SYSTEMS OF FIRST ORDER INCLUSIONS ON TIME SCALES

Marlène Frigon - Hugues Gilbert

Abstract

This paper presents existence results for systems of first order inclusions on time scales with an initial or a periodic boundary value condition. The method of solution-tube is developed for this system.

1. Introduction

In 1990, S. Hilger [18] introduced the concept of dynamic equations on time scales. This concept provides a unified approach to continuous and discrete calculus with the introduction of the notion of delta-derivative $x^{\Delta}(t)$. This notion coincides with $x^{\prime}(t)$ (resp. $\Delta x(t)$) in the case where the time scale \mathbb{T} is an interval (resp. a discrete set $\{0, \ldots, n\}$).

In this paper, we establish an existence result for the following system of first order inclusions on time scales:

$$
\begin{align*}
x^{\Delta}(t) & \in F(t, x(\sigma(t))), \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0}, \tag{1.1}\\
x & \in(\mathrm{BC}) .
\end{align*}
$$

Here, \mathbb{T} is an arbitrary compact time scale, where we note $a=\min \mathbb{T}, b=$ $\max \mathbb{T}$ and $\mathbb{T}_{0}=\mathbb{T} \backslash\{b\}$. The multivalued map $F: \mathbb{T}_{0} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies some

[^0]Key words and phrases. System of inclusions on time scale, existence theorem, solutiontube, first order problem.

The authors would like to thank respectively CRSNG-Canada and FQRNT-Québec for their financial support.
hypothesis that will be stated later, and (BC) denotes the initial or the periodic boundary conditions:

$$
\begin{align*}
& x(a)=x_{0} \tag{1.2}\\
& x(a)=x(b) \tag{1.3}
\end{align*}
$$

In the literature, this kind of problem was mainly treated for $n=1$ in the particular case where the time scale is a discrete set (difference equation). Some existence results were obtained with the method of lower and upper solutions for one difference equation as in [5] and [12], and for one difference inclusion as in [2]. As far as we know, F. M. Atici and D. C. Biles [4] are the only ones who considered a first order inclusion on an arbitrary compact time scale. Their results were also established with the method of lower and upper solutions.

Systems of first-order equations on time scales were treated by Q. Dai and C. C. Tisdell [11] and, by the second author, [16].

To our knowledge, this paper is the first one in which systems of first order inclusions on time scales are studied. In order to get existence results, we introduce a notion which extends to systems of first order inclusions on time scales, the notions of lower and upper solutions, see [1]. This notion is called solution-tube of system (1.1). A notion of solution-tube was introduced for first order systems of differential inclusions by B. Mirandette [20] (see also [14], [15]).

2. Preliminaries and notations

2.1. Multivalued maps. We recall some definitions and classical results for multivalued maps. They can be found in more generality in [19], see also [8].

Let X, Y be metric spaces and $G: X \rightarrow Y$ a multivalued map. The map G is upper semi-continuous (u.s.c.) if $\{x \in X: G(x) \cap C \neq \emptyset\}$ is closed for every closed set $C \subset Y$ and it is compact if $G(X)=\bigcup_{x \in X} G(x)$ is relatively compact. Let Ω be a measurable space, we say that a multivalued map $G: \Omega \rightarrow X$ is measurable (resp. weakly measurable) if $\{t \in \Omega: G(t) \cap C \neq \emptyset\}$ is measurable for every closed (resp. open) set $C \subset X$.

Proposition 2.1. Let $G: \Omega \rightarrow X$ be a multivalued map.
(a) If G is measurable then it is weakly measurable.
(b) If G is weakly measurable and has compact values, then it is measurable.
(c) The map G is weakly measurable if and only if the multivalued map $\bar{G}: \Omega \rightarrow X$ defined by $\bar{G}(t)=\overline{G(t)}$ is weakly measurable.

Proposition 2.2. For $n \in \mathbb{N}$, let $G_{n}: \Omega \rightarrow X$ be measurable multivalued maps.
(a) The map $G: \Omega \rightarrow X$ defined by $G(t)=\bigcup_{n \in \mathbb{N}} G_{n}(t)$ is measurable.
(b) If X is separable, G_{n} has closed values, and for each t, at least one $G_{n_{t}}(t)$ is compact, then $G: \Omega \rightarrow X$ defined by $G(t)=\bigcap_{n \in \mathbb{N}} G_{n}(t)$ is measurable.

Theorem 2.3 (Kuratowski, Ryll, Nardzewski). Let X be a separable Banach space and let $G: \Omega \rightarrow X$ be a measurable multivalued map. Then G has a measurable selection, i.e. there exists a single-valued measurable map $g: \Omega \rightarrow X$ such that $g(t) \in G(t)$ for almost every $t \in \Omega$.
2.2. Functions on time scales. For sake of completeness, we recall some notations, definitions and results concerning functions defined on time scales. The interested reader may consult [6], [7], [18] and the references therein to find the proofs and to get a complete introduction to this subject.

Let \mathbb{T} be a compact time scale with $a=\min \mathbb{T}<b=\max \mathbb{T}$. The forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ (resp. the backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$) is defined by

$$
\begin{aligned}
\sigma(t) & = \begin{cases}\inf \{s \in \mathbb{T}: s>t\} & \text { if } t<b, \\
b & \text { if } t=b,\end{cases} \\
(\text { resp. } \quad \rho(t) & =\left\{\begin{array}{ll}
\sup \{s \in \mathbb{T}: s<t\} & \text { if } t>a \\
a & \text { if } t=a .
\end{array}\right)
\end{aligned}
$$

We say that $t<b$ is right-scattered (resp. $t>a$ is left-scattered) if $\sigma(t)>t$ (resp. $\rho(t)<t$), otherwise, we say that t is right-dense (resp. left-dense). The set of right-scattered points of \mathbb{T} is at most countable, see [10]. We denote it by

$$
R_{\mathbb{T}}:=\{t \in \mathbb{T}: t<\sigma(t)\}=\left\{t_{i}: i \in I\right\}
$$

for some $I \subset \mathbb{N}$. The graininess function $\mu: \mathbb{T} \rightarrow[0, \infty)$ is defined by $\mu(t)=$ $\sigma(t)-t$. We denote

$$
\mathbb{T}^{\kappa}=\mathbb{T} \backslash(\rho(b), b] \quad \text { and } \quad \mathbb{T}_{0}=\mathbb{T} \backslash\{b\}
$$

So, $\mathbb{T}^{\kappa}=\mathbb{T}$ if b is left-dense, otherwise $\mathbb{T}^{\kappa}=\mathbb{T}_{0}$.
Definition 2.4. A map $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ is Δ-differentiable at $t \in \mathbb{T}^{\kappa}$ if there exists $f^{\Delta}(t) \in \mathbb{R}^{n}$ (called the Δ-derivative of f at t) such that for all $\varepsilon>0$, there exists a neighborhood U of t such that

$$
\left\|\left(f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)\right)\right\| \leq \varepsilon|\sigma(t)-s| \quad \text { for all } s \in U
$$

We say that f is Δ-differentiable if $f^{\Delta}(t)$ exists for every $t \in \mathbb{T}^{\kappa}$.

Proposition 2.5. Let $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ and $t \in \mathbb{T}^{\kappa}$.
(a) If f is Δ-differentiable at t, then f is continuous at t.
(b) If f is continuous at $t \in R_{\mathbb{T}}$, then

$$
f^{\Delta}(t)=\frac{f(\sigma(t))-f(t)}{\mu(t)}
$$

(c) The map f is Δ-differentiable at $t \in \mathbb{T}^{\kappa} \backslash R_{\mathbb{T}}$ if and only if

$$
f^{\Delta}(t)=\lim _{s \rightarrow t} \frac{f(t)-f(s)}{t-s} .
$$

Proposition 2.6. If $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{T} \rightarrow \mathbb{R}^{m}$ are Δ-differentiable at $t \in \mathbb{T}^{\kappa}$, then:
(a) if $n=m,(\alpha f+g)^{\Delta}(t)=\alpha f^{\Delta}(t)+g^{\Delta}(t)$ for every $\alpha \in \mathbb{R}$;
(b) if $m=1$,

$$
(f g)^{\Delta}(t)=g(t) f^{\Delta}(t)+f(\sigma(t)) g^{\Delta}(t)=f(t) g^{\Delta}(t)+g(\sigma(t)) f^{\Delta}(t)
$$

(c) if $m=1$ and $g(t) g(\sigma(t)) \neq 0$, then

$$
\left(\frac{f}{g}\right)^{\Delta}(t)=\frac{g(t) f^{\Delta}(t)-f(t) g^{\Delta}(t)}{g(t) g(\sigma(t))}
$$

(d) if $W \subset \mathbb{R}^{n}$ is open and $h: W \rightarrow \mathbb{R}$ is differentiable at $f(t) \in W$ and $t \notin R_{\mathbb{T}}$, then $(h \circ f)^{\Delta}(t)=\left\langle h^{\prime}(f(t)), f^{\Delta}(t)\right\rangle$.

We recall some notions and results related to the theory of Δ-measure.
Definition 2.7 ([6]). A set $A \subset \mathbb{T}$ is said to be Δ-measurable if for every set $E \subset \mathbb{T}$,

$$
m_{1}^{*}(E)=m_{1}^{*}(E \cap A)+m_{1}^{*}(E \cap(\mathbb{T} \backslash A))
$$

where

$$
m_{1}^{*}(E)= \begin{cases}\inf \left\{\sum_{k=1}^{m}\left(d_{k}-c_{k}\right): E \subset \bigcup_{k=1}^{m}\left[c_{k}, d_{k}\right) \text { with } c_{k}, d_{k} \in \mathbb{T}\right\} & \text { if } b \notin E \\ \infty & \text { if } b \in E\end{cases}
$$

The Δ-measure on $\mathcal{M}\left(m_{1}^{*}\right):=\{A \subset \mathbb{T}: A$ is Δ-measurable $\}$, denoted by μ_{Δ}, is the restriction of m_{1}^{*} to $\mathcal{M}\left(m_{1}^{*}\right)$. So, $\left(\mathbb{T}, \mathcal{M}\left(m_{1}^{*}\right), \mu_{\Delta}\right)$ is a complete measurable space.

The notions of Δ-measurable and Δ-integrable functions $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ can be defined similarly to the theory of Lebesgue integral. We omit here these definitions which can be found in [10].

Let $E \subset \mathbb{T}$ be a Δ-measurable set and $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ be a Δ-measurable function. We say that $f \in L_{\Delta}^{1}\left(E, \mathbb{R}^{n}\right)$ provided

$$
\int_{E}\|f(s)\| \Delta s<\infty
$$

The set $L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$ is a Banach space endowed with the norm

$$
\|f\|_{L_{\Delta}^{1}}:=\int_{\mathbb{T}_{0}}\|f(s)\| \Delta s
$$

Here is an analog of the Lebesgue dominated convergence theorem.
Theorem 2.8. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of functions in $L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$. Assume there exists a function $f: \mathbb{T}_{0} \rightarrow \mathbb{R}^{n}$ such that $f_{k}(t) \rightarrow f(t) \Delta$-a.e. $t \in \mathbb{T}_{0}$, and there exists a function $g \in L_{\Delta}^{1}\left(\mathbb{T}_{0}\right)$ such that $\left\|f_{k}(t)\right\| \leq g(t) \Delta$-a.e. $t \in \mathbb{T}_{0}$ and for every $k \in \mathbb{N}$. Then $f_{k} \rightarrow f$ in $L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$.

In order to compare the Δ-integral on \mathbb{T} and the Lebesgue integral on $[a, b]$, A. Cabada and D. R. Vivero [10] considered the following extension of a function $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ on $[a, b]:$

$$
\widehat{f}(t):= \begin{cases}f(t) & \text { if } t \in \mathbb{T} \tag{2.1}\\ f\left(t_{i}\right) & \text { if } t \in\left(t_{i}, \sigma\left(t_{i}\right)\right) \text { and } t_{i} \in R_{\mathbb{T}}\end{cases}
$$

Theorem 2.9. Let $E \subset \mathbb{T}_{0}$ be a Δ-measurable set and let

$$
\widehat{E}=E \cup \bigcup_{t_{i} \in E \cap R_{\mathbb{T}}}\left(t_{i}, \sigma\left(t_{i}\right)\right) .
$$

Let $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ be a Δ-measurable function and $\widehat{f}:[a, b] \rightarrow \mathbb{R}^{n}$ its extension on $[a, b]$. Then, f is Δ-integrable on E if and only if \widehat{f} is Lebesgue integrable on \widehat{E}. In this case we have,

$$
\int_{E} f(s) \Delta s=\int_{\widehat{E}} \widehat{f}(s) d s
$$

Using the previous theorem, we obtain the following result.
Theorem 2.10. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of functions in $L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$. If $\left\{\widehat{f}_{k}\right\}$ converges weakly to γ in $L^{1}\left([a, b], \mathbb{R}^{n}\right)$, then γ is the extension \widehat{f} of a function f defined on \mathbb{T}_{0} in the sense of definition (2.1). Moreover, for every Δ measurable set $E \subset \mathbb{T}_{0}$ and every continuous function $g: \mathbb{T} \rightarrow \mathbb{R}$, we have

$$
\lim _{k \rightarrow \infty} \int_{E} g(s) f_{k}(s) \Delta s=\int_{E} g(s) f(s) \Delta s
$$

Proof. Since $\left\{\widehat{f_{k}}\right\}$ converges weakly to γ in $L^{1}\left([a, b], \mathbb{R}^{n}\right)$, we have for every continuous function $g: \mathbb{T} \rightarrow \mathbb{R}$,

$$
\int_{A} \widehat{g}(s) \widehat{f}_{k}(s) d s \rightarrow \int_{A} \widehat{g}(s) \gamma(s) d s \quad \text { for every measurable set } A \subset[a, b]
$$

Thus, for $t_{i} \in R_{\mathbb{T}}$,

$$
\begin{aligned}
\int_{\left(t_{i}, \sigma\left(t_{i}\right)\right)} \widehat{g}(s) \widehat{f}_{k}(s) d s & =\int_{\left(t_{i}, \sigma\left(t_{i}\right)\right)} g\left(t_{i}\right) f_{k}\left(t_{i}\right) d s \\
& =g\left(t_{i}\right) f_{k}\left(t_{i}\right) \mu\left(t_{i}\right) \rightarrow \int_{\left(t_{i}, \sigma\left(t_{i}\right)\right)} \widehat{g}(s) \gamma(s) d s
\end{aligned}
$$

So, $\left\{f_{k}\left(t_{i}\right)\right\}_{k \in \mathbb{N}}$ converges to some $f\left(t_{i}\right) \in \mathbb{R}^{n}$. Thus, $\left\{\widehat{f}_{k}\right\}$ converges strongly to the constant function $f\left(t_{i}\right)$ in $L^{1}\left(\left(t_{i}, \sigma\left(t_{i}\right)\right), \mathbb{R}^{n}\right)$, and we can assume that $\gamma \equiv f\left(t_{i}\right)$ on $\left[t_{i}, \sigma\left(t_{i}\right)\right)$. The first part of the proposition is proved if we define $f=\left.\gamma\right|_{\mathbb{T}}$. Finally, by Theorem 2.9,

$$
\begin{aligned}
& \int_{E} g(s) f_{k}(s) \Delta s=\int_{\widehat{E}} \widehat{g}(s) \widehat{f}_{k}(s) d s \\
& \rightarrow \int_{\widehat{E}} \widehat{g}(s) \gamma(s) d s=\int_{\widehat{E}} \widehat{g}(s) \widehat{f}(s) d s=\int_{E} g(s) f(s) \Delta s
\end{aligned}
$$

In this context, there is also a notion of absolute continuity, see [9].
Definition 2.11. A function $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ is said to be absolutely continuous on \mathbb{T} if for every $\varepsilon>0$, there exists a $\delta>0$ such that if $\left\{\left[a_{k}, b_{k}\right)\right\}_{k=1}^{m}$ with $a_{k}, b_{k} \in \mathbb{T}$ is a finite pairwise disjoint family of subintervals satisfying

$$
\sum_{k=1}^{m}\left(b_{k}-a_{k}\right)<\delta, \quad \text { then } \quad \sum_{k=1}^{m}\left\|f\left(b_{k}\right)-f\left(a_{k}\right)\right\|<\varepsilon
$$

The two following results were obtained in [16].
Proposition 2.12. If $g \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$ and $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ is the function defined by

$$
f(t):=\int_{[a, t) \cap \mathbb{T}} g(s) \Delta s
$$

then f is absolutely continuous and $f^{\Delta}(t)=g(t) \Delta$-almost everywhere on \mathbb{T}_{0}.
Proposition 2.13. If $f: \mathbb{T} \rightarrow \mathbb{R}^{n}$ is an absolutely continuous function then the Δ-measure of the set $\left\{t \in \mathbb{T}_{0} \backslash R_{\mathbb{T}}: f(t)=0\right.$ and $\left.f^{\Delta}(t) \neq 0\right\}$ is zero.

We also recall a notion of Sobolev space, see [3],
$W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right)=\left\{x: \mathbb{T} \rightarrow \mathbb{R}^{n}: x\right.$ is absolutely continuous and

$$
\begin{aligned}
& \left.x^{\Delta} \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)\right\} \\
= & \left\{x \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right): \text { there exists } g \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)\right. \text { such that } \\
& \left.\int_{\mathbb{T}_{0}} x(s) \phi^{\Delta}(s) \Delta s=-\int_{\mathbb{T}_{0}} g(s) \phi(\sigma(s)) \Delta s \text { for all } \phi \in C_{0, r d}^{1}(\mathbb{T})\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
C_{0, r d}^{1}(\mathbb{T})= & \{\phi: \mathbb{T} \rightarrow \mathbb{R}: \phi(a)=0=\phi(b), \phi \text { is } \Delta \text {-differentiable } \\
& \text { and } \phi^{\Delta} \text { is continuous at right-dense points of } \mathbb{T} \\
& \text { and its left-sided limits exist at left-dense points of } \mathbb{T}\} .
\end{aligned}
$$

The following maximum principle is obtained in [16].
Lemma 2.14. Let $r \in W_{\Delta}^{1,1}(\mathbb{T})$ such that $r^{\Delta}(t)<0 \Delta$-a.e. $t \in\left\{t \in \mathbb{T}_{0}\right.$: $r(\sigma(t))>0\}$. If one of the following conditions holds:
(a) $r(a) \leq 0$,
(b) $r(a) \leq r(b)$,
then $r(t) \leq 0$ for every $t \in \mathbb{T}$.
Let the exponential function $e_{1}\left(\cdot, t_{0}\right)$ be defined by

$$
\begin{equation*}
e_{1}\left(t, t_{0}\right)=\exp \left(\int_{t_{0}}^{t} \xi_{1}(\mu(s)) \Delta s\right) \tag{2.2}
\end{equation*}
$$

where

$$
\xi_{1}(h)= \begin{cases}1 & \text { if } h=0 \\ \frac{\log (1+h)}{h} & \text { if } h>0\end{cases}
$$

This function permits us to write the solution of equations on time scales. The following results are direct consequences of Propositions 2.6 and 2.12.

Proposition 2.15. Let $g \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$. The function $x: \mathbb{T} \rightarrow \mathbb{R}^{n}$ defined by

$$
x(t)=e_{1}(a, t)\left(x_{0}+\int_{[a, t) \cap \mathbb{T}} e_{1}(s, a) g(s) \Delta s\right)
$$

is in $W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ and is a solution of the problem

$$
\begin{aligned}
x^{\Delta}(t)+x(\sigma(t)) & =g(t), \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0}, \\
x(a) & =x_{0} .
\end{aligned}
$$

Proposition 2.16. Let $g \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$. The function $x: \mathbb{T} \rightarrow \mathbb{R}^{n}$ defined by

$$
x(t)=\frac{1}{e_{1}(t, a)}\left(\frac{1}{e_{1}(b, a)-1} \int_{[a, b) \cap \mathbb{T}} g(s) e_{1}(s, a) \Delta s+\int_{[a, t) \cap \mathbb{T}} g(s) e_{1}(s, a) \Delta s\right)
$$

is in $W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ and is a solution of the problem

$$
\begin{aligned}
x^{\Delta}(t)+x(\sigma(t)) & =g(t), \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0}, \\
x(a) & =x(b) .
\end{aligned}
$$

3. Existence theorem

In this section, we establish an existence result for the problem (1.1) with an initial condition or a periodic boundary value condition. To obtain a solution to our problem, that is a function $x \in W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right)$ satisfying (1.1), we introduce the notion of solution-tube of this problem.

Definition 3.1. Let $(v, M) \in W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right) \times W_{\Delta}^{1,1}(\mathbb{T},[0, \infty))$. We say that (v, M) is a solution-tube of (1.1) if
(a) Δ-a.e. $t \in \mathbb{T}_{0}$ and for every $x \in \mathbb{R}^{n}$ such that $\|x-v(\sigma(t))\|=M(\sigma(t))$, there exists $\delta>0$ such that, for every $u \in \mathbb{R}^{n}$ such that $\|u-x\|<\delta$ and $\|u-v(\sigma(t))\| \geq M(\sigma(t))$, there exists $y \in F(t, u)$ such that

$$
\left\langle u-v(\sigma(t)), y-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\|u-v(\sigma(t))\| ;
$$

(b) $v^{\Delta}(t) \in F(t, v(\sigma(t))) \Delta$-a.e. $t \in \mathbb{T}_{0}$ such that $M(\sigma(t))=0$;
(c) $M(t)=0$ for every $t \in \mathbb{T}_{0}$ such that $M(\sigma(t))=0$;
(d) if (BC) denotes (1.2), $\left\|x_{0}-v(a)\right\| \leq M(a)$; if (BC) denotes (1.3), then $\|v(b)-v(a)\| \leq M(a)-M(b)$.
We denote

$$
T(v, M)=\left\{x \in W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right):\|x(t)-v(t)\| \leq M(t) \text { for every } t \in \mathbb{T}\right\}
$$

We assume the following hypothesis:
(F1) $F: \mathbb{T}_{0} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a multivalued map with compact and convex values such that $t \mapsto F(t, x)$ is Δ-measurable for every $x \in \mathbb{R}^{n}$, and $x \mapsto F(t, x)$ is u.s.c. Δ-a.e. $t \in \mathbb{T}_{0}$.
(F2) For every $r>0$, there exists a function $h_{r} \in L_{\Delta}^{1}\left(\mathbb{T}_{0},[0, \infty)\right)$ such that

$$
\max \{\|y\|: y \in F(t, x),\|x\| \leq r\} \leq h_{r}(t) \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0} .
$$

(ST) There exists $(v, M) \in W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right) \times W_{\Delta}^{1,1}(\mathbb{T},[0, \infty))$ a solution-tube of (1.1).
To prove our existence theorem, we consider the following modified problem:

$$
\begin{align*}
x^{\Delta}(t)+x(\sigma(t)) & \in F_{0}(t, x(\sigma(t)))+\bar{x}(\sigma(t)), \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0} \\
x & \in(B C) \tag{3.1}
\end{align*}
$$

with $\bar{x}(\sigma(t))=x^{-}(\sigma(t), x(\sigma(t)))$, where for $t \in \mathbb{T}_{0}$ and $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
F_{0}(t, x)=F\left(t, x^{-}(\sigma(t), x)\right) \cap G(t, x) \tag{3.2}
\end{equation*}
$$

with

$$
x^{-}(t, x)= \begin{cases}\frac{M(t)}{\|x-v(t)\|}(x-v(t))+v(t) & \text { if }\|x-v(t)\|>M(t) \\ x & \text { otherwise }\end{cases}
$$

and

$$
G(t, x)= \begin{cases}v^{\Delta}(t) & \text { if } M(\sigma(t))=0 \\ \mathbb{R}^{n} & \text { if } M(\sigma(t))>0 \\ & \text { and }\|x-v(\sigma(t))\| \leq M(\sigma(t)), \\ \left\{z:\left\langle x-v(\sigma(t)), z-v^{\Delta}(t)\right\rangle\right. \\ \left.\leq M^{\Delta}(t)\|x-v(\sigma(t))\|\right\}, & \text { otherwise. }\end{cases}
$$

Remark 3.2. Remark that, for every (t, x) such that

$$
\|x-v(\sigma(t))\|>M(\sigma(t))>0
$$

(a) $G(t, x)=G\left(t, x_{\theta}(\sigma(t))\right)$ for all $\theta \in[0,1[$, where

$$
x_{\theta}(\sigma(t))=\theta x^{-}(\sigma(t), x)+(1-\theta) x .
$$

(b) $G(t, x)=\left\{z:\left\langle x^{-}(\sigma(t), x)-v(\sigma(t)), z-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t) M(\sigma(t))\right\}$.

Indeed, for $\theta \in[0,1]$,

$$
x_{\theta}(\sigma(t))-v(\sigma(t))=\left(1-\theta+\frac{\theta M(\sigma(t))}{\|x-v(\sigma(t))\|}\right)(x-v(\sigma(t))) .
$$

Thus,

$$
\begin{aligned}
G(t, x) & =\left\{z:\left\langle x-v(\sigma(t)), z-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\|x-v(\sigma(t))\|\right\} \\
& =\left\{z:\left\langle x_{\theta}(\sigma(t))-v(\sigma(t)), z-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\left\|x_{\theta}(\sigma(t))-v(\sigma(t))\right\|\right\}
\end{aligned}
$$

So, for $\theta \in\left[0,1\left[, G(t, x)=G\left(t, x_{\theta}(\sigma(t))\right)\right.\right.$ since $\left\|x_{\theta}(\sigma(t))-v(\sigma(t))\right\|>M(\sigma(t))$.
We first study the properties of the map G.
Proposition 3.3. The multivalued map $G: \mathbb{T}_{0} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies the following properties:
(a) $G(t, x)$ has nonempty, closed, convex values for all $x \in \mathbb{R}^{n}$ and for Δ-almost every $t \in \mathbb{T}_{0}$;
(b) $x \mapsto G(t, x)$ has closed graph for Δ-almost every $t \in \mathbb{T}_{0}$;
(c) $t \mapsto G(t, x)$ is Δ-measurable for every $x \in \mathbb{R}^{n}$.

Proof. (a) It is obvious that G has nonempty, closed, convex values.
(b) To show that

$$
A_{t}=\left\{(x, y) \in \mathbb{R}^{2 n}: y \in G(t, x)\right\}
$$

is closed for Δ-a.e. $t \in \mathbb{T}_{0}$, we just have to check the case where $t \in \mathbb{T}_{0}$ is such that $M(\sigma(t)) \neq 0$. Let $\left\{\left(x_{k}, y_{k}\right)\right\}$ be in A_{t} such that $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$. If $\|x-v(\sigma(t))\| \leq M(\sigma(t))$ then $y \in G(t, x)=\mathbb{R}^{n}$. So, $(x, y) \in A_{t}$. Otherwise,
$\|x-v(\sigma(t))\|>M(\sigma(t))$ and for k sufficiently large $\left\|x_{k}-v(\sigma(t))\right\|>M(\sigma(t))$ and

$$
\left\langle x_{k}-v(\sigma(t)), y_{k}-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\left\|x_{k}-v(\sigma(t))\right\|
$$

Therefore,
$\left\langle x-v(\sigma(t)), y-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\|x-v(\sigma(t))\|, \quad$ and hence $(x, y) \in A_{t}$.
(c) Let C be a nonempty, closed subset of \mathbb{R}^{n}, and fix $x \in \mathbb{R}^{n}$. Let $\left\{y_{m}\right.$: $m \in N\}$ be a countable, dense subset of C. Observe that

$$
B_{x}=\left\{t \in \mathbb{T}_{0}: G(t, x) \cap C \neq \emptyset\right\}=B_{1} \cup B_{2} \cup\left(B_{3} \cap B_{4}\right)
$$

where
$B_{1}=\left\{t \in \mathbb{T}_{0}: v^{\Delta}(t) \in C\right\} \cap\left\{t \in \mathbb{T}_{0}: M(\sigma(t))=0\right\}$,
$B_{2}=\left\{t \in \mathbb{T}_{0}:\|x-v(\sigma(t))\|-M(\sigma(t)) \leq 0\right\} \cap\left\{t \in \mathbb{T}_{0}: M(\sigma(t))>0\right\}$,
$B_{3}=\left\{t \in \mathbb{T}_{0}:\|x-v(\sigma(t))\|-M(\sigma(t))>0\right\} \cap\left\{t \in \mathbb{T}_{0}: M(\sigma(t))>0\right\}$,
$B_{4}=\bigcap_{k \in \mathbb{N}} \bigcup_{m \in N}\left\{t \in \mathbb{T}_{0}:\left\langle x-v(\sigma(t)), y_{m}-v^{\Delta}(t)\right\rangle \leq M^{\Delta}(t)\|x-v(\sigma(t))\|+\frac{1}{k}\right\}$.
The Δ-measurability of the maps $t \mapsto v(\sigma(t)), t \mapsto M(\sigma(t)), t \mapsto v^{\Delta}(t)$, and $t \mapsto M^{\Delta}(t)$ imply that B_{x} is Δ-measurable, and so is $t \mapsto G(t, x)$.

We now define the multivalued map $\mathcal{F}: C\left(\mathbb{T}, \mathbb{R}^{n}\right) \rightarrow L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$ by

$$
\mathcal{F}(x)=\left\{w \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right): w(t) \in F_{0}(t, x(\sigma(t))) \Delta \text {-a.e. } t \in \mathbb{T}_{0}\right\}
$$

Proposition 3.4. Assume (F1), (F2) and (ST). Then, \mathcal{F} has nonempty, convex values, and there exists $h \in L_{\Delta}^{1}\left(\mathbb{T}_{0},[0, \infty)\right)$ such that

$$
\begin{equation*}
\|w(t)\| \leq h(t) \quad \Delta \text {-a.e. on } \mathbb{T}_{0} \quad \text { for all } w \in \mathcal{F}(x) \text { and all } x \in C\left(\mathbb{T}, \mathbb{R}^{n}\right) \tag{3.3}
\end{equation*}
$$

Proof. First of all, we want to show that \mathcal{F} has nonempty values. Let $x \in C\left(\mathbb{T}, \mathbb{R}^{n}\right)$. There exists a sequence of simple functions $\left\{x_{m}\right\}_{m \in \mathbb{N}}$ such that

$$
\begin{aligned}
& \left\|x_{m}(\sigma(t))-v(\sigma(t))\right\|>M(\sigma(t)) \\
& \Delta \text {-a.e. on }\{t:\|x(\sigma(t))-v(\sigma(t))\|>M(\sigma(t))\},
\end{aligned}
$$

and such that $x_{m} \rightarrow \bar{x}$ in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$. Since the multivalued maps $t \mapsto F(t, y)$ and $t \mapsto G(t, y)$ are Δ-measurable for every $y \in \mathbb{R}^{n}$, the maps $t \mapsto F\left(t, x_{m}(\sigma(t))\right)$ and $t \mapsto G\left(t, x_{m}(\sigma(t))\right)$ are also Δ-measurable for every $m \in \mathbb{N}$.

Proposition 2.2 implies that, for every $m \in \mathbb{N}$,

$$
t \mapsto F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)
$$

is Δ-measurable, and for every $k \in \mathbb{N}$,

$$
t \mapsto \bigcup_{m \geq k}\left(F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)\right)
$$

is Δ-measurable. Again, Propositions 2.1 and 2.2 imply that

$$
t \mapsto \bigcap_{k \in \mathbb{N}} \overline{\bigcup_{m \geq k}\left(F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)\right)}
$$

is Δ-measurable.
Definition 3.1(a) guarantees that this map has nonempty values Δ-almost everywhere on $\{t: M(\sigma(t)) \neq 0\}$. Indeed, Δ-almost everywhere on

$$
\{t: M(\sigma(t)) \neq 0 \text { and }\|\bar{x}(\sigma(t))-v(\sigma(t))\|<M(\sigma(t))\}
$$

for $m \geq k$ sufficiently large, $\left\|x_{m}(\sigma(t))-v(\sigma(t))\right\|<M(\sigma(t))$ and

$$
F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)=F\left(t, x_{m}(\sigma(t))\right) \cap \mathbb{R}^{n} \neq \emptyset
$$

On the other hand, for Δ-almost every

$$
t \in\{t:\|\bar{x}(\sigma(t))-v(\sigma(t))\|=M(\sigma(t))>0\}
$$

if there exists $m \geq k$ such that $\left\|x_{m}(\sigma(t))-v(\sigma(t))\right\| \leq M(\sigma(t))$, then as before, $F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right) \neq \emptyset$. Otherwise, there exists a $\delta>0$ given by Definition 3.1(a) and $m \geq k$ sufficiently large such that

$$
\left\|x_{m}(\sigma(t))-\bar{x}(\sigma(t))\right\|<\delta, \quad\left\|x_{m}(\sigma(t))-v(\sigma(t))\right\|>M(\sigma(t)),
$$

and there exists $z \in F\left(t, x_{m}(\sigma(t))\right)$ such that

$$
\left\langle x_{m}(\sigma(t))-v(\sigma(t)), z-v^{\Delta}(t)\right\rangle \leq\left\|x_{m}(\sigma(t))-v(\sigma(t))\right\| M^{\Delta}(t),
$$

i.e. $z \in F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)$.

Thus, the multivalued map $\Gamma: \mathbb{T}_{0} \rightarrow L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$ defined by

$$
\Gamma(t)= \begin{cases}\bigcap_{k \in \mathbb{N}} \overline{\bigcup_{m \geq k}\left(F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)\right)} & \text { if } t \in\{t: M(\sigma(t)) \neq 0\} \\ v^{\Delta}(t) & \text { if } t \in\{t: M(\sigma(t))=0\}\end{cases}
$$

is Δ-measurable and has nonempty and compact values. Finally, Theorem 2.3 guarantees the existence of a Δ-measurable selection w of Γ.

We must show that $w \in \mathcal{F}(x)$. Since $w(t) \in \Gamma(t) \Delta$-a.e., we have,

$$
w(t) \in \overline{\bigcup_{m \geq k}\left(F\left(t, x_{m}(\sigma(t))\right) \cap G\left(t, x_{m}(\sigma(t))\right)\right)} \quad \Delta \text {-a.e. in }\{t: M(\sigma(t)) \neq 0\}
$$

for every $k \in \mathbb{N}$. So, for Δ-almost every $t \in\{t: M(\sigma(t)) \neq 0\}$, there exists a subsequence

$$
u_{m_{l}}(t) \in F\left(t, x_{m_{l}}(\sigma(t))\right) \cap G\left(t, x_{m_{l}}(\sigma(t))\right)
$$

such that $u_{m_{l}}(t) \rightarrow w(t)$. If $\|x(\sigma(t))-v(\sigma(t))\| \leq M(\sigma(t))$, since $y \mapsto F(t, y)$ and $y \mapsto G(t, y)$ have closed graph and since $x_{m_{l}}(\sigma(t)) \rightarrow \bar{x}(\sigma(t))=x(\sigma(t))$, we deduce that

$$
w(t) \in F(t, \bar{x}(\sigma(t))) \cap G(t, x(\sigma(t)))=F_{0}(t, x(\sigma(t)))
$$

On the other hand, if $\|x(\sigma(t))-v(\sigma(t))\|>M(\sigma(t))$, since $x_{m_{l}}(\sigma(t)) \rightarrow \bar{x}(\sigma(t))$, there exists a sequence $\left\{y_{m_{l}}\right\}$ such that

$$
x^{-}\left(\sigma(t), y_{m_{l}}\right)=\bar{x}_{m_{l}}(\sigma(t)), \quad y_{m_{l}} \rightarrow x(\sigma(t))
$$

and

$$
x_{m_{l}}(\sigma(t))=\theta_{m_{l}} \bar{x}_{m_{l}}(\sigma(t))+\left(1-\theta_{m_{l}}\right) y_{m_{l}}=\left(y_{m_{l}}\right)_{\theta_{m_{l}}} \quad \text { for some } \theta_{m_{l}} \in[0,1[
$$

By Remark 3.2(a),

$$
u_{m_{l}}(t) \in F\left(t, x_{m_{l}}(\sigma(t))\right) \cap G\left(t, x_{m_{l}}(\sigma(t))\right)=F\left(t, x_{m_{l}}(\sigma(t))\right) \cap G\left(t, y_{m_{l}}\right)
$$

Again, since $y \mapsto F(t, y)$ and $y \mapsto G(t, y)$ have closed graph and since $x_{m_{l}}(\sigma(t))$ $\rightarrow \bar{x}(\sigma(t))$ and $y_{m_{l}} \rightarrow x(\sigma(t))$, we can deduce that

$$
w(t) \in F(t, \bar{x}(\sigma(t))) \cap G(t, x(\sigma(t)))=F_{0}(t, x(\sigma(t)))
$$

Moreover, Definition 3.1(b) implies that Δ-a.e. on $\{t: M(\sigma(t))=0\}$,

$$
w(t)=v^{\Delta}(t) \in F(t, \bar{x}(\sigma(t))) \cap G(t, x(\sigma(t)))=F_{0}(t, x(\sigma(t)))
$$

Hence, we can conclude that $w \in \mathcal{F}(x)$ since by hypothesis $(\mathrm{F} 2), w \in L_{\Delta}^{1}\left(\mathbb{T}_{0}, \mathbb{R}^{n}\right)$.
The convexity of $\mathcal{F}(x)$ follows from convexity of the values of F and G.
Finally, hypothesis (F2) guarantees the existence of $h:=h_{r} \in L_{\Delta}^{1}\left(\mathbb{T}_{0},[0, \infty)\right)$ with $r=\max \{\|v(t)\|+M(t): t \in \mathbb{T}\}$ such that for every $x \in C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ and every $w \in \mathcal{F}(x)$,

$$
\|w(t)\| \leq h(t) \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0}
$$

Now, we define the multivalued operator $T_{I}: C\left(\mathbb{T}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ by

$$
\begin{aligned}
& T_{I}(x)=\left\{u \in C\left(\mathbb{T}, \mathbb{R}^{n}\right):\right. \\
& u(t)=e_{1}(a, t)\left(x_{0}+\int_{[a, t) \cap \mathbb{T}} e_{1}(s, a)(w(s)+\bar{x}(\sigma(s))) \Delta(s)\right) \\
&\text { where } w \in \mathcal{F}(x)\} .
\end{aligned}
$$

We show that T_{I} has nice properties. Many arguments in the following proof are analogous to those used in the classical case (i.e. $\mathbb{T}=[a, b]$), see for instance [13], [17].

Proposition 3.5. Assume (F1), (F2) and (ST). The operator T_{I} is compact, u.s.c., with nonempty, convex and compact values.

Proof. The previous proposition insures that T_{I} has nonempty, convex values, and guarantees the existence of $h \in L_{\Delta}^{1}\left(\mathbb{T}_{0},[0, \infty)\right)$ satisfying (3.3).

Set $r=\max \{\|v(t)\|+M(t): t \in \mathbb{T}\}$ and $c=\max \left\{\left|e_{1}(t, s)\right|: t, s \in \mathbb{T}\right\}$. To show that $T_{I}\left(C\left(\mathbb{T}, \mathbb{R}^{n}\right)\right)$ is bounded, we just have to remark that for every $u \in T_{I}\left(C\left(\mathbb{T}, \mathbb{R}^{n}\right)\right)$,

$$
\|u(t)\| \leq c\left(\left\|x_{0}\right\|+\int_{[a, b) \cap \mathbb{T}} c(r+h(s)) \Delta(s)\right) \quad \text { for all } t \in \mathbb{T} .
$$

On the other hand, for every $t>\tau \in \mathbb{T}$,

$$
\begin{aligned}
\|u(t)-u(\tau)\| \leq & \left\|x_{0}\right\|\left|e_{1}(a, t)-e_{1}(a, \tau)\right| \\
& +\left|e_{1}(a, t)-e_{1}(a, \tau)\right| \int_{[a, \tau) \cap \mathbb{T}} e_{1}(s, a)(w(s)+\bar{x}(\sigma(s))) \Delta(s) \mid \\
& +\left|e_{1}(a, t)\right|\left|\int_{[\tau, t) \cap \mathbb{T}} e_{1}(s, a)(w(s)+\bar{x}(\sigma(s))) \Delta(s)\right| \\
\leq & \left|e_{1}(a, t)-e_{1}(a, \tau)\right|\left(\left\|x_{0}\right\|+\int_{[a, b) \cap \mathbb{T}} c(h(s)+r) \Delta(s)\right) \\
& +c^{2} \int_{[\tau, t) \cap \mathbb{T}}(h(s)+r) \Delta(s) .
\end{aligned}
$$

Thus, $T_{I}\left(C\left(\mathbb{T}, \mathbb{R}^{n}\right)\right)$ is equicontinuous since

$$
t \mapsto e_{1}(a, t) \quad \text { and } \quad t \mapsto \int_{[a, t) \cap \mathbb{T}}(h(s)+r) \Delta(s)
$$

are continuous on \mathbb{T}. By an analogous version of the Arzelà-Ascoli Theorem adapted to our context, we conclude that $T_{I}\left(C\left(\mathbb{T}, \mathbb{R}^{n}\right)\right)$ is relatively compact in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$.

We now prove that T_{I} has closed graph. Let $\left\{x_{m}\right\}$ and $\left\{u_{m}\right\}$ be convergent sequences in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ such that $x_{m} \rightarrow x, u_{m} \rightarrow u$ and $u_{m} \in T_{I}\left(x_{m}\right)$. Let $w_{m} \in \mathcal{F}\left(x_{m}\right)$ be such that

$$
u_{m}(t)=e_{1}(a, t)\left(x_{0}+\int_{[a, t) \cap \mathbb{T}} e_{1}(s, a)\left(w_{m}(s)+\bar{x}_{m}(\sigma(s))\right) \Delta(s)\right) .
$$

Let h be the function given in (3.3). Considering the extensions \widehat{w}_{m} and \widehat{h} in $L^{1}([a, b])$, we have

$$
\left\|\widehat{w}_{m}(t)\right\| \leq \widehat{h}(t) \quad \text { for almost every } t \in[a, b]
$$

By Dunford-Pettis' Theorem, there exists $g \in L^{1}\left([a, b], \mathbb{R}^{n}\right)$ and a subsequence still denoted $\left\{\widehat{w}_{m}\right\}$ such that $\widehat{w}_{m} \rightharpoonup g$ in $L^{1}\left([a, b], \mathbb{R}^{n}\right)$. Since a closed convex set
is weakly closed, there exist

$$
\widehat{z}_{m} \in \operatorname{co}\left\{\widehat{w}_{m}, \widehat{w}_{m+1}, \ldots\right\}
$$

such that

$$
\widehat{z}_{m} \rightarrow g \quad \text { in } L^{1}\left([a, b], \mathbb{R}^{n}\right)
$$

Thus, there exists a subsequence again noted $\left\{\widehat{z}_{m}\right\}$ such that,

$$
\widehat{z}_{m}(t) \rightarrow g(t) \quad \text { for almost every } t \in[a, b] .
$$

Therefore, for almost every $t \in[a, b]$,

$$
\widehat{z}_{m}(t) \in \operatorname{co}\left\{\bigcup_{l \geq m} \widehat{w}_{l}(t)\right\} \subset \operatorname{co}\left\{\bigcup_{l \geq m} \widehat{F}\left(t, \bar{x}_{l}(\sigma(t))\right) \cap \widehat{G}\left(t, x_{l}(\sigma(t))\right)\right\}
$$

where the multivalued maps \widehat{F} and \widehat{G} are respectively extensions of the multivalued maps F and G in the sense of (2.1). Taking the limit, we get

$$
\begin{aligned}
g(t) \in \bigcap_{m \in \mathbb{N}} \overline{\operatorname{co}}\left\{\bigcup_{l \geq m} \widehat{F}\left(t, \bar{x}_{l}(\sigma(t))\right)\right. & \left.\cap \widehat{G}\left(t, x_{l}(\sigma(t))\right)\right\} \\
& \subset \widehat{F}(t, \bar{x}(\sigma(t))) \cap \widehat{G}(t, x(\sigma(t)))=\widehat{F}_{0}(t, x(\sigma(t))),
\end{aligned}
$$

since $x_{m} \rightarrow x$ in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ and since $y \mapsto \widehat{F}(t, y)$ and $y \mapsto \widehat{G}(t, y)$ have closed graph and closed, convex values.

By Theorem 2.10, there exists a function $w: \mathbb{T}_{0} \rightarrow \mathbb{R}^{n}$ such that $g=\widehat{w}$. So,

$$
w(t) \in \widehat{F}_{0}(t, x(\sigma(t)))=F_{0}(t, x(\sigma(t))) \quad \Delta \text {-a.e. } t \in \mathbb{T}_{0} .
$$

Thus, $w \in \mathcal{F}(x)$.
Finally, since $\widehat{w}_{m} \rightharpoonup \widehat{w}$ in $L^{1}\left([a, b], \mathbb{R}^{n}\right)$ and $x_{m} \rightarrow x$ in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$, again by Theorem 2.10, we deduce that for every $t \in \mathbb{T}$,

$$
\int_{[a, t) \cap \mathbb{T}} e_{1}(s, a)\left(w_{m}(s)+\bar{x}_{m}(\sigma(s))\right) \Delta s \rightarrow \int_{[a, t) \cap \mathbb{T}} e_{1}(s, a)(w(s)+\bar{x}(\sigma(s))) \Delta s .
$$

Moreover, since $u_{m} \rightarrow u$ in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$, we get that for every $t \in \mathbb{T}$,

$$
u(t)=e_{1}(a, t)\left(x_{0}+\int_{[a, t) \cap \mathbb{T}} e_{1}(s, a)(w(s)+\bar{x}(\sigma(s))) \Delta s\right) .
$$

Thus, $u \in T_{I}(x)$ and hence, T_{I} has closed graph.
Since T_{I} is compact and has closed graph, T_{I} has compact values.
We now prove that T_{I} is upper semi-continuous. Let $B \subset C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ be a closed set and

$$
A=\left\{x \in C\left(\mathbb{T}, \mathbb{R}^{n}\right): T_{I}(x) \cap B \neq \emptyset\right\} .
$$

Let $\left\{x_{m}\right\}$ be a sequence in A converging to x in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$. There exists $u_{m} \in$ $T_{I}\left(x_{m}\right) \cap B$. The compacity of T_{I} guarantees the existence of a subsequence still
denoted $\left\{u_{m}\right\}$ converging to u in $C\left(\mathbb{T}, \mathbb{R}^{n}\right)$. Since B is closed and T_{I} has closed graph, we deduce that $u \in T_{I}(x) \cap B$. Thus $x \in A$.

Let $T_{P}: C\left(\mathbb{T}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{T}, \mathbb{R}^{n}\right)$ be the multivalued operator defined by

$$
\begin{aligned}
& T_{P}(x)(t)=\left\{v \in C\left(\mathbb{T}, \mathbb{R}^{n}\right):\right. \\
& v(t)= \frac{1}{e_{1}(t, a)}\left(\frac{1}{e_{1}(b, a)-1} \int_{[a, b) \cap \mathbb{T}}(w(s)+\bar{x}(\sigma(s))) e_{1}(s, a) \Delta s\right. \\
&\left.\left.+\int_{[a, t) \cap \mathbb{T}}(w(s)+\bar{x}(\sigma(s))) e_{1}(s, a) \Delta s\right), \text { where } w \in \mathcal{F}(x)\right\} .
\end{aligned}
$$

The following result can be proved as the previous one.
Proposition 3.6. Assume (F1), (F2) and (ST). The operator T_{P} is compact and u.s.c. with nonempty, convex and compact values.

Now, we can obtain our main theorem.
Theorem 3.7. Assume (F1), (F2) and (ST). The problem (1.1) has a solution $x \in W_{\Delta}^{1,1}\left(\mathbb{T}, \mathbb{R}^{n}\right) \cap T(v, M)$.

Proof. By Proposition 3.5 (resp. Proposition 3.6), T_{I} (resp. T_{P}) is compact and upper semi-continuous with nonempty, convex, and compact values. It has a fixed point by the Kakutani fixed point Theorem. If (BC) denotes (1.2) (resp. (1.3)), Proposition 2.15 (resp. Proposition 2.16) implies that, x, this fixed point of T_{I} (resp. T_{P}) is a solution of Problem (3.1), (1.2) (resp. (3.1), (1.3)). To conclude, it suffices to show that $x \in T(v, M)$.

Consider the set $A=\left\{t \in \mathbb{T}_{0}:\|x(\sigma(t))-v(\sigma(t))\|>M(\sigma(t))\right\}$. By Proposition $2.6(\mathrm{~d}), \Delta$-a.e. on $A \backslash R_{\mathbb{T}}$, we have

$$
\begin{align*}
\|x(t)-v(t)\|^{\Delta} & =\frac{\left\langle x(t)-v(t), x^{\Delta}(t)-v^{\Delta}(t)\right\rangle}{\|x(t)-v(t)\|} \tag{3.4}\\
& =\frac{\left\langle x(\sigma(t))-v(\sigma(t)), x^{\Delta}(t)-v^{\Delta}(t)\right\rangle}{\|x(\sigma(t))-v(\sigma(t))\|} .
\end{align*}
$$

For $t \in A \cap R_{\mathbb{T}}, \mu_{\Delta}(\{t\})>0$ and,

$$
\begin{align*}
\|x(t)-v(t)\|^{\Delta} & =\frac{\|x(\sigma(t))-v(\sigma(t))\|-\|x(t)-v(t)\|}{\mu(t)} \tag{3.5}\\
& \leq \frac{\langle x(\sigma(t))-v(\sigma(t)), x(\sigma(t))-v(\sigma(t))-(x(t)-v(t))\rangle}{\mu(t)\|x(\sigma(t))-v(\sigma(t))\|} \\
& =\frac{\left\langle x(\sigma(t))-v(\sigma(t)), x^{\Delta}(t)-v^{\Delta}(t)\right\rangle}{\|x(\sigma(t))-v(\sigma(t))\|} .
\end{align*}
$$

Let us denote $y(t):=x^{\Delta}(t)+x(\sigma(t))-\bar{x}(\sigma(t)) \in F_{0}(t, x(\sigma(t))) \Delta$-a.e. on \mathbb{T}_{0}. Since (v, M) is a solution-tube of (1.1) and from (3.2), (3.4), (3.4), and Remark $3.2(\mathrm{~b})$, we deduce that Δ-a.e. on $\{t \in A: M(\sigma(t))>0\}$,

$$
\begin{aligned}
&(\|x(t)-v(t)\|-M(t))^{\Delta} \\
& \leq \frac{\left\langle x(\sigma(t))-v(\sigma(t)), y(t)+\bar{x}(\sigma(t))-x(\sigma(t))-v^{\Delta}(t)\right\rangle}{\|x(\sigma(t))-v(\sigma(t))\|}-M^{\Delta}(t) \\
&= \frac{\left\langle\bar{x}(\sigma(t))-v(\sigma(t)), y(t)-v^{\Delta}(t)\right\rangle}{M(\sigma(t))} \\
&+M(\sigma(t))-\|x(\sigma(t))-v(\sigma(t))\|-M^{\Delta}(t) \\
&< \frac{M(\sigma(t)) M^{\Delta}(t)}{M(\sigma(t))}-M^{\Delta}(t)=0 .
\end{aligned}
$$

On the other hand, if $M(\sigma(t))=0$, then $F_{0}(t, x(\sigma(t)))=\left\{v^{\Delta}(t)\right\}$ and Δ-a.e. on $\{t \in A: M(\sigma(t))=0\}$, we have

$$
\begin{aligned}
& (\|x(t)-v(t)\|-M(t))^{\Delta} \\
& \quad \leq \frac{\left\langle x(\sigma(t))-v(\sigma(t)), y(t)+\bar{x}(\sigma(t))-x(\sigma(t))-v^{\Delta}(t)\right\rangle}{\|x(\sigma(t))-v(\sigma(t))\|}-M^{\Delta}(t) \\
& \quad=\frac{\left\langle x(\sigma(t))-v(\sigma(t)), v^{\Delta}(t)-v^{\Delta}(t)\right\rangle}{\|x(\sigma(t))-v(\sigma(t))\|} \\
& \quad-\|x(\sigma(t))-v(\sigma(t))\|-M^{\Delta}(t)<-M^{\Delta}(t)=0 .
\end{aligned}
$$

This last equality follows from Definition 3.1(c) and Proposition 2.13.
Therefore, $r(t)=\|x(t)-v(t)\|-M(t)$ satisfies $r^{\Delta}(t)<0 \Delta$-almost everywhere on $A=\left\{t \in \mathbb{T}_{0}: r(\sigma(t))>0\right\}$. Moreover, since (v, M) is a solution-tube of (1.1), if (BC) denotes (1.2) (resp. (BC) denotes (1.3)), then $r(a) \leq 0$ (resp. $r(a)-r(b) \leq\|v(a)-v(b)\|-(M(a)-M(b)) \leq 0)$. Lemma 2.14 implies that $A=\emptyset$. Therefore, $x \in T(v, M)$ and hence, x is a solution of (1.1).

References

[1] R. P. Agarwal, M. Frigon, V. Lakshmikantham and D. O'Regan, A note on upper and lower solutions for first order inclusions of upper semicontinuous or lower semicontinuous type, Nonlinear Stud. 12 (2005), 159-163.
[2] R. P. Agarwal, D. O'Regan and V. Lakshmikantham, Discrete second order inclusions, J. Difference Equations Appl. 9 (2003), 879-885.
[3] R. P. Agarwal, V. Otero-Espinar, K. Perera and D. R. Vivero, Basic properties of Sobolev's spaces on time scales, Adv. Difference Equations, Art. ID 38121 (2006), 14 pp .
[4] F. M. Atici and D. C. Biles, First order dynamic inclusions on time scales, J. Math. Anal. Appl. 292 (2004), 222-237.
[5] C. Bereanu and J. Mawhin, Existence and multiplicity results for periodic solutions of nonlinear difference equations, J. Difference Equations Appl. 12 (2006), 677-695.
[6] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[7] , Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[8] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskĭ́, Multivalued mappings, Mathematical Analysis, vol. 19, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1982, pp. 127-230, 232 (Russian); English transl., J. Soviet Math. 24 (1982), 719-791.
[9] A. Cabada and D. R. Vivero, Criterions for absolute continuity on time scales, J. Difference Equations Appl. 11 (2005), 1013-1028.
[10] , Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral: application to the calculus of Δ-antiderivatives, Math. Comput. Modelling 43 (2006), 194-207.
[11] Q. Dai and C. C. Tisdell, Existence of solutions to first-order dynamic boundary value problems, Int. J. Difference Equations 1 (2006), 1-17.
[12] D. Franco, D. O'Regan and J. Peran, Upper and lower solution theory for first and second order difference equations, Dynam. Systems Appl. 13 (2004), 273-282.
[13] M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles, Topological Methods in Differential Equations and Inclusions (Montréal, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 51-87.
[14] \qquad , Systems of first order differential inclusions with maximal monotone terms, Nonlinear Anal. 66 (2007), 2064-2077.
[15] M. Frigon and D. O'Regan, Nonlinear first order initial and periodic problems in Banach spaces, Appl. Math. Lett. 10 (1997), 41-46.
[16] H. Gilbert, Existence theorems for first order equations on time scales with Δ-Carathéodory functions, Adv. Difference Equations, Art. ID 650827 (2010), 20 pp.
[17] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, second ed., Topological Fixed Point Theory and Its Applications, vol. 4, Springer, Dordrecht, 2006.
[18] S. Hilger, Analysis on measure chain - A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.
[19] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
[20] B. Mirandette, Résultats d'existence pour des systèmes d'équations différentielles du premier ordre avec tube-solutions, Master Thesis (1996), Université de Montréal, Montréal.

Marléne Frigon
Département de Mathématiques et de Statistique
Université de Montréal
C.P. 6128, succ. Centre-Ville

Montréal H3C 3J7, CANADA
E-mail address: frigon@dms.umontreal.ca
Hugues Gilbert
Département de Mathématiques
Collège Édouard-Montpetit
945 Chemin de Chambly
Longueuil J4H 3M6, CANADA
E-mail address: hugues.gilbert@college-em.qc.ca
TMNA: Volume $37-2011$ - No 1

[^0]: 2010 Mathematics Subject Classification. 34N05, 34A60, 39A23.

