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SYSTEMS OF FIRST ORDER INCLUSIONS ON TIME SCALES

Marlène Frigon — Hugues Gilbert

Abstract. This paper presents existence results for systems of first or-

der inclusions on time scales with an initial or a periodic boundary value
condition. The method of solution-tube is developed for this system.

1. Introduction

In 1990, S. Hilger [18] introduced the concept of dynamic equations on time
scales. This concept provides a unified approach to continuous and discrete
calculus with the introduction of the notion of delta-derivative x∆(t). This
notion coincides with x′(t) (resp. ∆x(t)) in the case where the time scale T
is an interval (resp. a discrete set {0, . . . , n}).

In this paper, we establish an existence result for the following system of first
order inclusions on time scales:

(1.1)
x∆(t) ∈ F (t, x(σ(t))), ∆-a.e. t ∈ T0,

x ∈ (BC).

Here, T is an arbitrary compact time scale, where we note a = min T, b =
max T and T0 = T \ {b}. The multivalued map F : T0 × Rn → Rn satisfies some
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hypothesis that will be stated later, and (BC) denotes the initial or the periodic
boundary conditions:

x(a) = x0,(1.2)

x(a) = x(b).(1.3)

In the literature, this kind of problem was mainly treated for n = 1 in the
particular case where the time scale is a discrete set (difference equation). Some
existence results were obtained with the method of lower and upper solutions
for one difference equation as in [5] and [12], and for one difference inclusion as
in [2]. As far as we know, F. M. Atici and D. C. Biles [4] are the only ones
who considered a first order inclusion on an arbitrary compact time scale. Their
results were also established with the method of lower and upper solutions.

Systems of first-order equations on time scales were treated by Q. Dai and
C. C. Tisdell [11] and, by the second author, [16].

To our knowledge, this paper is the first one in which systems of first or-
der inclusions on time scales are studied. In order to get existence results, we
introduce a notion which extends to systems of first order inclusions on time
scales, the notions of lower and upper solutions, see [1]. This notion is called
solution-tube of system (1.1). A notion of solution-tube was introduced for first
order systems of differential inclusions by B. Mirandette [20] (see also [14], [15]).

2. Preliminaries and notations

2.1. Multivalued maps. We recall some definitions and classical results
for multivalued maps. They can be found in more generality in [19], see also [8].

Let X, Y be metric spaces and G:X → Y a multivalued map. The map G

is upper semi-continuous (u.s.c.) if {x ∈ X : G(x) ∩ C 6= ∅} is closed for every
closed set C ⊂ Y and it is compact if G(X) =

⋃
x∈X G(x) is relatively compact.

Let Ω be a measurable space, we say that a multivalued map G: Ω → X is
measurable (resp. weakly measurable) if {t ∈ Ω : G(t)∩C 6= ∅} is measurable for
every closed (resp. open) set C ⊂ X.

Proposition 2.1. Let G: Ω → X be a multivalued map.

(a) If G is measurable then it is weakly measurable.
(b) If G is weakly measurable and has compact values, then it is measurable.
(c) The map G is weakly measurable if and only if the multivalued map

G: Ω → X defined by G(t) = G(t) is weakly measurable.

Proposition 2.2. For n ∈ N, let Gn: Ω → X be measurable multivalued
maps.

(a) The map G: Ω → X defined by G(t) =
⋃

n∈N Gn(t) is measurable.
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(b) If X is separable, Gn has closed values, and for each t, at least one
Gnt

(t) is compact, then G: Ω → X defined by G(t) =
⋂

n∈N Gn(t) is
measurable.

Theorem 2.3 (Kuratowski, Ryll, Nardzewski). Let X be a separable Banach
space and let G: Ω → X be a measurable multivalued map. Then G has a mea-
surable selection, i.e. there exists a single-valued measurable map g: Ω → X such
that g(t) ∈ G(t) for almost every t ∈ Ω.

2.2. Functions on time scales. For sake of completeness, we recall some
notations, definitions and results concerning functions defined on time scales.
The interested reader may consult [6], [7], [18] and the references therein to find
the proofs and to get a complete introduction to this subject.

Let T be a compact time scale with a = min T < b = max T. The forward
jump operator σ: T → T (resp. the backward jump operator ρ: T → T) is defined
by

σ(t) =

{
inf{s ∈ T : s > t} if t < b,

b if t = b,(
resp. ρ(t) =

{
sup{s ∈ T : s < t} if t > a,

a if t = a.

)

We say that t < b is right-scattered (resp. t > a is left-scattered) if σ(t) > t

(resp. ρ(t) < t), otherwise, we say that t is right-dense (resp. left-dense). The
set of right-scattered points of T is at most countable, see [10]. We denote it by

RT := {t ∈ T : t < σ(t)} = {ti : i ∈ I}

for some I ⊂ N. The graininess function µ: T → [0,∞) is defined by µ(t) =
σ(t)− t. We denote

Tκ = T \ (ρ(b), b] and T0 = T \ {b}.

So, Tκ = T if b is left-dense, otherwise Tκ = T0.

Definition 2.4. A map f : T → Rn is ∆-differentiable at t ∈ Tκ if there
exists f∆(t) ∈ Rn (called the ∆-derivative of f at t) such that for all ε > 0,
there exists a neighborhood U of t such that

‖(f(σ(t))− f(s)− f∆(t)(σ(t)− s))‖ ≤ ε|σ(t)− s| for all s ∈ U.

We say that f is ∆-differentiable if f∆(t) exists for every t ∈ Tκ.
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Proposition 2.5. Let f : T → Rn and t ∈ Tκ.

(a) If f is ∆-differentiable at t, then f is continuous at t.
(b) If f is continuous at t ∈ RT, then

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(c) The map f is ∆-differentiable at t ∈ Tκ \RT if and only if

f∆(t) = lim
s→t

f(t)− f(s)
t− s

.

Proposition 2.6. If f : T → Rn and g: T → Rm are ∆-differentiable at
t ∈ Tκ, then:

(a) if n = m, (αf + g)∆(t) = αf∆(t) + g∆(t) for every α ∈ R;
(b) if m = 1,

(fg)∆(t) = g(t)f∆(t) + f(σ(t))g∆(t) = f(t)g∆(t) + g(σ(t))f∆(t);

(c) if m = 1 and g(t)g(σ(t)) 6= 0, then(
f

g

)∆

(t) =
g(t)f∆(t)− f(t)g∆(t)

g(t)g(σ(t))
;

(d) if W ⊂ Rn is open and h:W → R is differentiable at f(t) ∈ W and
t 6∈ RT, then (h ◦ f)∆(t) = 〈h′(f(t)), f∆(t)〉.

We recall some notions and results related to the theory of ∆-measure.

Definition 2.7 ([6]). A set A ⊂ T is said to be ∆-measurable if for every
set E ⊂ T,

m∗
1(E) = m∗

1(E ∩A) + m∗
1(E ∩ (T \A)),

where

m∗
1(E) =

 inf
{ m∑

k=1

(dk − ck) : E ⊂
m⋃

k=1

[ck, dk) with ck, dk ∈ T
}

if b /∈ E,

∞ if b ∈ E.

The ∆-measure on M(m∗
1) := {A ⊂ T : A is ∆-measurable}, denoted by µ∆, is

the restriction of m∗
1 to M(m∗

1). So, (T,M(m∗
1), µ∆) is a complete measurable

space.

The notions of ∆-measurable and ∆-integrable functions f : T → Rn can
be defined similarly to the theory of Lebesgue integral. We omit here these
definitions which can be found in [10].
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Let E ⊂ T be a ∆-measurable set and f : T → Rn be a ∆-measurable function.
We say that f ∈ L1

∆(E, Rn) provided∫
E

‖f(s)‖∆s < ∞.

The set L1
∆(T0, Rn) is a Banach space endowed with the norm

‖f‖L1
∆

:=
∫

T0

‖f(s)‖∆s.

Here is an analog of the Lebesgue dominated convergence theorem.

Theorem 2.8. Let {fk}k∈N be a sequence of functions in L1
∆(T0, Rn). As-

sume there exists a function f : T0 → Rn such that fk(t) → f(t) ∆-a.e. t ∈ T0,
and there exists a function g ∈ L1

∆(T0) such that ‖fk(t)‖ ≤ g(t) ∆-a.e. t ∈ T0

and for every k ∈ N. Then fk → f in L1
∆(T0, Rn).

In order to compare the ∆-integral on T and the Lebesgue integral on [a, b],
A. Cabada and D. R. Vivero [10] considered the following extension of a function
f : T → Rn on [a, b]:

(2.1) f̂(t) :=

{
f(t) if t ∈ T,

f(ti) if t ∈ (ti, σ(ti)) and ti ∈ RT.

Theorem 2.9. Let E ⊂ T0 be a ∆-measurable set and let

Ê = E ∪
⋃

ti∈E∩RT

(ti, σ(ti)).

Let f : T → Rn be a ∆-measurable function and f̂ : [a, b] → Rn its extension on
[a, b]. Then, f is ∆-integrable on E if and only if f̂ is Lebesgue integrable on Ê.
In this case we have, ∫

E

f(s)∆s =
∫
bE

f̂(s) ds.

Using the previous theorem, we obtain the following result.

Theorem 2.10. Let {fk}k∈N be a sequence of functions in L1
∆(T0, Rn). If

{f̂k} converges weakly to γ in L1([a, b], Rn), then γ is the extension f̂ of a func-
tion f defined on T0 in the sense of definition (2.1). Moreover, for every ∆-
measurable set E ⊂ T0 and every continuous function g: T → R, we have

lim
k→∞

∫
E

g(s)fk(s)∆s =
∫

E

g(s)f(s)∆s.

Proof. Since {f̂k} converges weakly to γ in L1([a, b], Rn), we have for every
continuous function g: T → R,∫

A

ĝ(s)f̂k(s) ds →
∫

A

ĝ(s)γ(s) ds for every measurable set A ⊂ [a, b].
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Thus, for ti ∈ RT,∫
(ti,σ(ti))

ĝ(s)f̂k(s) ds =
∫

(ti,σ(ti))

g(ti)fk(ti) ds

= g(ti)fk(ti)µ(ti) →
∫

(ti,σ(ti))

ĝ(s)γ(s) ds.

So, {fk(ti)}k∈N converges to some f(ti) ∈ Rn. Thus, {f̂k} converges strongly
to the constant function f(ti) in L1((ti, σ(ti)), Rn), and we can assume that
γ ≡ f(ti) on [ti, σ(ti)). The first part of the proposition is proved if we define
f = γ|T. Finally, by Theorem 2.9,∫

E

g(s)fk(s)∆s =
∫
bE

ĝ(s)f̂k(s) ds

→
∫
bE

ĝ(s)γ(s) ds =
∫
bE

ĝ(s)f̂(s) ds =
∫

E

g(s)f(s)∆s.

�

In this context, there is also a notion of absolute continuity, see [9].

Definition 2.11. A function f : T → Rn is said to be absolutely continuous
on T if for every ε > 0, there exists a δ > 0 such that if {[ak, bk)}m

k=1 with
ak, bk ∈ T is a finite pairwise disjoint family of subintervals satisfying

m∑
k=1

(bk − ak) < δ, then
m∑

k=1

‖f(bk)− f(ak)‖ < ε.

The two following results were obtained in [16].

Proposition 2.12. If g ∈ L1
∆(T0, Rn) and f : T → Rn is the function defined

by

f(t) :=
∫

[a,t)∩T
g(s)∆s,

then f is absolutely continuous and f∆(t) = g(t) ∆-almost everywhere on T0.

Proposition 2.13. If f : T → Rn is an absolutely continuous function then
the ∆-measure of the set {t ∈ T0 \RT : f(t) = 0 and f∆(t) 6= 0} is zero.

We also recall a notion of Sobolev space, see [3],

W 1,1
∆ (T, Rn) ={x : T → Rn : x is absolutely continuous and

x∆ ∈ L1
∆(T0, Rn)}

=
{

x ∈ L1
∆(T0, Rn) : there exists g ∈ L1

∆(T0, Rn) such that∫
T0

x(s)φ∆(s)∆s = −
∫

T0

g(s)φ(σ(s))∆s for all φ ∈ C1
0,rd(T)

}
,
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where

C1
0,rd(T) = {φ: T → R : φ(a) = 0 = φ(b), φ is ∆-differentiable

and φ∆ is continuous at right-dense points of T

and its left-sided limits exist at left-dense points of T}.

The following maximum principle is obtained in [16].

Lemma 2.14. Let r ∈ W 1,1
∆ (T) such that r∆(t) < 0 ∆-a.e. t ∈ {t ∈ T0 :

r(σ(t)) > 0}. If one of the following conditions holds:

(a) r(a) ≤ 0,
(b) r(a) ≤ r(b),

then r(t) ≤ 0 for every t ∈ T.

Let the exponential function e1( · , t0) be defined by

(2.2) e1(t, t0) = exp
(∫ t

t0

ξ1(µ(s))∆s

)
,

where

ξ1(h) =

{
1 if h = 0,
log(1 + h)

h
if h > 0.

This function permits us to write the solution of equations on time scales. The
following results are direct consequences of Propositions 2.6 and 2.12.

Proposition 2.15. Let g ∈ L1
∆(T0, Rn). The function x: T → Rn defined

by

x(t) = e1(a, t)
(

x0 +
∫

[a,t)∩T
e1(s, a)g(s)∆s

)
is in W 1,1

∆ (T, Rn) and is a solution of the problem

x∆(t) + x(σ(t)) = g(t), ∆-a.e. t ∈ T0,

x(a) = x0.

Proposition 2.16. Let g ∈ L1
∆(T0, Rn). The function x: T → Rn defined

by

x(t) =
1

e1(t, a)

(
1

e1(b, a)− 1

∫
[a,b)∩T

g(s)e1(s, a)∆s +
∫

[a,t)∩T
g(s)e1(s, a)∆s

)
is in W 1,1

∆ (T, Rn) and is a solution of the problem

x∆(t) + x(σ(t)) = g(t), ∆-a.e. t ∈ T0,

x(a) = x(b).
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3. Existence theorem

In this section, we establish an existence result for the problem (1.1) with an
initial condition or a periodic boundary value condition. To obtain a solution to
our problem, that is a function x ∈ W 1,1

∆ (T, Rn) satisfying (1.1), we introduce
the notion of solution-tube of this problem.

Definition 3.1. Let (v,M) ∈ W 1,1
∆ (T, Rn)×W 1,1

∆ (T, [0,∞)). We say that
(v,M) is a solution-tube of (1.1) if

(a) ∆-a.e. t ∈ T0 and for every x ∈ Rn such that ‖x− v(σ(t))‖ = M(σ(t)),
there exists δ > 0 such that, for every u ∈ Rn such that ‖u − x‖ < δ

and ‖u− v(σ(t))‖ ≥ M(σ(t)), there exists y ∈ F (t, u) such that

〈u− v(σ(t)), y − v∆(t)〉 ≤ M∆(t)‖u− v(σ(t))‖;

(b) v∆(t) ∈ F (t, v(σ(t))) ∆-a.e. t ∈ T0 such that M(σ(t)) = 0;
(c) M(t) = 0 for every t ∈ T0 such that M(σ(t)) = 0;
(d) if (BC) denotes (1.2), ‖x0 − v(a)‖ ≤ M(a);

if (BC) denotes (1.3), then ‖v(b)− v(a)‖ ≤ M(a)−M(b).

We denote

T (v,M) = {x ∈ W 1,1
∆ (T, Rn) : ‖x(t)− v(t)‖ ≤ M(t) for every t ∈ T}.

We assume the following hypothesis:

(F1) F : T0×Rn → Rn is a multivalued map with compact and convex values
such that t 7→ F (t, x) is ∆-measurable for every x ∈ Rn, and x 7→ F (t, x)
is u.s.c. ∆-a.e. t ∈ T0.

(F2) For every r > 0, there exists a function hr ∈ L1
∆(T0, [0,∞)) such that

max{‖y‖ : y ∈ F (t, x), ‖x‖ ≤ r} ≤ hr(t) ∆-a.e. t ∈ T0.

(ST) There exists (v,M) ∈ W 1,1
∆ (T, Rn) × W 1,1

∆ (T, [0,∞)) a solution-tube
of (1.1).

To prove our existence theorem, we consider the following modified problem:

(3.1)
x∆(t) + x(σ(t)) ∈ F0(t, x(σ(t))) + x(σ(t)), ∆-a.e. t ∈ T0,

x ∈ (BC);

with x(σ(t)) = x−(σ(t), x(σ(t))), where for t ∈ T0 and x ∈ Rn,

(3.2) F0(t, x) = F (t, x−(σ(t), x)) ∩G(t, x);

with

x−(t, x) =


M(t)

‖x− v(t)‖
(x− v(t)) + v(t) if ‖x− v(t)‖ > M(t),

x otherwise;



Systems of First Order Inclusions on Time Scales 155

and

G(t, x) =



v∆(t) if M(σ(t)) = 0,

Rn if M(σ(t)) > 0

and ‖x− v(σ(t))‖ ≤ M(σ(t)),

{z : 〈x− v(σ(t)), z − v∆(t)〉
≤ M∆(t)‖x− v(σ(t))‖}, otherwise.

Remark 3.2. Remark that, for every (t, x) such that

‖x− v(σ(t))‖ > M(σ(t)) > 0,

(a) G(t, x) = G(t, xθ(σ(t))) for all θ ∈ [0, 1[, where

xθ(σ(t)) = θx−(σ(t), x) + (1− θ)x.

(b) G(t, x) = {z : 〈x−(σ(t), x)− v(σ(t)), z − v∆(t)〉 ≤ M∆(t)M(σ(t))}.

Indeed, for θ ∈ [0, 1],

xθ(σ(t))− v(σ(t)) =
(

1− θ +
θM(σ(t))

‖x− v(σ(t))‖

)
(x− v(σ(t))).

Thus,

G(t, x) = {z : 〈x− v(σ(t)), z − v∆(t)〉 ≤ M∆(t)‖x− v(σ(t))‖}
= {z : 〈xθ(σ(t))− v(σ(t)), z − v∆(t)〉 ≤ M∆(t)‖xθ(σ(t))− v(σ(t))‖}.

So, for θ ∈ [0, 1[, G(t, x) = G(t, xθ(σ(t))) since ‖xθ(σ(t))− v(σ(t))‖ > M(σ(t)).

We first study the properties of the map G.

Proposition 3.3. The multivalued map G: T0 × Rn → Rn satisfies the fol-
lowing properties:

(a) G(t, x) has nonempty, closed, convex values for all x ∈ Rn and for
∆-almost every t ∈ T0;

(b) x 7→ G(t, x) has closed graph for ∆-almost every t ∈ T0;
(c) t 7→ G(t, x) is ∆-measurable for every x ∈ Rn.

Proof. (a) It is obvious that G has nonempty, closed, convex values.
(b) To show that

At = {(x, y) ∈ R2n : y ∈ G(t, x)}

is closed for ∆-a.e. t ∈ T0, we just have to check the case where t ∈ T0 is such
that M(σ(t)) 6= 0. Let {(xk, yk)} be in At such that xk → x and yk → y. If
‖x − v(σ(t))‖ ≤ M(σ(t)) then y ∈ G(t, x) = Rn. So, (x, y) ∈ At. Otherwise,
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‖x − v(σ(t))‖ > M(σ(t)) and for k sufficiently large ‖xk − v(σ(t))‖ > M(σ(t))
and

〈xk − v(σ(t)), yk − v∆(t)〉 ≤ M∆(t)‖xk − v(σ(t))‖.

Therefore,

〈x− v(σ(t)), y − v∆(t)〉 ≤ M∆(t)‖x− v(σ(t))‖, and hence (x, y) ∈ At.

(c) Let C be a nonempty, closed subset of Rn, and fix x ∈ Rn. Let {ym :
m ∈ N} be a countable, dense subset of C. Observe that

Bx = {t ∈ T0 : G(t, x) ∩ C 6= ∅} = B1 ∪B2 ∪ (B3 ∩B4),

where

B1 = {t ∈ T0 : v∆(t) ∈ C} ∩ {t ∈ T0 : M(σ(t)) = 0},
B2 = {t ∈ T0 : ‖x− v(σ(t))‖ −M(σ(t)) ≤ 0} ∩ {t ∈ T0 : M(σ(t)) > 0},
B3 = {t ∈ T0 : ‖x− v(σ(t))‖ −M(σ(t)) > 0} ∩ {t ∈ T0 : M(σ(t)) > 0},

B4 =
⋂
k∈N

⋃
m∈N

{
t ∈ T0 : 〈x− v(σ(t)), ym − v∆(t)〉 ≤ M∆(t)‖x− v(σ(t))‖+

1
k

}
.

The ∆-measurability of the maps t 7→ v(σ(t)), t 7→ M(σ(t)), t 7→ v∆(t), and
t 7→ M∆(t) imply that Bx is ∆-measurable, and so is t 7→ G(t, x). �

We now define the multivalued map F :C(T, Rn) → L1
∆(T0, Rn) by

F(x) = {w ∈ L1
∆(T0, Rn) : w(t) ∈ F0(t, x(σ(t))) ∆-a.e. t ∈ T0}.

Proposition 3.4. Assume (F1), (F2) and (ST). Then, F has nonempty,
convex values, and there exists h ∈ L1

∆(T0, [0,∞)) such that

(3.3) ‖w(t)‖ ≤ h(t) ∆-a.e. on T0 for all w ∈ F(x) and all x ∈ C(T, Rn).

Proof. First of all, we want to show that F has nonempty values. Let
x ∈ C(T, Rn). There exists a sequence of simple functions {xm}m∈N such that

‖xm(σ(t))− v(σ(t))|| > M(σ(t))

∆-a.e. on {t : ‖x(σ(t))− v(σ(t))|| > M(σ(t))},

and such that xm → x in C(T, Rn). Since the multivalued maps t 7→ F (t, y) and
t 7→ G(t, y) are ∆-measurable for every y ∈ Rn, the maps t 7→ F (t, xm(σ(t)))
and t 7→ G(t, xm(σ(t))) are also ∆-measurable for every m ∈ N.

Proposition 2.2 implies that, for every m ∈ N,

t 7→ F (t, xm(σ(t))) ∩G(t, xm(σ(t)))
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is ∆-measurable, and for every k ∈ N,

t 7→
⋃

m≥k

(F (t, xm(σ(t))) ∩G(t, xm(σ(t))))

is ∆-measurable. Again, Propositions 2.1 and 2.2 imply that

t 7→
⋂
k∈N

⋃
m≥k

(F (t, xm(σ(t))) ∩G(t, xm(σ(t))))

is ∆-measurable.
Definition 3.1(a) guarantees that this map has nonempty values ∆-almost

everywhere on {t : M(σ(t)) 6= 0}. Indeed, ∆-almost everywhere on

{t : M(σ(t)) 6= 0 and ‖x(σ(t))− v(σ(t))‖ < M(σ(t))},

for m ≥ k sufficiently large, ‖xm(σ(t))− v(σ(t))‖ < M(σ(t)) and

F (t, xm(σ(t))) ∩G(t, xm(σ(t))) = F (t, xm(σ(t))) ∩ Rn 6= ∅.

On the other hand, for ∆-almost every

t ∈ {t : ‖x(σ(t))− v(σ(t))‖ = M(σ(t)) > 0},

if there exists m ≥ k such that ‖xm(σ(t))− v(σ(t))‖ ≤ M(σ(t)), then as before,
F (t, xm(σ(t))) ∩ G(t, xm(σ(t))) 6= ∅. Otherwise, there exists a δ > 0 given by
Definition 3.1(a) and m ≥ k sufficiently large such that

‖xm(σ(t))− x(σ(t))‖ < δ, ‖xm(σ(t))− v(σ(t))‖ > M(σ(t)),

and there exists z ∈ F (t, xm(σ(t))) such that

〈xm(σ(t))− v(σ(t)), z − v∆(t)〉 ≤ ‖xm(σ(t))− v(σ(t))‖M∆(t),

i.e. z ∈ F (t, xm(σ(t))) ∩G(t, xm(σ(t))).
Thus, the multivalued map Γ: T0 → L1

∆(T0, Rn) defined by

Γ(t) =


⋂
k∈N

⋃
m≥k

(F (t, xm(σ(t))) ∩G(t, xm(σ(t)))) if t ∈ {t : M(σ(t)) 6= 0},

v∆(t) if t ∈ {t : M(σ(t)) = 0},

is ∆-measurable and has nonempty and compact values. Finally, Theorem 2.3
guarantees the existence of a ∆-measurable selection w of Γ.

We must show that w ∈ F(x). Since w(t) ∈ Γ(t) ∆-a.e., we have,

w(t) ∈
⋃

m≥k

(F (t, xm(σ(t))) ∩G(t, xm(σ(t)))) ∆-a.e. in {t : M(σ(t)) 6= 0}.

for every k ∈ N. So, for ∆-almost every t ∈ {t : M(σ(t)) 6= 0}, there exists
a subsequence

uml
(t) ∈ F (t, xml

(σ(t))) ∩G(t, xml
(σ(t)))
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such that uml
(t) → w(t). If ‖x(σ(t)) − v(σ(t))‖ ≤ M(σ(t)), since y 7→ F (t, y)

and y 7→ G(t, y) have closed graph and since xml
(σ(t)) → x(σ(t)) = x(σ(t)), we

deduce that

w(t) ∈ F (t, x(σ(t))) ∩G(t, x(σ(t))) = F0(t, x(σ(t))).

On the other hand, if ‖x(σ(t))− v(σ(t))‖ > M(σ(t)), since xml
(σ(t)) → x(σ(t)),

there exists a sequence {yml
} such that

x−(σ(t), yml
) = xml

(σ(t)), yml
→ x(σ(t))

and

xml
(σ(t)) = θml

xml
(σ(t)) + (1− θml

)yml
= (yml

)θml
for some θml

∈ [0, 1[.

By Remark 3.2(a),

uml
(t) ∈ F (t, xml

(σ(t))) ∩G(t, xml
(σ(t))) = F (t, xml

(σ(t))) ∩G(t, yml
).

Again, since y 7→ F (t, y) and y 7→ G(t, y) have closed graph and since xml
(σ(t))

→ x(σ(t)) and yml
→ x(σ(t)), we can deduce that

w(t) ∈ F (t, x(σ(t))) ∩G(t, x(σ(t))) = F0(t, x(σ(t))).

Moreover, Definition 3.1(b) implies that ∆-a.e. on {t : M(σ(t)) = 0},

w(t) = v∆(t) ∈ F (t, x(σ(t))) ∩G(t, x(σ(t))) = F0(t, x(σ(t))).

Hence, we can conclude that w ∈ F(x) since by hypothesis (F2), w ∈ L1
∆(T0, Rn).

The convexity of F(x) follows from convexity of the values of F and G.
Finally, hypothesis (F2) guarantees the existence of h := hr ∈ L1

∆(T0, [0,∞))
with r = max{‖v(t)‖+M(t) : t ∈ T} such that for every x ∈ C(T, Rn) and every
w ∈ F(x),

‖w(t)‖ ≤ h(t) ∆-a.e. t ∈ T0. �

Now, we define the multivalued operator TI :C(T, Rn) → C(T, Rn) by

TI(x) =
{

u ∈ C(T, Rn) :

u(t) = e1(a, t)
(

x0 +
∫

[a,t)∩T
e1(s, a)(w(s) + x(σ(s)))∆(s)

)
,

where w ∈ F(x)
}

.

We show that TI has nice properties. Many arguments in the following proof
are analogous to those used in the classical case (i.e. T = [a, b]), see for in-
stance [13], [17].
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Proposition 3.5. Assume (F1), (F2) and (ST). The operator TI is com-
pact, u.s.c., with nonempty, convex and compact values.

Proof. The previous proposition insures that TI has nonempty, convex val-
ues, and guarantees the existence of h ∈ L1

∆(T0, [0,∞)) satisfying (3.3).
Set r = max{‖v(t)‖ + M(t) : t ∈ T} and c = max{|e1(t, s)| : t, s ∈ T}.

To show that TI(C(T, Rn)) is bounded, we just have to remark that for every
u ∈ TI(C(T, Rn)),

‖u(t)‖ ≤ c

(
‖x0‖+

∫
[a,b)∩T

c(r + h(s))∆(s)
)

for all t ∈ T.

On the other hand, for every t > τ ∈ T,

‖u(t)− u(τ)‖ ≤‖x0‖ |e1(a, t)− e1(a, τ)|

+ |e1(a, t)− e1(a, τ)|
∣∣∣∣ ∫

[a,τ)∩T
e1(s, a)(w(s) + x(σ(s)))∆(s)

∣∣∣∣
+ |e1(a, t)|

∣∣∣∣ ∫
[τ,t)∩T

e1(s, a)(w(s) + x(σ(s)))∆(s)
∣∣∣∣

≤ |e1(a, t)− e1(a, τ)|
(
‖x0‖+

∫
[a,b)∩T

c(h(s) + r)∆(s)
)

+ c2

∫
[τ,t)∩T

(h(s) + r) ∆(s).

Thus, TI(C(T, Rn)) is equicontinuous since

t 7→ e1(a, t) and t 7→
∫

[a,t)∩T
(h(s) + r) ∆(s)

are continuous on T. By an analogous version of the Arzelà–Ascoli Theorem
adapted to our context, we conclude that TI(C(T, Rn)) is relatively compact in
C(T, Rn).

We now prove that TI has closed graph. Let {xm} and {um} be convergent
sequences in C(T, Rn) such that xm → x, um → u and um ∈ TI(xm). Let
wm ∈ F(xm) be such that

um(t) = e1(a, t)
(

x0 +
∫

[a,t)∩T
e1(s, a)(wm(s) + xm(σ(s)))∆(s)

)
.

Let h be the function given in (3.3). Considering the extensions ŵm and ĥ in
L1([a, b]), we have

‖ŵm(t)‖ ≤ ĥ(t) for almost every t ∈ [a, b].

By Dunford–Pettis’ Theorem, there exists g ∈ L1([a, b], Rn) and a subsequence
still denoted {ŵm} such that ŵm ⇀ g in L1([a, b], Rn). Since a closed convex set
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is weakly closed, there exist

ẑm ∈ co{ŵm, ŵm+1, . . . }

such that
ẑm → g in L1([a, b], Rn).

Thus, there exists a subsequence again noted {ẑm} such that,

ẑm(t) → g(t) for almost every t ∈ [a, b].

Therefore, for almost every t ∈ [a, b],

ẑm(t) ∈ co
{ ⋃

l≥m

ŵl(t)
}
⊂ co

{ ⋃
l≥m

F̂ (t, xl(σ(t))) ∩ Ĝ(t, xl(σ(t)))
}

where the multivalued maps F̂ and Ĝ are respectively extensions of the multi-
valued maps F and G in the sense of (2.1). Taking the limit, we get

g(t) ∈
⋂

m∈N
co
{ ⋃

l≥m

F̂ (t, xl(σ(t))) ∩ Ĝ(t, xl(σ(t)))
}

⊂ F̂ (t, x(σ(t))) ∩ Ĝ(t, x(σ(t))) = F̂0(t, x(σ(t))),

since xm → x in C(T, Rn) and since y 7→ F̂ (t, y) and y 7→ Ĝ(t, y) have closed
graph and closed, convex values.

By Theorem 2.10, there exists a function w: T0 → Rn such that g = ŵ. So,

w(t) ∈ F̂0(t, x(σ(t))) = F0(t, x(σ(t))) ∆-a.e. t ∈ T0.

Thus, w ∈ F(x).
Finally, since ŵm ⇀ ŵ in L1([a, b], Rn) and xm → x in C(T, Rn), again by

Theorem 2.10, we deduce that for every t ∈ T,∫
[a,t)∩T

e1(s, a)(wm(s) + xm(σ(s)))∆s →
∫

[a,t)∩T
e1(s, a)(w(s) + x(σ(s)))∆s.

Moreover, since um → u in C(T, Rn), we get that for every t ∈ T,

u(t) = e1(a, t)
(

x0 +
∫

[a,t)∩T
e1(s, a)(w(s) + x(σ(s))

)
∆s

)
.

Thus, u ∈ TI(x) and hence, TI has closed graph.
Since TI is compact and has closed graph, TI has compact values.
We now prove that TI is upper semi-continuous. Let B ⊂ C(T, Rn) be

a closed set and
A = {x ∈ C(T, Rn) : TI(x) ∩B 6= ∅}.

Let {xm} be a sequence in A converging to x in C(T, Rn). There exists um ∈
TI(xm)∩B. The compacity of TI guarantees the existence of a subsequence still
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denoted {um} converging to u in C(T, Rn). Since B is closed and TI has closed
graph, we deduce that u ∈ TI(x) ∩B. Thus x ∈ A. �

Let TP :C(T, Rn) → C(T, Rn) be the multivalued operator defined by

TP (x)(t) =
{

v ∈ C(T, Rn) :

v(t) =
1

e1(t, a)

(
1

e1(b, a)− 1

∫
[a,b)∩T

(w(s) + x(σ(s)))e1(s, a)∆s

+
∫

[a,t)∩T
(w(s) + x(σ(s)))e1(s, a)∆s

)
, where w ∈ F(x)

}
.

The following result can be proved as the previous one.

Proposition 3.6. Assume (F1), (F2) and (ST). The operator TP is compact
and u.s.c. with nonempty, convex and compact values.

Now, we can obtain our main theorem.

Theorem 3.7. Assume (F1), (F2) and (ST). The problem (1.1) has a solu-
tion x ∈ W 1,1

∆ (T, Rn) ∩ T (v,M).

Proof. By Proposition 3.5 (resp. Proposition 3.6), TI (resp. TP ) is com-
pact and upper semi-continuous with nonempty, convex, and compact values. It
has a fixed point by the Kakutani fixed point Theorem. If (BC) denotes (1.2)
(resp. (1.3)), Proposition 2.15 (resp. Proposition 2.16) implies that, x, this fixed
point of TI (resp. TP ) is a solution of Problem (3.1), (1.2) (resp. (3.1), (1.3)).
To conclude, it suffices to show that x ∈ T (v,M).

Consider the set A = {t ∈ T0 : ‖x(σ(t))− v(σ(t))‖ > M(σ(t))}. By Proposi-
tion 2.6(d), ∆-a.e. on A \RT, we have

‖x(t)− v(t)‖∆ =
〈x(t)− v(t), x∆(t)− v∆(t)〉

‖x(t)− v(t)‖
(3.4)

=
〈x(σ(t))− v(σ(t)), x∆(t)− v∆(t)〉

‖x(σ(t))− v(σ(t))‖
.

For t ∈ A ∩RT, µ∆({t}) > 0 and,

(3.5) ‖x(t)− v(t)‖∆ =
‖x(σ(t))− v(σ(t))‖ − ‖x(t)− v(t)‖

µ(t)

≤ 〈x(σ(t))− v(σ(t)), x(σ(t))− v(σ(t))− (x(t)− v(t))〉
µ(t)‖x(σ(t))− v(σ(t))‖

=
〈x(σ(t))− v(σ(t)), x∆(t)− v∆(t)〉

‖x(σ(t))− v(σ(t))‖
.
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Let us denote y(t) := x∆(t)+x(σ(t))−x(σ(t)) ∈ F0(t, x(σ(t))) ∆-a.e. on T0.
Since (v,M) is a solution-tube of (1.1) and from (3.2), (3.4), (3.4), and Re-
mark 3.2(b), we deduce that ∆-a.e. on {t ∈ A : M(σ(t)) > 0},

(‖x(t) − v(t)‖ −M(t))∆

≤ 〈x(σ(t))− v(σ(t)), y(t) + x(σ(t))− x(σ(t))− v∆(t)〉
‖x(σ(t))− v(σ(t))‖

−M∆(t)

=
〈x(σ(t))− v(σ(t)), y(t)− v∆(t)〉

M(σ(t))

+ M(σ(t))− ‖x(σ(t))− v(σ(t))‖ −M∆(t)

<
M(σ(t))M∆(t)

M(σ(t))
−M∆(t) = 0.

On the other hand, if M(σ(t)) = 0, then F0(t, x(σ(t))) = {v∆(t)} and ∆-a.e. on
{t ∈ A : M(σ(t)) = 0}, we have

(‖x(t) − v(t)‖ −M(t))∆

≤ 〈x(σ(t))− v(σ(t)), y(t) + x(σ(t))− x(σ(t))− v∆(t)〉
‖x(σ(t))− v(σ(t))‖

−M∆(t)

=
〈x(σ(t))− v(σ(t)), v∆(t)− v∆(t)〉

‖x(σ(t))− v(σ(t))‖
− ‖x(σ(t))− v(σ(t))‖ −M∆(t) < −M∆(t) = 0.

This last equality follows from Definition 3.1(c) and Proposition 2.13.
Therefore, r(t) = ‖x(t)−v(t)‖−M(t) satisfies r∆(t) < 0 ∆-almost everywhere

on A = {t ∈ T0 : r(σ(t)) > 0}. Moreover, since (v,M) is a solution-tube
of (1.1), if (BC) denotes (1.2) (resp. (BC) denotes (1.3)), then r(a) ≤ 0 (resp.
r(a) − r(b) ≤ ‖v(a) − v(b)‖ − (M(a) − M(b)) ≤ 0). Lemma 2.14 implies that
A = ∅. Therefore, x ∈ T (v,M) and hence, x is a solution of (1.1). �
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