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1 Introduction

In this paper, we study the existence of nontrivial solutions to the following
systems of coupled Poisson equations with critical growth in unbounded domains

−∆u = |v|2∗−2v

−∆v = |u|2∗−2u

u, v ∈ D1,2
0 (Ω∗);

(∗)

and
−∆u = γv + |v|2∗−2v

−∆v = λu+ |u|2∗−2u
u, v ∈ H1

0 (Ω∗∗),
(∗∗)

where Ω∗ = R
N \ E with E =

⋃
a∈ZN a + ω∗ for a domain containing the origin

ω∗ ⊂ ω∗ ⊂ B(0, 1/2) the open ball centered at the origin of radius 1/2; and
Ω∗∗ = R

l × ω∗∗ is a cylindrical domain with ω∗∗ a bounded domain of R
N−l for

1 ≤ l ≤ N − 1, and 0 < γ, λ < λ1(Ω∗∗), with λ1(Ω∗∗) the best constant in the
Poincaré Inequality:

λ1(Ω∗∗) := inf
{∫

Ω∗∗
|∇u|2 dx : u ∈ H1

0 (Ω∗∗),
∫

Ω∗∗
u2 dx = 1

}
.

More precisely, using variational methods, we shall establish our following main
results:

Theorem 1.1 Problem (∗) has a non trivial solution.

Theorem 1.2 If γ, λ ∈ ]0, λ1(Ω∗∗)[, then Problem (∗∗) has a non trivial solution.

This type of problems on bounded domains were studied in the subcritical
growth case by Husholf and van der Vorst [8] using the Indefinite Functional
Theorem due to Benci and Rabinowitz [1]; and by Felmer and Wang [7] who
obtained multiplicity results using Galerkin type methods. The critical growth
case was studied by Husholf, Mitidieri and van der Vorst [9] where they used a
dual formulation due to Clarke and Ekeland [3]. To our knowledge, there are no
results in the literature establishing the existence of solutions to these problems
in unbounded domains.

Observe that these problems have a variational structure. Indeed, they con-
stitute the Euler-Lagrange equations for the functionals:

ϕ(u, v) :=
∫

Ω∗
∇u · ∇v − |u|2∗

2∗ − |v|2∗

2∗ dx

ϕ1(u, v) :=
∫

Ω∗∗
∇u · ∇v − γu2

2
− λv2

2
− |u|2∗

2∗ − |v|2∗

2∗ dx,
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respectively. Moreover, the first part of these functionals is a strongly indefinite
operator. In particular, the functionals have the form

‖Q(u, v)‖2

2
− ‖P (u, v)‖2

2
− ψ(u, v),

where (u, v) belongs to a Hilbert space X = Y ⊕ Z with Y and Z infinite dimen-
sional subspaces, and P and Q being respectively the orthogonal projections on
Y and Z. Therefore, the proofs of our main results can not rely on classical min-
max results. Indeed, the classical min-max results use the fact that the functional
satisfies appropriate lower and upper bounds on suitable sets S,M , with S ⊂ Y
linking M , and where Y is finite dimensional. The linking between S and M is
established using the Brouwer degree theory.

An other difficulty arises from the fact that the functionals ϕ and ϕ1 are
invariant under Z

N -translations and R
l-translations respectively. Therefore, the

Palais-Smale condition fails at all critical levels. Indeed, ϕ(u, v) = ϕ(û, v̂) and
ϕ1(u, v) = ϕ1(ũ, ṽ) where (û, v̂)(x) = (u, v)(x + a) for some a ∈ Z

N , and (ũ, ṽ)
(y, z) = (u, v)(y + b, z) for (y, z) ∈ R

l × ω∗∗, and some b ∈ R
l.

Here, we shall use concentration-compactness techniques and we shall apply
a generalized linking theorem due to Krysewski and Szulkin [10] for suitable func-
tional defined on a Hilbert space X = Y ⊕ Z where Y and Z could be infinite
dimensional.

The paper is organized as follows. In the next section, we recall some results
and present some technical lemmas on Sobolev spaces that will be used in the
following. The proofs of Theorems 1.1 and 1.2 are presented in section 4, while
properties of the functional ϕ are studied in section 3.

2 Preliminaries and main technical lemma

In the sequel N ≥ 3 and 2∗ := 2N/(N − 2). We consider the Hilbert space

D1,2(RN ) := {u ∈ L2∗
(RN ) : ∇u ∈ L2(RN )},

endowed with the inner product∫
RN

∇u(x) · ∇v(x) dx,

and the associated norm noted ‖u‖. The Sobolev Imbedding Theorem asserts that
the imbedding

D1,2(RN ) ↪→ L2∗
(RN )

is continuous.
For a domain Ω ⊂ R

N , we denote by D1,2
0 (Ω) the closure of D(Ω) in

D1,2(RN ), where D(Ω) is the set of infinitely differentiable functions with com-
pact support in Ω. Obviously D1,2(RN ) = D1,2

0 (RN ), and when the Poincaré
Inequality is satisfied, D1,2

0 (Ω) = H1
0 (Ω).
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Let us recall that the imbedding D1,2(RN ) ↪→ L2∗
(RN ) is not compact, but

we have the following well known result:

Lemma 2.1 If un ⇀ u in D1,2(RN ), then un → u in L2
loc(R

N ).

The reader can consult [14] for a proof of this result, and Wang and
Willem [13] for a generalization.

The following lemma is a corollary in cylindrical domains of a result due to
Ramos, Wang and Willem [12] in R

N . It gives sufficient conditions to ensure the
convergence to 0 in L2∗

(RN ) of a sequence in H1
0 (Ω∗∗). This type of results was

firstly established by P. L. Lions [11] for an exponent p < 2∗. See also Colin [4]
or [5] for a similar result in weighted spaces on a cylindrical domain.

Lemma 2.2 (Ramos, Wang and Willem [12]) Let r > 0. If (un) is bounded
in H1

0 (Ω∗∗) and if

sup
x∈Ω∗∗

∫
B(x,r)

|un|2∗
dx → 0 as n → ∞

then un → 0 in L2∗
(Ω∗∗).

Here, we establish an analogous result in D1,2
0 (Ω∗) that we shall use in the

sequel.

Lemma 2.3 Let r ≥ √
N , and (un) ⊂ D1,2

0 (Ω∗) be a bounded sequence. If

sup
a∈ZN

∫
B(a,r)∩Ω∗

|un|2∗ → 0, when n → ∞,

then un → 0 in L2∗
(Ω∗).

Proof. Let u ∈ D(Ω∗), and a ∈ Z
N . By the invariance by Z

N translations, we
may assume that a = 0. Denote U = B(0, r)\ω∗, and define H : U → R

N by

H(x) =
(

−1 +
2r
|x|
)
x.

Let us denote W = H(U), and V = W ∪ (B(0, r)\ω∗). For every φ ∈ D(V ), we
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obtain by the Divergence Theorem∫
W

u(H−1(x))
∂φ

∂xi
(x) dx

= −
∫

W

φ(x)
∂

∂xi

(
u(H−1(x))

)
dx+

∫
∂W

u(H−1(x))φ(x)ν dS

= −
∫

W

φ(x)
∂

∂xi

(
u(H−1(x))

)
dx−

∫
∂B(0,r)

u(H−1(x))φ(x)ν dS

+
∫

H(∂ω∗)
u(H−1(x))φ(x)ν dS

= −
∫

W

φ(x)
∂

∂xi

(
u(H−1(x))

)
dx−

∫
∂B(0,r)

u(x)φ(x)ν dS;

and similarly∫
U

u(x)
∂φ

∂xi
(x) dx = −

∫
U

φ(x)
∂u

∂xi
(x) dx+

∫
∂B(0,r)

u(x)φ(x)ν dS.

Therefore, if we define u∗ : V → R by

u∗(x) =

{
u(x), if x ∈ U ,
u(H−1(x)), otherwise,

combining the previous equalities gives

∫
V

u∗(x)
∂φ

∂xi
(x) dx

= −
∫

V

φ(x)
(

∂

∂xi
u(x)χU (x) +

∂

∂xi

(
u(H−1(x))

)
χW (x)

)
dx. (2.1)

Also, by the change of variable formula∫
W

∣∣∇xu(H−1(x))
∣∣2 dx =

∫
U

|∇xu(y)|2 |JH(y)| dy

=
∫

U

|∇yu(y) · JH−1(y)|2 |JH(y)| dy

≤ c

∫
U

|∇yu(y)|2 dy,

(2.2)

with c independant of u. Thus, from (2.1) and (2.2), we deduce that u∗ ∈ H1
0 (V ),

and
‖∇u∗‖L2(V ) ≤ c‖∇u‖L2(U) = c‖∇u‖L2(U∩Ω∗).
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This inequality, the fact that u = u∗ on U , the Sobolev Imbedding Theorem, and
the Poincaré Inequality applied to the function u∗ lead to∫

U∩Ω∗
|u|2∗

dx ≤ C

(∫
U∩Ω∗

|∇u|2 dx
)2∗/2

.

Using the Z
N invariance and a density argument, we obtain for every a ∈ Z

N and
for every u ∈ D1,2

0 (Ω∗),

∫
B(a,r)∩Ω∗

|u|2∗
dx ≤ C

(∫
B(a,r)∩Ω∗

|∇u|2 dx
)2∗/2

,

and hence, for any λ > 0,

∫
B(a,r)∩Ω∗

|u|2∗
dx ≤ Cλ

(∫
B(a,r)∩Ω∗

|∇u|2 dx
)(2∗/2)λ(∫

B(a,r)∩Ω∗
|u|2∗

dx

)1−λ

.

Choosing λ = 2/2∗, we may write

∫
Ω∗

|u|2∗
dx ≤ C0

(∫
Ω∗

|∇u|2 dx
)

sup
a∈ZN

(∫
B(a,r)∩Ω∗

|u|2∗
dx

)(2∗−2)/2∗

,

since Ω∗ ⊂ ∪a∈ZNB(a, r). Hence, by the assumptions of the lemma, we conclude
that un → 0 in L2∗

(Ω∗). �

For sake of completeness, we state a corollary of a result of Kryszewski and
Szulkin [10] that will be used in what follows (see also [14]).

Let X = Y ⊕Z be a Hilbert space with Y a separable subspace of X which
could be infinite dimensional and Z := Y ⊥. Let P : X → Y,Q : X → Z be the
orthogonal projections. Now, let ρ > r > 0 and let z ∈ Z be such that ‖z‖ = 1.
Define

M := {u = y + λz : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ Y } , (2.3)
M0 := {u = y + λz : y ∈ Y, ‖u‖ = ρ and λ ≥ 0 or ‖u‖ ≤ ρ and λ = 0} , (2.4)
M1 := {u ∈ Z : ‖u‖ = ρ} . (2.5)

Theorem 2.4 (Kryszewski-Szulkin, 1998). Let ψ ∈ C1(X,R) be weakly sequen-
tially lower semicontinuous, bounded below and such that ψ′ is weakly sequentially
continuous. If

ϕ(u) :=
‖Qu‖2

2
− ‖Pu‖2

2
− ψ(u)

satisfies

b := inf
M1

ϕ > 0 = sup
M0

ϕ, d := sup
M

ϕ < ∞, (2.6)
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then there exists c ∈ [b, d] and a sequence (un) ⊂ X such that

ϕ(un) → c, ϕ′(un) → 0.

3 Properties of the functional ϕ

In this section, we establish general results related to the functional ϕ mentionned
in the introduction. Let Ω be a domain in R

N . Denote X := D1,2
0 (Ω) ×D1,2

0 (Ω)
the Hilbert space endowed with the inner product:

〈(u, v), (u1, v1)〉 :=
∫

Ω
∇u · ∇u1 + ∇v · ∇v1 dx, (3.1)

If we set

Y := {(−v, v) ∈ X} and Z := {(u, u) ∈ X} , (3.2)

it is easy to check that X = Y ⊕ Z since

(u, v) =
1
2
(u+ v, u+ v) +

1
2
(−v + u, v − u).

Let us denote by P (resp. Q) the projection of X onto Y (resp. Z).
Define the functional ϕ : X → R by

ϕ(u, v) :=
∫

Ω
∇u · ∇v − |u|2∗

2∗ − |v|2∗

2∗ dx

=
‖Q(u, v)‖2

2
− ‖P (u, v)‖2

2
− ψ(u, v),

where

ψ(u, v) :=
∫

Ω

|u|2∗

2∗ +
|v|2∗

2∗ dx.

Lemma 3.1 The function ψ is C1 and weakly sequentially lower semi-continuous.
Moreover, for every (u, v), (w, z) ∈ X,

〈ϕ′(u, v), (w, z)〉 =
∫

Ω
∇u · ∇z + ∇v · ∇w − |u|2∗−2uw − |v|2∗−2vz dx.

Proof. It is clear that ψ is weakly sequentially lower semi-continuous since the
imbedding X ↪→ L2∗

(Ω) ×L2∗
(Ω) is linear continuous and the norm on L2∗

(Ω) is
weakly sequentially continuous.

Let (u, v), (w, z) ∈ X. For x ∈ Ω and |t| ∈ ]0, 1[, there exists λ ∈ ]0, 1[ such
that∣∣|u(x) + tw(x)|2∗ − |u(x)|2∗ ∣∣

2∗|t| =
∣∣|u(x) + λtw(x)|2∗−2(u(x) + λtw(x))w(x)

∣∣
= |u(x) + λtw(x)|2∗−1|w(x)|
≤ (|u(x)| + |w(x)|)2∗−1|w(x)|.
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The term on the right hand side is in L1 by the Hölder inequality. The Lebesgue
Dominated Convergence Theorem implies that

lim
t→0

1
2∗|t|

∫
Ω

|u(x) + tw(x)|2∗ − |u(x)|2∗
dx =

∫
Ω

|u(x)|2∗−2u(x)w(x) dx.

Similarly,

lim
t→0

1
2∗|t|

∫
Ω

|v(x) + tz(x)|2∗ − |v(x)|2∗
dx =

∫
Ω

|v(x)|2∗−2v(x)z(x) dx.

Now, assume that (un, vn) → (u, v) in X. From the continuous imbedding
D1,2

0 (Ω) ↪→ L2∗
(Ω), we deduce that(

|un|2∗−2un, |vn|2∗−2vn

)
→
(
|u|2∗−2u, |v|2∗−2v

)
in L2∗/(2∗−1) × L2∗/(2∗−1),

and,∣∣∣∣∣
∫

Ω
|un(x)|2∗−2un(x)w(x) − |u(x)|2∗−2u(x)w(x)

+ |vn(x)|2∗−2vn(x)z(x) − |v(x)|2∗−2v(x)z(x) dx

∣∣∣∣∣
≤ ‖w‖L2∗

(∫
Ω

∣∣∣|un(x)|2∗−2un(x) − |u(x)|2∗−2u(x)
∣∣∣2∗/2∗−1

dx

)(2∗−1)/2∗

+ ‖z‖L2∗

(∫
Ω

∣∣∣|vn(x)|2∗−2vn(x) − |v(x)|2∗−2v(x)
∣∣∣2∗/2∗−1

dx

)(2∗−1)/2∗

≤ k

((∫
Ω

∣∣∣|un(x)|2∗−2un(x) − |u(x)|2∗−2u(x)
∣∣∣2∗/2∗−1

dx

)(2∗−1)/2∗

+
(∫

Ω

∣∣∣|vn(x)|2∗−2vn(x) − |v(x)|2∗−2v(x)
∣∣∣2∗/2∗−1

dx

)(2∗−1)/2∗)
,

for every (w, z) ∈ X such that ‖(w, z)‖ ≤ 1. This shows that the Gâteau derivative
of ψ is continuous and hence ψ is C1.

On the other hand,

lim
t→0

1
|t|
∫

Ω
∇(u+ tw) · ∇(v + tz) − ∇u · ∇v dx = 〈(u, v), (z, w)〉.

This Gâteau derivative is obviously continuous; so ϕ is C1 and

〈ϕ′(u, v), (w, z)〉 =
∫

Ω
∇u · ∇z + ∇v · ∇w − |u|2∗−2uw − |v|2∗−2vz dx.

�
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Lemma 3.2 The map ψ′ is weakly sequentially continuous.

Proof. Suppose that (un, vn) ⇀ (u, v) in X. Thus, {un} and {vn} are bounded
in L2∗

(Ω) and hence
{|un|2∗−2un

}
and

{|vn|2∗−2vn

}
are bounded in

(
L2∗

(Ω)
)′.

Lemma 2.1 implies that un → u and vn → v in L2
loc(Ω). Therefore, for every

w, z ∈ D(Ω),∫
Ω

|un|2∗−2unw + |vn|2∗−2vnz dx →
∫

Ω
|u|2∗−2uw + |v|2∗−2vz dx;

i.e. 〈ψ′(un, vn), (w, z)〉 → 〈ψ′(u, v), (w, z)〉. Moreover, {ψ′(un, vn)} is bounded in
X, so ψ′(un, vn) ⇀ ψ′(u, v). �

Now, we want to show that ϕ satisfies the inequalities (2.6) of Kryszewski-
Szulkin’s result (Theorem 2.4). Let us fix (z, z) ∈ Z such that ‖(z, z)‖ = 1.

Lemma 3.3 There exists r > 0 such that

b := inf
(u,u)∈Z

‖(u,u)‖=r

ϕ(u, u) > 0 = min
(u,u)∈Z

‖(u,u)‖≤r

ϕ(u, u). (3.3)

Moreover, there exists ρ > r such that

max
M0

ϕ = 0 and d := sup
M

ϕ < ∞, (3.4)

where M and M0 are given respectively by (2.3) and (2.4).

Proof. The Sobolev Imbedding Theorem regarding D1,2
0 (Ω) ↪→ L2∗

(Ω) implies
directly (3.3) since for (u, u) ∈ Z,

ϕ(u, u) ≥ ‖(u, u)‖2

2
− C‖(u, u)‖2∗

.

Observe that on Y, we have

ϕ(−v, v) =
−‖(−v, v)‖2

2
− 2

2∗

∫
Ω

|v|2∗
dx ≤ 0.

Denote by W the closure of Y ⊕ R(z, z) in L2∗
(Ω) × L2∗

(Ω). Since there
exists a continuous projection of W onto R(z, z) and all the norms are equivalent
on the latter space, we have

ϕ((−v, v) + λ(z, z)) = −1
2
‖(−v, v)‖2 +

λ2

2
‖(z, z)‖2

− 1
2∗ (| − v + λz|2∗

L2∗ + |v + λz|2∗
L2∗ )

≤ −1
2
‖(−v, v)‖2 +

λ2

2
− Cλ2∗

.
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It follows that for w ∈ Y ⊕ R(z, z)

ϕ(w) → −∞ whenever ‖w‖ → ∞
and so, for some ρ > r, maxM0 ϕ = 0.

Finally, the Cauchy-Schwarz Inequality and the Sobolev Inequality imply
that ϕ maps bounded sets into bounded sets, hence supM ϕ < ∞. �

Lemma 3.4 There exists c ∈ [b, d] and a bounded sequence {(un, vn)} in X such
that

ϕ(un, vn) → c > 0, ϕ′(un, vn) → 0. (3.5)

Proof. It follows from Theorem 2.4 and Lemmas 3.1–3.3 that there exist c ∈ [b, d]
and a sequence {(un, vn)} in X satisfying (3.5).

Observe that

ϕ(un, vn) − 1
2
〈ϕ′(un, vn), (un, vn)〉 =

∫
Ω

∇un · ∇vn − |un|2∗

2∗ − |vn|2∗

2∗

− 1
2
(
2∇un · ∇vn − |un|2∗ − |vn|2∗)

= µ
(
‖un‖2∗

L2∗ + ‖vn‖2∗
L2∗

)
,

with µ = 1/2 − 1/2∗. So, for ε > 0, and n ∈ N large enough,

c+ ε+ ε‖(un, vn)‖ ≥ µ
(
‖un‖2∗

L2∗ + ‖vn‖2∗
L2∗

)
≥ c− ε− ε‖(un, vn)‖. (3.6)

On the other hand,

‖Q(un, vn)‖2−ε‖Q(un, vn)‖

≤
∣∣∣∣‖Q(un, vn)‖2 − 1

2
〈ϕ′(un, vn), (un + vn, un + vn)〉

∣∣∣∣
=
∫

Ω
(|un|2∗−2un + |vn|2∗−2vn)

(
un + vn

2

)
≤ ‖Q(un, vn)‖L2∗ ×L2∗ (‖un‖2∗−1

L2∗ + ‖vn‖2∗−1
L2∗ )

≤ k‖Q(un, vn)‖(‖un‖2∗−1
L2∗ + ‖vn‖2∗−1

L2∗ ).

(3.7)

Similarly,

‖P (un, vn)‖2−ε‖P (un, vn)‖

≤
∣∣∣∣−‖P (un, vn)‖2 − 1

2
〈ϕ′(un, vn), (un − vn, vn − un)〉

∣∣∣∣
≤ k‖P (un, vn)‖(‖un‖2∗−1

L2∗ + ‖vn‖2∗−1
L2∗ ).

(3.8)
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Therefore,

‖Q(un, vn)‖ − ε ≤ k(‖un‖2∗−1
L2∗ + ‖vn‖2∗−1

L2∗ ), (3.9)

‖P (un, vn)‖ − ε ≤ k(‖un‖2∗−1
L2∗ + ‖vn‖2∗−1

L2∗ ). (3.10)

Adding (3.9) and (3.10), and combining the result with (3.6) leads to

‖(un, vn)‖ − 2ε ≤ c1 + c2‖(un, vn)‖(2∗−1)/2∗
;

so, {(un, vn)} is bounded in X. �

4 Proofs of the main theorems

In this section, we present the proofs of our main Theorems. We start in proving
Theorem 1.1; that is we establish the existence of a nontrivial solution to the
following system of two coupled Poisson equations:

−∆u = |v|2∗−2v

−∆v = |u|2∗−2u

u, v ∈ D1,2
0 (Ω∗).

(∗)

Notice that we look for weak solutions to the problem (∗); that is, the problem (∗)
allows a variationnal formulation and its solutions are critical points of ϕ for
Ω = Ω∗.

Proof of Theorem 1.1 Take Ω = Ω∗. By lemma 3.4, there exists a bounded
sequence (un, vn) ⊂ X satisfying (3.5)

Now, let us assume that:

δ1 := lim
n→∞ sup

a∈ZN

∫
B(a,

√
N)

|un|2∗
= 0

δ2 := lim
n→∞ sup

a∈ZN

∫
B(a,

√
N)

|vn|2∗
= 0

then Lemma 2.3 implies that un, vn → 0 in L2∗
(RN ). This fact and (3.6) lead to

a contradiction since c > 0.
Therefore, we must have δ := max{δ1, δ2} > 0. Taking a subsequence if

necessary, we may assume the existence of an ∈ Z
N such that∫

B(an,
√

N)
|un|2∗

+ |vn|2∗
dx >

δ

2
.

The sequence (ûn, v̂n) defined by ûn(x) := un(x+ an) and v̂n(x) := vn(x+ an) is
such that ∫

B(0,
√

N)
|ûn|2∗

+ |v̂n|2∗
dx >

δ

2
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and satisfies (3.5) by Z
N invariance. Taking again a subsequence, if needed, we

may assume that
(ûn, v̂n) ⇀ (u, v) in X.

Since ûn → u, v̂n → v in L2
loc(R

N ), then (u, v) �= 0. Finally, the weakly sequen-
tially continuity of ϕ′ gives

‖ϕ′(u, v)‖ ≤ lim inf
n→∞ ‖ϕ′(ûn, v̂n)‖ = 0.

Consequently (u, v) is a non trivial solution of (∗). �

Now, we shall study the following problem in Ω∗∗ := R
l × ω∗∗ a cylindrical

domain with ω∗∗ a bounded domain of R
N−l with for 1 ≤ l ≤ N − 1:

−∆u = γv + |v|2∗−2v

−∆v = λu+ |u|2∗−2u
u, v ∈ H1

0 (Ω∗∗),
(∗∗)

where 0 < γ, λ < λ1(Ω∗∗), with λ1(Ω∗∗) the best constant in the Poincaré Inequal-
ity. It is shown in [6] that λ1(Ω∗∗) > 0.

The Poincaré Inequality implies that the usual norm on X := H1
0 (Ω∗∗) ×

H1
0 (Ω∗∗) is equivalent to the norm induced by the scalar product defined in (3.1).

If we set Y and Z as in (3.2), and we denote by P (resp. Q) the projection of
X onto Y (resp. Z), the problem (∗∗) allows a variationnal formulation and its
(weak) solutions are critical points of the functional ϕ1 : X → R defined by

ϕ1(u, v) :=
∫

Ω∗∗
∇u · ∇v − γu2

2
− λv2

2
− |u|2∗

2∗ − |v|2∗

2∗ dx

=
‖Q(u, v)‖2

2
− ‖P (u, v)‖2

2
− ψ(u, v) − ψ̂(u, v)

= ϕ(u, v) − ψ̂(u, v),

where

ψ̂(u, v) :=
∫

Ω∗∗
γ
u2

2
+ λ

v2

2
dx.

and where ϕ and ψ are defined at the beginning of the previous section. It is easy
to see that ψ̂ is C1, weakly sequentially lower semi-continuous, and ψ̂′ is weakly
sequentially continuous. Also,

〈ψ̂′(u, v), (w, z)〉 =
∫

Ω∗∗
γuw + λvz dx.

The following result establishes the existence of a bounded Palais-Smale
sequence of ϕ1. However, writing x := (y, z), where y ∈ R

l and z ∈ ω∗∗, we
observe that for each (u, v) ∈ X and each a ∈ R

l

ϕ1(u, v) = ϕ1(û, v̂)
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where û := u(y + a, z), v̂ := v(y + a, z). So ϕ1 is invariant under R
l-translations

and consequently, the Palais-Smale condition fails at all critical levels.

Lemma 4.5 There exists c > 0 and a bounded sequence {(un, vn)} in X such
that

ϕ1(un, vn) → c > 0, ϕ′
1(un, vn) → 0. (4.1)

Proof. Set β := (γ + λ)/2. From the Poincaré Inequality and the Sobolev Imbed-
ding Theorem, it follows that there is a constant C ≥ 0 such that for every
(u, u) ∈ Z

ϕ1(u, u) ≥
(
λ1(Ω∗∗) − β

2λ1(Ω∗∗)

)
‖(u, u)‖2 − C‖(u, u)‖2∗

.

Therefore, there exists r > 0 such that

inf
(u,u)∈Z

‖(u,u)‖=r

ϕ1(u, u) > 0 = min
(u,u)∈Z

‖(u,u)‖≤r

ϕ1(u, u). (4.2)

The fact that for (u, v) ∈ X

ϕ1(u, v) ≤ ϕ(u, v)

allows us to use the arguments contained in the proof of Lemma 3.3 in order to
show that there exists ρ > r such that

max
M0

ϕ1 = 0 and sup
M

ϕ1 < ∞, (4.3)

where M and M0 are given respectively by (2.3) and (2.4).
Theorem 2.4 ensures the existence of a sequence {(un, vn)} in X satisfy-

ing (4.1) for some c > 0. It remains to show that the sequence is bounded. Let
us observe that

ϕ1(un, vn) − 1
2
〈
ϕ′

1(un, vn), (un, vn)
〉

= ϕ(un, vn) − 1
2
〈
ϕ′(un, vn), (un, vn)

〉
,

which implies (3.6).
Without lost of generality, we may assume that λ ≥ γ. A straightforward

computation leads to

1
2
〈
ψ̂′(un, vn), (un + vn, un + vn)

〉 ≤ λ

2
‖un + vn‖2

L2

≤ λ

2λ1(Ω∗∗)
‖∇(un + vn)‖2

L2

=
λ

4λ1(Ω∗∗)
‖(un + vn, un + vn)‖2

=
λ

λ1(Ω∗∗)
‖Q(un, vn)‖2.
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Similarly, we have

1
2
〈
ψ̂′(un, vn), (un − vn, vn − un)

〉 ≤ λ

λ1(Ω∗∗)
‖P (un, vn)‖2.

In combining respectively the last two equations with (3.7) and (3.8), the inequal-
ities (3.9) and (3.10) become respectively:(

λ1(Ω∗∗) − λ

λ1(Ω∗∗)

)
‖Q(un, vn)‖ − ε ≤ k

(
‖un‖2∗−1

L2∗ + ‖vn‖2∗−1
L2∗

)
,(

λ1(Ω∗∗) − λ

λ1(Ω∗∗)

)
‖P (un, vn)‖ − ε ≤ k

(
‖un‖2∗−1

L2∗ + ‖vn‖2∗−1
L2∗

)
,

and the conclusion follows as in the proof of Lemma 3.4. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Let (un, vn) ⊂ X be a bounded sequence given in
Lemma 4.5, and define

δ1 := lim
n→∞ sup

x∈Ω∗∗

∫
B(x,1)

|un|2∗
,

δ2 := lim
n→∞ sup

x∈Ω∗∗

∫
B(x,1)

|vn|2∗
.

In arguing as in the proof of Theorem 1.1 with Lemma 2.2, we show that δ :=
max{δ1, δ2} > 0, and hence we deduce the existence of a sequence xn = (yn, zn) ∈
Ω∗∗ such that ∫

B(xn,1)
|un|2∗

+ |vn|2∗
dx >

δ

2
.

The sequence (ûn, v̂n) defined by ûn(x) := un(y+yn, z) and v̂n(x) := vn(y+yn, z)
is such that ∫

B((0,zn),1)
|ûn|2∗

+ |v̂n|2∗
dx >

δ

2
,

and satisfies (4.1) by R
l invariance. By letting R := maxz∈ω∗∗ |z|, we obtain∫

B(0,R+1)
|ûn|2∗

+ |v̂n|2∗
dx >

δ

2
.

Finally, taking a subsequence, if needed, we may assume that

(ûn, v̂n) ⇀ (u, v) in X.

As in the proof of Theorem 1.1, we conclude that (u, v) is a non trivial solution
of (∗∗). �
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1983.

[3] F. CLARKE and I. EKELAND, Hamiltonian trajectories having prescribed
minimal period, Comm. Pure Appl. Math. 33 (1980), 103–116.
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Hardy-Sobolev, 23 (2005), 181–206. Potential Analysis.

[6] M. J. ESTEBAN, Nonlinear elliptic problems in strip-like domains: symmetry
of positive vortex rings, Nonlinear Anal. 7 (1983), 365–379.

[7] P. FELMER and Z. Q. WANG, Multiplicity for symmetric indefinite func-
tionals: application to Hamiltonian and elliptic systems, Topol. Methods Non-
linear Anal. 12 (1998), 207–226.

[8] J. HULSHOF and R. VAN DER VORST, Differential systems with strongly
indefinite variational structure, J. Funct. Anal. 114 (1993), 32–58.

[9] J. HULSHOF, E. MITIDIERI and R. VAN DER VORST, Strongly indefinite
systems with critical Sobolev exponents, Trans. Amer. Math. Soc. 350 (1998),
2349–2365.

[10] W. KRYSZEWSKI and A. SZULKIN, Generalized linking theorem with an
application to a semilinear Schrödinger equation, Adv. Differential Equations
3 (1998), 441–472.

[11] P. -L. LIONS, The concentration-compactness principle in the calculus of
variations. The locally compact case, part 2, Ann. Inst. Henri-Poincaré
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