of simplicity. We could have considered a sequentially
complete gauge space endowed with a family of gauges parametrized by a
directed set, not necessarily countable, and with a sequentially lower closed
quasi order on X; see [20] for more details.

For A, B ⊂ X and x ∈ X, we denote

dn(x,B) = inf
y∈B

dn(x, y), dn(A,B) = inf
x∈A

dn(x,B),

ρn(x,B) = sup
y∈B

dn(x, y), ρn(A,B) = sup
x∈A

ρn(x,B),

Dn(A,B) = max
{

inf
x∈A

ρn(x,B), inf
y∈B

ρn(y,A)
}
.

Definition 1.6. Let A ⊂ X. A multivalued map F : A → X with nonempty
closed values is a contraction if for every n ∈ N, there exists kn ∈ [0, 1[ such
that

Dn

(
F (x), F (y)

) ≤ knd(x, y) for every x, y ∈ A.

2. Variational principles and generalization of
Caristi’s theorem

In this section, we generalize Bishop–Phelps’ theorem, Ekeland’s variational
principle and Caristi’s fixed point theorem to the complete gauge space X.
We recall that X is endowed with a complete gauge structure {dn : n ∈ N}
satisfying condition (1.1).

The following result is a generalization of Bishop–Phelps’ theorem.
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Theorem 2.1. For every n ∈ N, let cn > 0 and φn : X → R lower semicon-
tinuous and bounded from below. Then for every x0 ∈ X, there exists x∗ ∈ X
such that

(i) φn(x
∗) + cndn(x0, x

∗) ≤ φn(x0) for every n ∈ N;
(ii) for every x �= x∗, there exists n ∈ N such that φn(x

∗) < φn(x) +
cndn(x, x

∗).

Proof. For x ∈ X, denote

S(x) =
⋂
n∈N

{y ∈ X : φn(y) + cndn(y, x) ≤ φn(x)}.

This set is closed and nonempty since x ∈ S(x) and the maps φn are lower
semicontinuous. Choose inductively xn ∈ S(xn−1) such that φn(xn) ≤ cn/n+
inf φn(S(xn−1)). It is easy to check that

S(x0) ⊃ S(x1) ⊃ · · · .
Observe that for x ∈ S(xn),

φn(x) + cndn(x, xn) ≤ φn(xn) ≤ cn
n

+ inf φn(S(xn−1)) ≤ cn
n

+ φn(x).

Thus,

dn(x, xn) ≤ 1

n
∀x ∈ S(xn). (2.1)

So, for k < n < p,

dk(xp, xn) ≤ dn(xp, xn) ≤ 1

n
.

Therefore, {xn} is a Cauchy sequence, and hence converges to some

x∗ ∈
⋂
n≥0

S(xn).

Assume there is x �= x∗ such that φn(x) + cndn(x, x
∗) ≤ φn(x

∗) for
every n ∈ N. Then for every k ∈ N,

φn(x) + cndn(x, xk) ≤ φn(x) + cndn(x, x
∗) + cndn(x

∗, xk)

≤ φn(x
∗) + cndn(x

∗, xk)

≤ φn(xk);

i.e., x ∈ S(xk) for every k ∈ N. By (2.1),

dk(x, x
∗) ≤ dn(x, x

∗) ≤ dn(x, xn) + dn(xn, x
∗) ≤ 2

n
∀n ≥ k.

This leads to a contradiction since x �= x∗. �

Theorem 2.1 permits to obtain the following generalization of Ekeland’s
variational principle.

Theorem 2.2. For every n ∈ N, let φn : X → ]−∞,∞] be proper, lower semi-
continuous and bounded from below. For every x0 ∈ X and every sequences of
positive numbers {cn} and {δn} such that φn(x0) ≤ inf φn(X) + cnδn, there
exists x∗ ∈ X such that
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(i) φn(x
∗) ≤ φn(x0) for every n ∈ N;

(ii) dn(x0, x
∗) ≤ δn for every n ∈ N;

(iii) for every x �= x∗, there exists n ∈ N such that φn(x
∗) < φn(x) +

cndn(x, x
∗).

Proof. Observe that φn(x0) < ∞ for every n ∈ N. Consider the gauge space

Y =
⋂
n∈N

{y ∈ X : φn(y) ≤ φn(x0)}.

The previous theorem applied to the restrictions of φn to this space insures
the existence of x∗ ∈ Y such that (iii) is satisfied for every x ∈ Y and

φn(x
∗) + cndn(x

∗, x0) ≤ φn(x0) ≤ cnδn + inf φn(X) ∀n ∈ N.

So (i) and (ii) are satisfied.
If x ∈ X\Y , there exists n ∈ N such that

φn(x
∗) ≤ φn(x0) < φn(x) ≤ φn(x) + cndn(x, x

∗);

so (iii) is satisfied for every x ∈ X. �

Now, using the generalization of Bishop–Phelps’ theorem (Theorem 2.1),
we obtain the following generalization of Caristi’s fixed point theorem.

Theorem 2.3. Let f : X → X. For every n ∈ N, let φn : X → R be lower
semicontinuous and bounded from below such that

dn(x, f(x)) ≤ φn(x)− φn(f(x)) ∀x ∈ X.

Then f has a fixed point.

Proof. Fix x0 ∈ X, and let x∗ be as given by Theorem 2.1. If x∗ �= f(x∗),
there exists n ∈ N such that

φn(x
∗) < dn(x

∗, f(x∗)) + φn(f(x
∗)).

This contradicts our assumption. �

Proposition 2.4. Theorems 2.1, 2.2 and 2.3 are equivalent.

Proof. We already know that Theorem 2.1 implies Theorems 2.2 and 2.3.
We first show that Theorem 2.2 implies Theorem 2.1. Take

Y = {x ∈ X : φn(x) + cndn(x, x0) ≤ φn(x0) ∀n ∈ N}.
Set δn ≥ (φn(x0)− inf φn(X))/cn. Let x

∗ be given by Theorem 2.2 applied on
the gauge space Y . It satisfies conditions (i) and (ii) of Theorem 2.1 for every
x ∈ Y \{x∗}. If x �∈ Y , there exists n ∈ N such that φn(x) + cndn(x, x0) >
φn(x0). So,

φn(x
∗) ≤ φn(x0)− cndn(x

∗, x0)

< φn(x) + cn(dn(x, x0)− dn(x
∗, x0))

≤ φn(x) + cndn(x, x
∗).

It remains to show that Theorem 2.3 implies Theorem 2.1. Assume the
conclusion is false. Let Y be as above. For x ∈ Y , there exists a point denoted
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f(x) �= x such that φn(f(x)) + cndn(x, f(x)) ≤ φn(x) for all n ∈ N. Arguing
as above, one can check that f(x) ∈ Y . By Theorem 2.3, f has a fixed point.
Contradiction. �

A multivalued version of Theorem 2.3 generalizes the multivalued ver-
sion of Caristi’s fixed point theorem due to Mizoguchi and Takahashi [25].

Theorem 2.5. Let F : X → X be a multivalued map with nonempty values.
For every n ∈ N, let φn : X → R be lower semicontinuous and bounded from
below. Assume that for every x ∈ X, there exists y ∈ F (x) such that

dn(x, y) ≤ φn(x)− φn(y) for every n ∈ N.

Then F has a fixed point.

3. Generalizations of the drop and the flower petal theorems

In order to generalize the drop theorem and the flower petal theorem, we
extend the notions of drop and petal.

Let x ∈ X, let B ⊂ X be nonempty, closed, bounded, and let α =
(α1, α2, . . .) ∈ [0, 1]N. For γ = (γ1, γ2, . . .) ∈ ]0, 1]N, we define the generalized
petal by

Pα,γ(x,B) =
{
u ∈ X : for every n ∈ N,

αndn(u,B) + (1− αn)ρn(u,B) + γndn(x, u)

≤ αndn(x,B) + (1− αn)ρn(x,B)
}
.

For σ = (ω, μ, ν) ∈ ]0,∞[N×[0,∞[N×R
N, we define the generalized drop by

Dα,σ(x,B) =
{
u ∈ X : ∀n ∈ N, ∃θn ≥ 0 such that

dn(x, u) ≤ θnωnρn(x,B) and

αndn(u,B) + (1− αn)ρn(u,B)

≤ (αn − θnμn)dn(x,B) + (1− αn + θnνn)ρn(x,B)
}
.

Example 3.1. Figures 3.1 and 3.2 show different generalized petals and gen-
eralized drops in the case where X = R

2, x = (−1,−1) and B = {(x1, x2) ∈
R× [0,∞[: x2

1 + x2
2 ≤ 1}.

In the following two results, for A a subset of X, we look for x∗, the
unique element of A ∩ Pα,γ(x

∗, B) and A ∩ Dα,σ(x
∗, B), respectively.

Theorem 3.2. Let A be a nonempty closed subset of X and B a nonempty,
closed, bounded subset of X. Then for every α ∈ [0, 1]N and every γ ∈ ]0, 1]N,
there exists x∗ ∈ A such that {x∗} = A ∩ Pα,γ(x

∗, B).

Proof. For n ∈ N, define φn : A → R by

φn(x) = αndn(x,B) + (1− αn)ρn(x,B).

The map φn is lower semicontinuous. Choose x0 ∈ A. Let x∗ ∈ A be the point
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Figure 3.1. The generalized petal Pα,γ(x,B) for γ = 0.25
and γ = 0.5.
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Figure 3.2. The generalized drop Dα,σ(x,B) for σ =
(0.5, 0.5, 0) and σ = (1, 0.75, 0.3).

given by Theorem 2.1 with cn = γn. If there exists x ∈ A∩Pα,γ(x
∗, B)\{x∗},

then there exists n ∈ N such that

φn(x
∗) < φn(x) + γndn(x, x

∗)

= αndn(x,B) + (1− αn)ρn(x,B) + γndn(x, x
∗)

≤ αndn(x
∗, B) + (1− αn)ρn(x

∗, B).

Contradiction. �

Theorem 3.3. Let A be a nonempty closed subset of X and B a nonempty,
closed, bounded subset of X. Let σ = (ω, μ, ν) ∈ ]0,∞[N×[0,∞[N×R

N. As-
sume that for every n ∈ N,

νn ∈ ]−∞, μndn(A,B)/ρn(A,B)[.

Then for every α ∈ ]0, 1]N, there exists x∗ ∈ A such that

{x∗} = A ∩ Dα,σ(x
∗, B).

Proof. For n ∈ N, if νn < 0, choose γn ∈ ]0,min{1,−νn/ωn}]. Otherwise,
μn > 0, dn(A,B) > 0, ρn(A,B) < ∞, and we can choose γn ∈ ]0, 1] such that

(νn + γnωn)ρn(A,B) ≤ μndn(A,B).
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The conclusion follows from Theorem 3.2 if we show that

Dα,σ(x,B) ⊂ Pα,γ(x,B) for every x ∈ A.

Observe that if u ∈ Dα,σ(x,B), for every n ∈ N, there exists θn ≥ 0
such that

αndn(u,B) + (1− αn)ρn(u,B) + γndn(x, u)

≤ αndn(x,B) + (1− αn)ρn(x,B)

+ θn
(
(νn + γnωn)ρn(x,B)− μndn(x,B)

)
≤ αndn(x,B) + (1− αn)ρn(x,B). �

Remark 3.4. In Theorems 3.2 and 3.3, it is not necessary to assume that B
is bounded if α = (1, 1, . . .).

Proposition 3.5. Theorems 3.2 and 3.3 are equivalent.

Proof. Since the proof of Theorem 3.3 relies on Theorem 3.2, to conclude, we
need to show that Theorem 3.3 implies Theorem 3.2.

Observe that if u ∈ Pα,γ(x,B), for every n ∈ N, there exists θn ∈ [0, 1]
such that

dn(x, u) =
θn
γn

(
αndn(x,B) + (1− αn)ρn(x,B)

) ≤ θn
γn

ρn(x,B).

So,

αndn(u,B) + (1− αn)ρn(u,B)

≤ αndn(x,B) +
(
1− αn

)
ρn(x,B)− γndn(x, u)

=
(
αn − θnαn

)
dn(x,B) +

(
1− αn − θn(1− αn)

)
ρn(x,B).

Hence,

Pα,γ(x,B) ⊂ Dα,σ

(
x,B) with σ =

(
1

γ
, α, α− 1

)
.

The conclusion follows from Theorem 3.3. �

We show the equivalence between those results and Theorems 2.1, 2.2
and 2.3.

Proposition 3.6. Theorems 2.1, 2.2, 2.3, 3.2 and 3.3 are equivalent.

Proof. We already know that Theorems 2.1, 2.2 and 2.3 are equivalent, and
that Theorems 3.2 and 3.3 are equivalent. Since the proof of Theorem 3.2
relies on Theorem 2.1, to conclude, we need to show that Theorem 3.2 implies
Theorem 2.1.

Under the assumptions of Theorem 2.1, fix rn = 2/cn. Consider the
space

X̂ = {(x, t1, t2, . . .) ∈ X × R
N : φn(x) ≤ tn ∀n ∈ N},
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endowed with a complete gauge structure {d̂n} defined by

d̂n
(
(x, t1, t2, . . .), (y, s1, s2, . . .)

)
= dn(x, y) +

n∑
i=1

ri|ti − si|.

Obviously, (1.1) is satisfied.

Set

A = {(x, t1, t2, . . .) ∈ X̂ : tn + cndn(x, x0) ≤ φn(x0) ∀n ∈ N},
B = {(x0, inf φ1(X), inf φ2(X), . . .)}.

Those sets are closed and nonempty, and B is bounded. Fix

α = (α1, α2, . . . ) = (1, 1, . . . ),

γ = (γ1, γ2, . . . ) =

(
1

3
,
1

3
, . . .

)
.

Theorem 3.2 implies that there exists (x∗, t∗1, t
∗
2, . . . ) such that

{(x∗, t∗1, t
∗
2, . . . )} = A ∩ Pα,γ

(
(x∗, t∗1, t

∗
2, . . . ), B

)
. (3.1)

We claim that (x∗, t∗1, t
∗
2, . . . ) = (x∗, φ1(x

∗), φ2(x
∗), . . . ). Indeed, for ev-

ery n ∈ N,

1

3
d̂n

(
(x∗, t∗1, t

∗
2, . . . ), (x

∗, φ1(x
∗), φ2(x

∗), . . . )
)

+ d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
=

1

3

n∑
i=1

ri|t∗i − φi(x
∗)|+ dn(x

∗, x0)

+

n∑
i=1

ri|φi(x
∗)− inf φi(X)|

= d̂n
(
(x∗, t∗1, t

∗
2, . . . ), B

)− 2

3

n∑
i=1

ri|t∗i − φi(x
∗)|

≤ d̂n
(
(x∗, t∗1, t

∗
2, . . . ), B

)
.

So,

(x∗, φ1(x
∗), φ2(x

∗), . . . ) ∈ A ∩ Pα,γ

(
(x∗, t∗1, t

∗
2, . . . ), B

)
.

This, combined with (3.1), implies that

t∗n = φn(x
∗) ∀n ∈ N. (3.2)
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If (x, φ1(x), φ2(x), . . . ) ∈ A and φn(x) + cndn(x, x
∗) ≤ φn(x

∗) for all
n ∈ N, observe that

1

3
d̂n

(
(x,φ1(x), φ2(x), . . . ), (x

∗, φ1(x
∗), φ2(x

∗), . . . )
)

+ d̂n
(
(x, φ1(x), φ2(x), . . . ), B

)
=

1

3
dn(x, x

∗) +
1

3

n∑
i=1

ri(φi(x
∗)− φi(x)) + dn(x, x0)

+

n∑
i=1

ri(φi(x)− inf φi(X))

= d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
+

1

3
dn(x, x

∗)

+ dn(x, x0)− dn(x
∗, x0)− 2

3

n∑
i=1

ri(φi(x
∗)− φi(x))

≤ d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
+

4

3
dn(x, x

∗)

− 2

3

n∑
i=1

ri(φi(x
∗)− φi(x))

≤ d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
+

4

3cn

(
φn(x

∗)− φn(x)
)

− 2

3

n∑
i=1

ri(φi(x
∗)− φi(x))

≤ d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
+

(
4

3cn
− 2rn

3

)(
φn(x

∗)− φn(x)
)− 2

3

n−1∑
i=1

ri(φi(x
∗)− φi(x))

≤ d̂n
(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
.

So,

(x, φ1(x), φ2(x), . . . ) ∈ A ∩ Pα,γ

(
(x∗, φ1(x

∗), φ2(x
∗), . . . ), B

)
.

This fact, combined with (3.1) and (3.2), implies that x = x∗.
On the other hand, statement (ii) of Theorem 2.1 is satisfied if x ∈ X is

such that (x, φ1(x), φ2(x), . . . ) �∈ A. Indeed, in this case, there exists n ∈ N

such that φn(x) + cndn(x, x0) > φn(x0). Since (x∗, φ1(x
∗), φ2(x

∗), . . . ) ∈ A,

φ(x) + cndn(x, x
∗) > φn(x

∗) + cn
(
dn(x

∗, x0) + dn(x, x
∗)− dn(x, x0)

)
≥ φn(x

∗). �

Now, we present some corollaries of Theorems 3.2 and 3.3. Observe that
in those results, there is no convexity assumption on B since there is no
vectorial structure on the space. However, if X is a Fréchet space and B is
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convex, we also obtain, as a corollary, a generalization in Fréchet spaces of
the drop theorem [8, 9].

Corollary 3.7. Let E be a Fréchet space endowed with a family of seminorms
{‖ · ‖n : n ∈ N} such that ‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. Let A,B be
nonempty closed subsets of E such that dn(A,B) > 0 for every n ∈ N. In
addition, assume that B is convex and bounded. Then, there exists x∗ ∈ A
such that {x∗} = A ∩ K(x∗, B), where

K(x∗, B) = {x∗} ∪ {u ∈ X :∀n ∈ N, ∃λn ≥ 1 such that

dn(x
∗ + λn(u− x∗), B) = 0}.

Proof. Let x ∈ A and u ∈ K(x,B)\{x}. For every n ∈ N, there exists λn ≥ 1
such that dn(x + λn(u − x), B) = 0, So, for every ε > 0, there exists y ∈ B
such that ‖x+ λn(u− x)− y‖n < λnε. Observe that

‖x− u‖n ≤ ‖x+
1

λn
(y − x)− u‖n +

1

λn
‖x− y‖n < ε+

1

λn
ρn(x,B).

Also, the convexity of B implies that for every z ∈ B,

dn(u,B) ≤
∥∥∥∥ 1

λn
y +

(
1− 1

λn

)
z − u

∥∥∥∥
n

≤
∥∥∥x+

1

λn
(y − x)− u

∥∥∥
n
+

(
1− 1

λn

)
‖x− z‖n

< ε+
(
1− 1

λn

)
‖x− z‖n.

Since ε and z are arbitrary,

‖x− u‖n ≤ 1

λn
ρn(x,B) and dn(u,B) ≤

(
1− 1

λn

)
dn(x,B).

Therefore,

K(x,B) ⊂ Dα,σ(x,B) ∀x ∈ A

with α = (1, 1, . . . ) and σ =
(
(1, 1, . . . ), (1, 1, . . . ), (0, 0, . . . )

)
.

The conclusion follows from Theorem 3.3. �

In the previous result, more precision on the location of x∗ can be ob-
tained.

Corollary 3.8. Let E be a Fréchet space endowed with a family of seminorms
{‖ · ‖n : n ∈ N} such that ‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. Let B be
a nonempty closed, convex, bounded subset of E and A a nonempty closed
subset of E such that dn(A,B) > 0 for every n ∈ N. Then, for every x0 ∈ A,
there exists x∗ ∈ K(x0, B) such that {x∗} = A ∩ K(x∗, B).

Proof. Denote Ã = A ∩ K(x0, B). The conclusion follows from the previous

corollary and the observation that for every x ∈ Ã,

A ∩ K(x,B) = Ã ∩ K(x,B). �
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As a corollary of Theorem 3.2, we obtain a generalization in gauge spaces
of the flower petal theorem due to Penot [27].

Corollary 3.9. Let A be a nonempty closed subset of X, and b ∈ X\A. Then
for every x0 ∈ A and every γ ∈ ]0, 1]N, there exists x∗ ∈ A ∩ P1,γ(x0, {b})
such that A ∩ P1,γ(x

∗, {b}) = {x∗}.
Proof. Fix Ã = A ∩ P1,γ(x0, {b}). Theorem 3.2 implies that there exists

x∗ ∈ Ã such that {x∗} = Ã ∩ P1,γ(x
∗, {b}). The conclusion follows from the

fact that

x∗ ∈ A ∩ P1,γ(x
∗, {b}) ⊂ Ã ∩ P1,γ(x

∗, {b}). �

In complete metric spaces, Theorems 3.2 and 3.3 are, respectively, gen-
eralizations of the flower petal theorem and the drop theorem.

Corollary 3.10. Let M be a complete metric space and A,B nonempty closed
subsets of M with B bounded. Then for every α ∈ [0, 1] and every γ ∈ ]0, 1],
there exists x∗ ∈ A such that

{x∗} = A ∩ {
u ∈ M : αd(u,B) + (1− α)ρ(u,B) + γd(u, x∗)

≤ αd(x∗, B) + (1− α)ρ(x∗, B)
}
.

Corollary 3.11. Let M be a complete metric space, A,B nonempty closed
subsets of M with B bounded, and let

μ ∈ [0,∞[ and ν ∈ ]−∞, μd(A,B)/ρ(A,B)[.

Then for every α ∈ [0, 1] and ω ∈ ]0,∞[, there exists x∗ ∈ A such that

{x∗} = A ∩
{
u ∈ M : ∃ θ ∈ [0, 1] such that

d(u, x∗) ≤ θωρn(x
∗, B) and

αd(u,B) + (1− α)ρ(u,B)

≤ (α− θμ)d(x∗, B) + (1− α+ θν)ρ(x∗, B)
}
.

As a direct consequence of Theorems 3.2 and 3.3, we obtain the follow-
ing fixed point results which are new even in the case where the space is a
complete metric space.

Theorem 3.12. Let A be a nonempty, closed subset of X, and F : A → X a
multivalued map. Assume there exists B a closed, bounded subset of X, α ∈
[0, 1]N, and γ ∈ ]0, 1]N such that for every x ∈ A, F (x)∩A∩Pα,γ(x,B) �= ∅.
Then F has a fixed point.

Theorem 3.13. Let A be a nonempty, closed subset of X, B a closed, bounded
subset of X, and σ = (ω, μ, ν) ∈ ]0,∞[N×[0,∞[N×R

N such that for every
n ∈ N,

νn ∈ ]−∞, μndn(A,B)/ρn(A,B)[.
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Assume that F : A → X is a multivalued map such that for every x ∈ A,

F (x) ∩A ∩ Dα,σ(x,B) �= ∅.
Then F has a fixed point.

In the following section, instead of considering the generalized petals
Pα,γ(x,B) (resp., the generalized drops Dα,σ(x,B)) for some fixed set B, we
will obtain fixed point results considering the generalized petals Pα,γ(x, F (x))
(resp., the generalized drops Dα,σ(x, F (x))).

4. Generalized inwardness condition

In this section, we present fixed point results for multivalued contractions
defined on a closed subset of the gauge space X and satisfying generalized in-
wardness conditions. More precisely, we ask that the generalized petal (resp.,
generalized drop) of x and F (x) intersects the domain of the multivalued
contraction F .

Theorem 4.1. Let A be a closed subset of X, and F : A → X a multi-
valued contraction with nonempty, closed, bounded values, and constants of
contraction {kn}. Assume that there exist α ∈ [0, 1]N and γ ∈ ]0, 1]N such
that kn < γn and for every x ∈ A, one has

x ∈ F (x) or Pα,γ(x, F (x)) ∩A\{x} �= ∅. (4.1)

Then F has a fixed point.

Proof. Choose cn < γn − kn and define φn : A → R by

φn(x) = αndn(x, F (x)) + (1− αn)ρn(x, F (x)).

Since F is a contraction, φn is lower semicontinuous. Fix x0 ∈ A and let
x∗ ∈ A be as given by Theorem 2.1. By (4.1), if x∗ �∈ F (x∗), there exists
x ∈ Pα,γ(x

∗, F (x∗)) ∩A\{x∗}. So, for every n ∈ N,

φn(x) + cndn(x, x
∗)

≤ αn

(
dn(x, F (x∗)) +Dn(F (x), F (x∗))

)
+ (1− αn)

(
ρn(x, F (x∗)) +Dn(F (x), F (x∗))

)
+ cndn(x, x

∗)

≤ αndn(x, F (x∗)) + (1− αn)ρn(x, F (x∗)) + (kn + cn)dn(x, x
∗)

≤ φn(x
∗).

This contradicts (ii) of Theorem 2.1. �

The previous result is original even in the particular case where X is a
complete metric space. It generalizes the following result obtained in [16].
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Corollary 4.2. Let A be a closed subset of M , a complete metric space, and
let F : A → M be a multivalued contraction with constant k ∈ [0, 1[. Assume
that there exits θ ∈ ]k, 1] such that for every x ∈ A, x ∈ F (x) or

F (x) ∈ {
Y ⊂ X nonempty and closed : ∃u ∈ K\{x} such that

θd(x, u) + d(u, Y ) ≤ d(x, Y )
}
.

Then F has a fixed point.

Another type of inward contraction occurs when the generalized drop
of x and F (x) intersects the domain of F .

Theorem 4.3. Let A be a closed subset of X, and F : A → X a multi-
valued contraction with nonempty, closed, bounded values, and constants of
contraction {kn}. Assume that there exist α ∈ [0, 1]N and σ = (ω, μ, ν) ∈
]0,∞[N×[0,∞[N×R

N such that for every x ∈ A, one has

x ∈ F (x) or Dα,σ(x, F (x)) ∩A\{x} �= ∅. (4.2)

Moreover, for every n ∈ N,

there exists an > ωnkn + νn such that for every x ∈ A,

anρn(x, F (x)) ≤ μndn(x, F (x)). (4.3)

Then F has a fixed point.

Proof. For n ∈ N, choose γn ∈ ]kn, 1] such that

ωnγn + νn < an.

Arguing as in the proof of Theorem 3.3, one can show that

Dα,σ(x, F (x)) ⊂ Pα,γ(x, F (x)) ∀x ∈ A.

The conclusion follows from the previous theorem. �

Remark 4.4. If F is a single-valued contraction, condition (4.3) can be written
as ωnkn < μn since one can take νn = 0 and an = μn.

In fact, inspired by the results of Song [29] on directional contractions,
one sees that the contraction assumption imposed on F can be weakened in
Theorem 4.1. The proof of the following result is analogous to the proof of
Theorem 4.1.

Theorem 4.5. Let A be a closed subset of X, α ∈ [0, 1]N, and F : A →
X a multivalued map with nonempty, closed, bounded values such that, for
every n ∈ N, the map x �→ αndn(x, F (x)) + (1 − αn)ρn(x, F (x)) is lower
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semicontinuous. Assume that there exist k, γ ∈ [0, 1]N such that 0 ≤ kn <
γn ≤ 1, and for every x ∈ A, one has x ∈ F (x) or

∅ �= Pα,γ(x, F (x)) ∩
{
u ∈ A\{x} : for every n ∈ N

αn sup
y∈F (x)

dn(y, F (u))

+ (1− αn) sup
z∈F (u)

dn(z, F (x)) ≤ kndn(x, u)
}
.

(4.4)

Then F has a fixed point.

In Theorem 4.1, we have considered a multivalued contraction sat-
isfying a generalized inwardness condition involving the generalized petal
Pα,γ(x, F (x)). We can also consider another type of inwardness condition in-
volving the family of generalized petals Pα,γ(x, {y}) for y ∈ F (x). Notice that
since {y} is a singleton, Pα,γ(x, {y}) = Pα̂,γ(x, {y}) for every α, α̂ ∈ [0, 1]N.
So, by P1,γ(x, {y}), we mean Pα,γ(x, {y}) with α = (1, 1, . . . ).

Theorem 4.6. Let A be a closed subset of X, and F : A → X a multivalued
map with nonempty values and closed graph. Assume that there are a non-
decreasing sequence {kn} in [0, 1[ and γ ∈ ]0, 1]N such that kn < γn, and for
every x ∈ A and every y ∈ F (x)\{x},

∅ �= P1,γ(x, {y}) ∩
{
u ∈ A\{x} : there exists v ∈ F (u) such that

dn(y, v) ≤ kndn(x, u) ∀n ∈ N

}
.

(4.5)

Then F has a fixed point.

Proof. For every n ∈ N, define on graphF , the gauge

d̂n
(
(x, y), (x̂, ŷ)

)
= kndn(x, x̂) + dn(y, ŷ).

Since F has closed graph and {kn} is nondecreasing, (graphF, {d̂n}) is a
complete gauge space satisfying condition (1.1). Let (x0, y0) ∈ graphF . For
every n ∈ N, define φn : graphF → R by φn(x, y) = dn(x, y) and choose
cn > 0 such that (1 + 2cn)kn ≤ γn. Theorem 2.1 guarantees the existence of
(x∗, y∗) ∈ graphF such that for every (x, y) ∈ graphF\{(x∗, y∗)},

∃n ∈ N such that dn(x
∗, y∗) < dn(x, y) + cnd̂n

(
(x, y), (x∗, y∗)

)
.

If x∗ �= y∗, by assumption, there exists (x, y) ∈ graphF such that x �= x∗

and

dn(y, y
∗) ≤ kndn(x, x

∗) ≤ γndn(x, x
∗) + dn(x, y

∗) ≤ dn(x
∗, y∗).
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So,

dn(x, y) + cnd̂n
(
(x, y), (x∗, y∗)

)
≤ dn(x, y

∗) + cnkndn(x, x
∗) + (1 + cn)dn(y, y

∗)

≤ dn(x, y
∗) + kn(1 + 2cn)dn(x, x

∗)

≤ dn(x, y
∗) + γndn(x, x

∗)

≤ dn(x
∗, y∗).

Contradiction. Therefore, F has a fixed point. �

We obtain the following corollary in Fréchet spaces for multivalued con-
tractions with a classical inwardness condition.

Corollary 4.7. Let E be a Fréchet space endowed with a family of seminorms
{‖ · ‖n : n ∈ N} such that ‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. Let A be a
closed subset of E, and F : A → E a multivalued contraction with constants
of contraction {kn}, a nondecreasing sequence in [0, 1[. Assume that for every
x ∈ A,

F (x) ⊂ {x+ λ(u− x) : u ∈ A, λ ≥ 1}.
Then F has a fixed point.

Proof. The conclusion follows directly from Theorem 4.6 since y = x+λ(u−
x) ∈ F (x) for some u ∈ A and λ ≥ 1 implies that u ∈ P1,1(x, {y}). �

5. Admissibly differentiable maps and (PS)∗ sequence

In this section, we present an application of Theorem 2.2. More precisely, we
introduce the notion of admissibly d-differentiable maps for which we obtain
a kind of Palais–Smale-star (PS∗) sequence.

We consider E a Fréchet space endowed with a family of seminorms
{‖ · ‖n : n ∈ N} such that ‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E.

Definition 5.1. A map f : E → R ∪ {∞} is admissibly d-differentiable at
x ∈ dom f if

(i) dir(f, x) = {y ∈ E : supn ‖y‖n ∈ ]0,∞[, and x is an accumulation point
of the sets dom f ∩ (x+ R

+y) and dom f ∩ (x+ R
−y)} �= ∅;

(ii) for every y ∈ dir(f, x), there exists L(y) ∈ R such that

lim
t→0

x+ty∈dom f

f(x+ ty)− f(x)

t
= L(y);

(iii) ‖L‖ = sup
{ |L(y)|

supn ‖y‖n
: y ∈ dir(f, x)

}
< ∞.

We call L the admissible d-derivative of f at x and we denote it Df(x).
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For φ : E → R∪ {±∞} and nonempty, closed subsets X1 ⊂ X2 ⊂ · · · ⊂
E, we define φn : E → R ∪ {±∞} by

φn(x) =

{
φ(x) if x ∈ Xn,

∞ otherwise.

Theorem 5.2. Let X1 ⊂ X2 ⊂ · · · be a sequence of nonempty, closed subsets
of E, φ : E → R∪{±∞} a proper map such that φn is lower semicontinuous,
bounded from below and admissibly d-differentiable. If {xn} is a minimizing
sequence of φ such that xn ∈ Xn, there exists a sequence {x∗

n} such that
x∗
n ∈ Xn, φ(x

∗
n) ≤ φ(xn) for every n ∈ N, and xn−x∗

n → 0, ‖Dφn(x
∗
n)‖ → 0.

Proof. Denote γn = (φn(xn) − inf φn(E))1/2. By Theorem 2.2 applied with
x0 = x1, cn = δn = γ1 for all n ∈ N, there exists x∗

1 such that φn(x
∗
1) ≤

φn(x1), ‖x1 − x∗
1‖n ≤ γ1 for every n ∈ N, and for every x �= x∗

1, there exists
k such that

φk(x
∗
1) < φk(x) + γ1‖x− x∗

1‖k.
Observe that x∗

1 ∈ X1, and for every x ∈ domφ1, φk(x) = φ1(x) for every
k ∈ N. So, for every y ∈ dir(φ1, x

∗
1),

−γ1 sup
k

‖y‖k ≤ lim
t→0+

x∗
1+ty∈domφ1

φ1(x
∗
1 + ty)− φ1(x

∗
1)

t

= Dφ1(x
∗
1)(y)

= lim
t→0−

x∗
1+ty∈domφ1

φ1(x
∗
1 + ty)− φ1(x

∗
1)

t

≤ γ1 sup
k

‖y‖k.

Thus, ‖Dφ1(x
∗
1)‖ ≤ γ1.

Repeat the argument inductively for k = 2, 3, . . . , with x0 = xk and
cn = δn = γk, to obtain x∗

k ∈ Xk such that φ(x∗
k) ≤ φ(xk), ‖x∗

k − xk‖n ≤ γk
for every n ∈ N, and ‖Dφk(x

∗
k)‖ ≤ γk. The conclusion follows from the fact

that γk → 0. �

Example 5.3. Let E = L∞
loc[0,∞[ endowed with the family of seminorms

‖x‖n = ‖xχ[0,n]‖∞. Let g ∈ L1
loc[0,∞[ and let f : [0,∞[×R → R be L1

loc-
Carathéodory; that is, s �→ f(t, s) is continuous for almost every t; t �→ f(t, s)
is measurable for every s; and for every r > 0 and n ∈ R, there exists kn,r ∈
L1[0, n] such that |f(t, s)| ≤ kn,r(t) for a.e. t ∈ [0, n] and every s ∈ [−r, r].

Let φ : E → R ∪ {±∞} be defined by

φ(x) =

∫ ∞

0

(
x2(t)g(t)−

∫ x(t)

0

f(t, s) ds
)
dt.

Let Xn = {x ∈ E : x(t) = 0 a.e. t ∈ ]n,∞[}. For every n ∈ N, φn is lower
semicontinuous and it is admissibly d-differentiable. Indeed, for x ∈ domφn =
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Xn, dir(φn, x) = Xn\{x} and, for y ∈ dir(φn, x),

Dφn(x)(y) =

∫ n

0

(
2x(t)g(t)− f(t, x(t))

)
y(t) dt

=

∫ ∞

0

(
2x(t)g(t)− f(t, x(t))

)
y(t) dt,

since, for some θ(h) between 0 and h,

lim
h→0

φn(x+ hy)− φn(x)

h
= lim

h→0

∫ ∞

0

1

h

(
((x+ hy)2(t)− x2(t))g(t)

−
∫ x(t)+hy(t)

x(t)

f(t, s) ds
)
dt

= lim
h→0

∫ n

0

(
2x(t)y(t)g(t) + hy2(t)g(t)

− f(t, x(t) + θ(h)y(t))y(t)
)
dt

=

∫ n

0

(
2x(t)y(t)g(t)− f(t, x(t))y(t)

)
dt.

Moreover,

‖Dφn(x)‖ = sup

⎧⎨⎩
∣∣∣ ∫∞

0
2x(t)y(t)g(t)− f(t, x(t))y(t) dt

∣∣∣
‖y‖n : y ∈ dir(φn, x)

⎫⎬⎭
≤ 2‖x‖n‖g‖L1[0,n] + ‖kn,‖x‖n

‖L1[0,n] < ∞.

By Theorem 5.2, if xn ∈ Xn is such that {xn} is a minimizing sequence
of φ, there exists x∗

n ∈ Xn such that φ(x∗
n) ≤ φ(xn), xn − x∗

n → 0, and
‖Dφn(x

∗
n)‖ → 0.
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