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In this paper, we introduce a new notion of linking which includes in particular
the notions of homotopical linking and local linking. Critical point theorems for
continuous functionals on metric spaces are presented. Finally, an application to
nonlinear elliptic problems at resonance is given. � 1999 Academic Press

1. INTRODUCTION

It is well known that the notion of linking is very important in critical
point theory. In fact, in the literature, we can find various definitions of
linking. Let us simply mention the ``homotopically linking,'' ``homologically
linking,'' ``linking in the sense of Benci�Rabinowitz,'' ``local linking,'' ...; see
for example [5, 8, 24, 27, 30, 34]. Some attempts were made to unify some
of those notions [10, 19].

In this paper, we introduce a new notion of linking on a metric space
which precises and includes many notions of linking mentionned above.
Moreover, this definition permits us to obtain much more linking sets.

On the other hand, we present as simply as possible, some important
notions in critical point theory such as families of sets intersecting a given
set, and invariance by deformations. In considering continuous functionals,
we state in an abstract setting a deformation property. Then, with those
notions and our new notion of linking, we present minimax critical point
theorems. We obtain as particular cases, generalizations of many results
such as the Mountain Pass Theorem, Saddle Point Theorem, Minimax
Theorem [2, 12, 27, 29, 30], and results of Marino, Micheletti and Pistoia
[25, 26].

Finally, we present an application to the nonlinear elliptic boundary
value problem at resonance
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2u+*m u= g(x, u)+h(x),

u |�0=0,

where [*n] is the increasing sequence of eigenvalues of &2.
Starting with the celebrated paper of Landesman and Lazer [23], many

authors treated this type of problems. Among them, we mention [1, 4,
13�16, 18, 21, 34] who treated the case where g is bounded. For the case
where g can be unbounded, we mention [3, 15, 20, 22, 31�33]. To our
knowledge, all papers concerning the case where g is unbounded rely on
degree theory. Also, many of them considered only the case *m=*1 .

In the literature, there are essentially two types of assumptions: one
involving the behavior of g at +�, and &� (Landesman�Lazer type); the
other on the sign of g(x, u)u for all u # R (for example, see [21]).

Here, we consider the case where | g(x, u)|�a+b |u|: for some :<1,
m�2, and h=sem with s # R and em the eigenvector associated to *m . In
addition, g satisfies

lim
u � �

g(x, u)=�, g(x, u) u�0 for u large enough.

However, we have no assumptions on the behavior and on the sign of g as
u goes to &�. Moreover, our existence results rely on critical point theory.
We use linking sets according to our definition, which do not link in older
senses.

In what follows, for E a Banach space, A/E, F a subspace of E, and
y # F, we denote by B( y, r) the open ball in E centered in y of radius r. We
write BF ( y, r)=B( y, r) & F, and �F A the boundary of A in F with the
induced topology. If H is an Hilbert space and H1 is a subspace of H, the
orthogonal complement of H1 is denoted by H =

1 .

2. ABSTRACT THEORY

2.1. Intersecting families

Let (X, d ) be a metric space. For a subset A of X, we denote

1(A)=[V/X : A/V (V{< if A=<)].

Definition 2.1. Let Q and A be subsets of X, and 10 a nonempty
subset of 1(A). We say that 10 intersects Q if V & Q{< for every V # 10 .

Observe that in the previous definition, Q and A can have a nonempty
intersection. Also, it is possible to have A=< or Q=X.
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Remark 2.2. The previous definition contains as special cases many
notions of linking existing in the literature. Let us recall the following
notions, and some families of subsets 10 widely used in critical point
theory:

(a) Let B be a topological n-ball, A the boundary of B, and Q/X
such that A & Q=<. It is said that A and Q homotopically link (see, for
example [8]) if 1(B, A) intersects Q, where

1(B, A)=[#(B) : # # C(B, X ), and # |A=id]/1(A).

(b) Let B be a topological n-ball, A the boundary of B, and Q/X
such that A & Q=<. It is said that A and Q homologically link (see, for
example [8]) if 1c(A) intersects Q, where

1c(A)=[ |{| : { is a singular n-chain with �{=A,

where |{| is the support of {]/1(A).

(c) Let E=E1�E2 be a Banach space. Let F be a subspace of E,
B/F, A the boundary of B in F, and Q/E such that A & Q=<. Denote

N0=[' # C(E_[0, 1], E) : '=id on E_[0] _ A_[0, 1],

'(x, t)='1(x, t)+'2(x, t) # E1�E2 with x=x1+x2 ,

'2(x, t)=x2&K(x, t), and K : E_[0, 1] � E2 is compact],

and

10=['(B, 1) : ' # N0]/1(A).

If A and Q link in the sense of Benci�Rabinowitz (see [5]), then 10

intersects Q.

(d) Let A/X be a compact subset, and Q a closed subset of X such
that A & Q=<, and let 10 be a subset of 1(A) containing only compact
subsets. It is said that A and Q link via 10 in the sense of Ghoussoub [19],
if 10 intersects Q.

(e) Let 1n=[B/X : B is closed, and cat(B; X )�n]/1(<), where
cat(B; X ) is the category of B in X.

(f) Let E be a Banach space,

1 \
n =[B/E : B is compact symmetric with respect to

the origin, and #\(B)�n]/1(<),

where #+(B) and #&(B) are respectively the genus and the cogenus of B.
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2.2. Linking

It is well known that many critical point theorems rely on the notion of
linking sets. For this reason, we are interested to extend this notion. As we
can see, in Remark 2.2 (a), (b), (c), there are three sets: Q, B and A=�B
with A kept fixed; here are three ways of generalizing the notions of
linking:

(1) to consider smaller subsets of 1(A);

(2) to consider arbitrary subets (possibly empty) A/B;

(3) to let the boundary of Q or more generally a subset of Q play a
role.

This leads to a new notion of linking which is the main definition of this
paper.

For a subset A of X, we denote

N(A)=[' # C(X_[0, 1], X ) : '=id on X_[0] _ A_[0, 1]].

Definion 2.3 (Linking) Let A/B/X, P/Q/X such that
B & Q{<, A & Q=<, and B & P=<. Let N0 be a nonempty subset of
N(A). We say that (B, A) links (Q, P) via N0 if for every ' # N0 one of the
following statements is satisfied:

(1) '(B, 1) & Q{<;

(2) '(B, ]0, 1[) & P{<.

If N0=N(A), we simply say that (B, A) links (Q, P).

Notice that in the previous definition, A and P can be empty. Also,
observe that in all definitions of linking given in Remark 2.2, A is non-
empty and P is empty. Here, in allowing A=< and P{<, we increase
considerably the number of linking sets. It is worthwhile to observe that
even when B is a n-topological ball and A is its boundary, it is possible to
have (B, A) linking (Q, <) without having A and Q linking homotopically
or homologically.

Example 2.4. (1) Let X=R2"B(0, 1). Take B=[(x, y) # S 1 : y�0],
A=[(&1, 0), (1, 0)], and Q=[0]_]&�, &1]. Then (B, A) links
(Q, <) but A and Q do not link homotopically or homologically.

(2) If A and Q link homotopically (see Remark 2.2 (a)) then
(#(B), A) links (Q, <) for every # # C(B, X ) such that # |A=id. Similarly, if
A and Q link homologically (see Remark 2.2 (b)) then ( |{|, A) links (Q, <)
for every singular n-chain { with �{=A, where |{| is the support of {.

99ON A NEW NOTION OF LINKING



(3) Let E=E1 �E2 be a Banach space with E1 finite dimensional.
Denote

Bi=BEi
(0, ri), �Bi=�Ei

B(0, ri), i=1, 2.

Since �B1 and E2 link homotopically, we have that (B1 , �B1) links (E2 , <).
Also, (B1 , �B1) links (B2 , �B2); in this case, we can not consider the
notions of homological or homotopical linkings.

(4) Let E=E1 �E2 be a Banach space with E1 finite dimensional,
and let 0{e # E2 . Denote

B1=B(0, r) & (Re�E1), �B1=�B(0, r) & (Re�E1),

B2=BE2
(e, s), �B2=�E2

B(e, s),

with |r&s|<&e&<r+s. We know that �B1 homotopically links �B2 ; so
(B1 , �B1) links (�B2 , <). Moreover, (�B1 , <) links (B2 , �B2).

Example 2.4(3)(4) are particular cases of the following three situations of
linking.

Lemma 2.5. Let E=E1�E2 be a Banach space with E1 finite
dimensional. Let U1 , U2 be open subsets of E1 and E2 , respectively, with U1

bounded and containing 0. Assume that , : U1 � E is a continuous function
such that , |�U1

=id, ,&1(E2"U2 )=<, then (,(U1 ), �U1) links (U2 , �U2).

Proof. Let ' # N(�U1). Define H : U1_[&1, 1] � E1 by

H(x, s)={PE1
('(,(x), s)),

(1+s) PE1
(,(x))&sx,

if s # [0, 1],
if s # [&1, 0[,

where PE1
is the projection on E1 . By topological degree theory, there

exists a continuum C/U1 _[&1, 1] of zeros of H such that C & U1_[s]
{< for every s # [&1, 1]. Thus, ['(,(x), t) : (x, t) # C, t # [0, 1]] is a
connected subset of E2 . Since ,&1(E2"U2 )=<, if '(,(U1), 1) & U2 =<,
there exist t # ]0, 1[ and (x, t) # C such that '(,(x), t) # �U2 . K

Lemma 2.6. Let E=E1�E2 �E3 be a Banach space with E1�E2 finite
dimensional. Let U be an open bounded subset of E1�E2 , and F a closed
subset of E2�E3 . Assume that U & F{<, �U & F=<, and �U & E2 is a
retract of E2 �E3"F. Then (U� , �U ) links (F, <).
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Proof. Let r̂ : E2 �E3 "F � �U & E2 be a continuous retraction. Take
p # U & F, and define r : E � E2 by

r(x)={ r̂(x2+x3),
p,

if x2+x3 � F,
otherwise,

where x=x1+x2+x3 , with xi # Ei , i=1, 2, 3. Let : : E � [0, 1] be an
Uryshon's function such that :(x)=0 if and only if x # F, and :(x)=1 on
�U.

For ' # N(�U ), define H : U� _[&1, 1] � E1�E2 by

H(x, t)={'1(x, t)+:(('2+'3)(x, t))(r('(x, t))& p),
(1+t)(x1+:(x2)(r(x)& p))&t(x& p),

if t # [0,1],
if t # [&1,0[;

where '(x, t)=('1+'2+'3)(x, t). It is easy to check that 0 � H(�U_
[&1, 1]). By topological degree theory, there exists x # U such that
H(x, 1)=0, since H( } , &1)=id& p, and p # U. Thus, '(U, 1) & F{<. K

Lemma 2.7. Let E=E1�E2 �E3 be a Banach space with E1�E2 finite
dimensional. Let U be an open bounded subset of E1�E2 , and Q a closed
subset of E2�E3 such that �U & Q{<, U & �Q{<, �U & �Q=<.
Assume that �U & E2 is a retract of E2 �E3 "�Q, and �U & E2 "Q is a
retract of E2�E3 . Then (�U, <) links (Q, �Q).

Proof. Let r̂ : E2�E3"�Q � �U & E2 , and ŝ : E2�E3 � �U & E2 "Q be
continuous retractions. Without lost of generality, we can assume that r̂= ŝ
on E2�E3 "Q. Take p # U & �Q, and define r, s : E � E2 by

s(x)= ŝ(x2+x3), and r(x)={ r̂(x2+x3),
p,

if x2+x3 � �Q,
otherwise;

where x=x1+x2+x3 , with x i # Ei , i=1, 2, 3. Let :, ; : E � [0, 1] be
continuous functions such that :(x)=0 if and only if x # �Q, :(x)=1 on
�U, and ;(x)=0 if and only if x # Q.

For ' # N(<), define H : U� _[&1, 1] � E1�E2 by

'1(x, t)+(1&t) :(('2+'3)(x, t))(r('(x, t))& p)

+t(1&:(x)(1&;('(x, t))))(s('(x, t))& p),

H(x, t)={ if t # [0, 1];

(1+t)(x1+:(x2)(r(x)& p))&t(x& p),

if t # [&1, 0[;
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where '(x, t)=('1+'2+'3)(x, t). It is easy to verify that 0 � H(�U_
[&1, 0]). Since H( } , &1)=id& p, and p # U, by topological degree theory,
one of the following statements hold:

(a) there exist x # �U, t # ]0, 1[ such that H(x, t)=0;

(b) there exists x # U� such that H(x, 1)=0.

If (a) holds, :(x)=1, '(x, t)=('2+'3)(x, t), and

0={((1&t) :('(x, t))+t;('(x, t)))(r('(x, t))& p),
(1&t) :('(x, t))(r('(x, t))& p),

if '(x, t) � Q,
if '(x, t) # Q.

Thus, '(�U_]0, 1[) & �Q{<, so condition (2) of Definition 2.3 is satisfied.
If (b) holds, '(x, t)=('2(x, t)+'3(x, t)), and

(1&:(x)(1&;('(x, 1))))(s('(x, 1))& p)=0.

This implies that :(x)=1 and ;('(x, 1))=0; that is x # �U, and
'(x, 1) # Q. K

Remark 2.8. (a) In the three previous lemmas, if we do not assume that
E1 is finite dimensional, we can obtain linking via N0 with

N0=[' # N(A) : PE1
b '(x, t)=x&`(x, t)

with ` completely continuous],

where A=�U1 and PE1
b ,=id&� with � compact in Lemma 2.5; and

A=�U and A=< in Lemmas 2.6 and 2.7, respectively, with E2 finite
dimensional.

(b) To our knowledge, Lemmas 2.6 and 2.7 are the first results of
this type allowing dimension of E2 to be larger than one.

(c) Lemmas 2.6 and 2.7 can be weaken if we introduce the following
definition:

Let C/D be two nonempty subsets of a topological space Y.
We say that C is a pseudo-retract of Y relative to D if there
exists a continuous function r : X � D such that r(x)=x for
every x # C.

Lemma 2.6 is true if we assume that �U & E2 is a pseudo-retract of
E2�E3 "F relative to E2"F. Similarly, Lemma 2.7 is true if �U & E2 and
�U & E2"Q are respectively pseudo-retracts of E2 �E3"�Q and E2�E3

relative to E2"�Q.
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It is clear that from linking sets, other linkings sets can be obtained. In
what follows, we use the convention: d(<, S)=�.

Lemma 2.9. Suppose that (B, A) links (Q, P), and assume there exists
_>0 such that _<d(B, P) and _<d(A, Q). If ' # N(<) is such that
d('(x, t), x)�_ for every x and t, then ('(B, 1), '(A, 1)) links (Q, P).

Proof. It is obvious that '(B, 1) & P=<, and '(A, 1) & Q=<.
Let $>0 be such that _+$<d(B, P) and _+$<d(A, Q), and let
* : X � [0, 1] be an Urysohn's function such that *(x)=0 on A� and
*(x)=1 on X"B(A, $�2). Define '~ : X_[0, 1] � X by '~ (x, t)='(x, *(x)t).
Since '~ # N(A), and (B, A) links (Q, P), we have '~ (B, 1) & Q{<, and
hence '(B, 1) & Q{<. Finally, let '0 # N('(A, 1)). Take ; an Urysohn's
function such that ;(x)=0 on B(A, $�2) and ;(x)=1 on X"B(A, $). Define

'~ (x, 2t), if t�1�2,

'̂(x, t)={'~ (x, 1), if t>1�2, x # B(A, $�2),

'0('(x, 1), ;(x)(2t&1)), otherwise.

Since '̂ # N(A) and (B, A) links (Q, P), we get that '0('(B, 1), 1) & Q{<
or '0('(B, 1), ]0, 1]) & P{<. K

2.3. Linking in Taking into Account the Functional

Let f : X � R be a continous functional, and let A be a subset of X. Recall
that N(A) is the set of continuous deformations of X keeping A fixed.
Taking into account the functional f, we consider the following subset of
N(A):

Nf (A)=[' # C(X_[0, 1], X ) : '=id on X_[0] _ A_[0, 1] and

f ('(x, t))� f (x) for all x and t].

As we will see, using our notion of linking and restricting ourself to
deformations ' such that f ('(x, t))� f (x) will permit us to get more
families of sets 10 intersecting some set Q.

Lemma 2.10. Let A be a subset of X, and N0/Nf (A). Suppose that
(B, A) links (Q, P) via N0 . If f (x)< f ( y) for every x # B, and every y # P,
then condition (2) of Definition 2.3 never holds. In other words, the set

10=['(B, 1) : ' # N0]/1(A)

intersects Q.
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Observe that the conclusion of this lemma is false if we consider
deformations not satisfying f ('(x, t))� f (x) when P{<.

2.4. Deformation Property

As before, let f : X � R be a continuous functional. Let K be a subset of
X that we call the set of critical points of f. For c # R, we denote by Kc the
set of critical points at level c, that is Kc=K & f &1(c).

In this paragraph, we want to define a deformation property for f (see
also [10] for deformation properties in an abstract setting).

Definition 2.11. Let f : X � R be a continuous functional, c # R, Kc the
set of critical points of f at level c, A/X, and let N0 be a nonempty subset
of Nf (A). We say that f satisfies property D(c, N0) if for every _>0, and
every open neighborhoods O of Kc , and U of A (O (resp. U) can be empty
if Kc (resp. A) is empty), there exist ' # N0 , and =>0 such that

(1) f ('(x, 1))�c&= for every x # [x # X"(O _ U) : f (x)�c+=];

(2) d('(x, t), x)�_.

Lemma 2.12. Let X be a metric space, f : X � R a continuous functional,
c # R, and let A be a closed subset of X. Assume that f satisfies D(c, Nf (<)),
then it satisfies the property D(c, Nf (A)).

Proof. Let _>0, and O an open neighborhood of Kc . By assumption
there exist =>0 and ' # Nf (<) such that d('(x, t), x)�_, and f ('(x, 1))�
c&= for every x # [x # X"O : f (x)�c+=]. Let U be an open neighborhood
of A. Take * : X � [0, 1] an Urysohn's function such that *(x)=0 on A
and *(x)=1 on X"U. The function '~ # Nf (A) defined by '~ (x, t)=
'(x, *(x)t) is the desired deformation. K

In the literature, we can find many results establishing deformation
properties. Many of them are obtained with A= f &1(]&�, c&=0] _
[c+=0 , �[), see for example [2, 5, 7�9, 12, 28, 30].

3. MINIMAX TYPE THEOREMS

3.1. General Results

Using the notions previously introduced, we give the main result of this
paper. The proof is similar to the one given in [11], we give it for sake
of completness. We use the following conventions: sup f (<)=&�,
inf f (<)=�.
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Theorem 3.1. Let X be a metric space, and f : X � R a continuous
functional. Assume that there exist two pairs (B, A) and (Q, P) such that
(B, A) links (Q, P),

f (x)< f ( y) for every x # B, y # P; sup f (A)�inf f (Q),

with a strict inequality if d(A, Q)=0. Let

c= inf
' # Nf (A)

sup f ('(B, 1)).

If c # R, and f satisfies the property D(c, Nf (A)), then Kc{<. Moreover, if
c=inf f (Q), then d(Kc , Q)=0.

Proof. By Lemma 2.10, c�inf(Q). Denote

C={
Q, if c=inf f (Q),

.
' # Nf (A)

'(B, 1) otherwise.

Assume that d(Kc , C){0. Fix _>0 such that d(Kc , C )>2_, and
d(A, Q)>2_ if c=sup f (A).

Take O=B(Kc , _), and

U={ B(A, _),
f &1(]&�, c&$[),

if c=sup f (A);
if c>c&$>sup f (A), for some $>0.

Since f satisfies the property D(c, Nf (A)), there exist =>0 and ' # Nf (A)
satisfying the conditions (1) and (2) of Definition 2.11.

Let '̂ # Nf (A) be such that sup f ('̂(B, 1))�c+=. Since '('̂(x, t), t) #
Nf (A), by Lemma 2.10, we can choose y # '̂(B, 1) such that '( y, 1) # C and
f ('( y, 1))>c&min[=, $]. On the other hand, since d('( y, 1), y)�_ and
f ('( y, 1))� f ( y), we have that y � O _ U. So, f ('( y, 1))�c&=, which is a
contradiction. K

Corollary 3.2. Let X be a metric space and f : X � R a continuous
functional. Assume that there exist two pairs (B, A) and (Q, P) such that
(B, A) links (Q, P), d(A, Q)>0, d(B, P)>0,

sup f (A)�a=inf f (Q)�sup f (B)=b�inf f (P).

If a, b # R and f satisfies the property D(c, Nf (<)) for every c # [a, b], then
Kc{< for some c # [a, b]. Moreover, c<inf f (P), or d(Kc , B)=0.

Proof. First case. Suppose that b<inf f (P). Without lost of generality,
we can assume that A is closed. By Lemma 2.12, we have that f satisfies

105ON A NEW NOTION OF LINKING



D(c, Nf (A)). The previous theorem implies that Kc{< for some
c # [a, b].

Second case. Suppose that b=inf f (P). If d(Kb , B){0, fix _>0 such
that _<d(Kb , B), _<d(B, P) and _<d(A, Q). From the deformation
property (with O=B(Kb , _)), we deduce that there exist =>0, and
' # N(<) such that d('(x, t), x)�_, and f ('(x, 1))�b&= for every x # B.
By Lemma 2.9, ('(B, 1), '(A, 1)) links (Q, P). The conclusion follows from
the first case. K

Theorem 3.1 can be generalized. For that, we need to introduce the
following notion:

Definition 3.3. Let A be a subset of X, N0 a nonempty subset of
N(A), and 10 a nonempty subset of 1(A). We say that 10 is invariant with
respect to N0 if the set '(V, 1) # 10 for every V # 10 , and every ' # N0 .

Remark 3.4. Similar (but slightly less general) notions already exist in
the literature. For example, the notion of ``isotopy ambient invariant
family'' 10/1(<), introduced by Palais [29]; or the notion of ``homotopy
stable family with boundary A'' 10/1(A), introduced by Ghoussoub [19]
in the equivariant context.

Remark 3.5. Theorem 3.1 can be stated more generally if we replace
Nf (A) by N0/Nf (A), and if we assume that (B, A) links (Q, P) via N0 ,
and

10=['(B, 1) : ' # N0]

is invariant with respect to N0 .

The two previous results are particular cases of the following theorem.
The proof is analogous to the one of Theorem 3.1.

Theorem 3.6. Let X be a metric space, f : X � R a continuous functional,
and K its set of critical points. Let A/X, N0/Nf (A), and 10/1(A)
nonempty and invariant with respect to N0 . Assume that there exists Q/X
such that 10 intersects Q, and

inf
V # 10

sup f (V & Q)�sup f (A)

with a strict inequality if d(A, Q)=0. Let

c= inf
V # 10

sup f (V ).
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If c # R, and f satisfies the property D(c, N0), then Kc{<. Moreover, if

c= inf
V # 10

sup f (V & Q),

then d(Kc , Q)=0.

As corollary, we get the following Minimax Principle in taking Q=X.

Theorem 3.7. Let X be a metric space, and f : X � R a continuous
functional. Let N0/Nf (<), 10/1(<) nonempty and invariant with respect
to N0 , and let

c= inf
V # 10

sup f (V ).

If c # R, and f satisfies D(c, N0) then Kc{<.

3.2. Some particular cases

In this paragraph, we give some particular cases of the previous
theorems with

K=[x # X : |df |(x)=0],

where |df | denote the weak slope of f (the reader is referred to [17] or
[12] for the definition). Recall that |df |(x)=& f $(x)& if f is C1. We give the
definition of the Palais�Smale condition which is used to obtain a deforma-
tion theorem.

Definition 3.8. Let c # R. We say that f satisfies the Palais�Smale
condition at level c ((PS)c) if every sequence [xn] in X such that f (xn) � c
and |df |(xn) � 0, has a converging subsequence.

Combining Lemma 2.12 and Theorem 2.14 of [12] gives the following
result.

Theorem 3.9. Let X be a complete metric space, f : X � R a continuous
functional, c # R, and let A be a closed subset of X. Assume that f satisfies
(PS)c , then it satisfies the property D(c, Nf (A)).

The next result is a direct consequence of Lemma 2.5, Corollary 3.2, and
Theorem 3.9.

Theorem 3.10. Let E=E1�E2 be a Banach space with E1 finite dimen-
sional, and let f : E � R be a continuous functional. Assume that there exist
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U1 , U2 open neighborhoods of 0 in E1 and E2 , respectively, with U1 bounded,
and

sup f (�U1)�m=inf f (U2 )�sup f (U1 )=M�inf f (�U2).

If f satisfies (PS)c for every c # [m, M], then f has a critical point.

Remark 3.11. (i) Observe that if U2=E2 , the previous theorem is the
Saddle Point Theorem.

(ii) In the case where Ui=BEi
(0, ri), the previous theorem

generalizes Theorem 8.1 of [26]. Moreover, if m=M, this corresponds to
a local linking (see [24] and, also, [6]).

(iii) We can replace U1 by ,(U1 ), where , is as in Lemma 2.5.

Theorem 3.12. Let E=E1�E2 �E3 be a Banach space with E1�E2

finite dimensional, and f : E � R a continuous functional. Let U be an open
bounded subset of E1�E2 , and Q a closed subset of E2�E3 such that
�U & Q{<, U & �Q{<, �U & �Q=<, �U & E2 is a retract of E2�E3"�Q,
and �U & E2"Q is a retract of E2 �E3 . Assume that

&�<m=inf f (Q)�sup f (�U )�inf f (�Q)�sup f (U� )=M.

If f satisfies (PS)c for every c # [m, M], then f has at least two critical
points.

Proof. By Lemma 2.6, (U� , �U ) links (�Q, <). Theorems 3.1 and 3.9
implies that Kc0

{< for some c0�inf f (�Q). Moreover, if c0=inf f (�Q)
then Kc0

& �Q{<.
On the other hand, (�U, <) links (Q, �Q) by Lemma 2.7. Again,

Corollary 3.2, and Theorem 3.9 implies that Kc1
{< for some c1�

inf f (�Q). Moreover, if c1=inf f (�Q), Kc1
& �U{<. Therefore, f has at

least two critical points, since c1<c0 , or c=c1=c0 , Kc & �U{<, and
Kc & �Q{<. K

Remark 3.13. (i) The Mountain Pass Theorem is a particular case of
this theorem with E1=[0], E2=Re for some e{0, y=e�2, r=&e&�2,
U=BE1�E2

( y, r) and Q=BE2�E3
(0, s) for some s<&e&.

(ii) The previous theorem is a generalization of Theorem 8.2 in [26].
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4. APPLICATION

Let 0 be a bounded smooth domain of Rn, and let [*n] be the
nondecreasing sequence of eigenvalues of &2, and [en] the corresponding
sequence of eigenvectors such that

|
0

|{en |2 dx=1=*n |
0

e2
n dx.

Denote En=span[e1 , ..., en].
In this section, we want to present an application of Theorem 3.1 to the

following problem

2u+*mu= g(x, u)+sem ,
(P)

u |�0=0,

where g : 0� _R � R is continuous. Define

G(x, u)=|
u

0
g(x, y) dy.

4.1. A General Result

We make the following assumptions:

(H1) m�2, and *m&1<*m<*m+1 ;

(H2) g : 0� _R � R is continuous;

(H3) there exist 1<#�;�:<2, A1 # R, and A\
2 , B1 , B2>0 such

that

A1+A+
2 (u+);&A&

2 (u&)#�G(x, u)�B1+B2 |u|:;

and if #=;,

A+
2 |

[em>0]
e;

m dx>A&
2 |

[em<0]
|em |; dx;

(H4) there exist 1<'<`<2, q # R, and bi>0, i=1, ..., 4, such that

G(x, u)+ g(x, u)(qu+ y)�b1(u+)`&b2(u&)'&b3 | y| `&b4 ;

(H4*) there exist 1<`<2, qj , b j
i # R, j=1, 2, i=1, ..., 4, such that

for j=1, 2,

G(x, u)+ g(x, u)(qju+ y)�b j
1(u+)`&b j

2(u&)`&b j
3 | y| `&b j

4 ;

109ON A NEW NOTION OF LINKING



and

b j
1 |

[(&1) j em<0]
|em | ` dx>b j

2 |
[(&1) j em>0]

|em | ` dx,

where u+=max[u, 0], u&=&min[u, 0].
We state the main theorem of this section.

Theorem 4.1. Assume that (H1)�(H3), and (H4) or (H4*) are satisfied.
Then, there exists s0<0 such that for every s<s0 , the problem (P) has a
solution.

Consider the functional I : H 1
0(0) � R defined by

I(u)=|
0

|{u|2

2
&

*m

2
u2+G(x, u)+su em dx,

It is easy to ckeck that

I$(u)(v)=|
0

{u } {v&*muv+ g(x, u)v+sv em dx for every v # H 1
0(0).

Hence, critical points of I are solutions of (P).
To prove Theorem 4.1, we need to establish the Palais�Smale condition.

We will use the following lemma.

Lemma 4.2. Let %>1, for every =>0, there exists k such that

|u|%+= |u|%+k |z|%�|u+z|%�|u|%&= |u|%&k |z|%,

for every u, z # R.

Proposition 4.3. Under the assumptions (H1)�(H3),(H4), or (H4*) the
functional I satisfies (PS)c for every c # R.

Proof. By Proposition B.35 in [30], condition (PS)c is satisfied if we
show that a sequence [un] such that I(un) � c, and I$(un) � 0 as n � �, is
bounded in H 1

0(0). Write un=vn+tn em+wn with vn # Em&1 , wn # E =
m,

tn # R. Let pn # R which will be determined later. We have for n sufficiently
large

110 M. FRIGON



K+&vn &+| pn tn | &em&+&wn&

�I(un)+I$(un)(&vn+ pn tnem+wn)

=|0
|{un |2

2
&

*m

2
u2

n+G(x, un)+stn e2
m dx

&|
0

{un } {(vn& pntn em&wn)&*m un(vn& pn tn em&wn) dx

+|
0

g(x, un)(&vn+ pn tnem+wn)+spn tn e2
m dx

=|
0

&
1
2

( |{vn |2&*mv2
n)+

3
2

( |{wn |2&*mw2
n)+stn(1+ pn) e2

m dx

+|
0

G(x, un)+ g(x, un)(&vn+ pn tnem+wn) dx

�&
1
2 \1&

*m

*m&1 + &vn&2+
3
2 \1&

*m

*m+1+ &wn &2+stn(1+ pn) &em&2
L2

+|
0

G(x, un)+ g(x, un)(&vn+ pn tnem+wn) dx. (4.1)

If (H4) is satisfied, take 0<=<b1 , and write b� 1=b1&=, b� 2=b2+=. By
Lemma 4.2, there exists k such that

G(x, un)+ g(x, un)(&vn+qtn em+wn)

�b1(u+
n )`&b2(u&

n )'&b3 |(&1&q) vn+(1&q) wn | `&b4

�(b1&=)((tn em)+)`&(b2+=)((tn em)&)'&k(1+|vn | `+|wn | `)

=b� 1((tn em)+)`&b� 2((tnem)&)'&k(1+|vn | `+|wn | `). (4.2)

In fixing pn=q, inequalities (4.1) and (4.2) imply that for n sufficiently
large

K+&vn &+|qtn | &em &+&wn&

�&
1
2 \1&

*m

*m&1+ &vn&2+
3
2 \1&

*m

*m+1+ &wn &2+stn(1+q) &em&2
L2

+|
0

b� 1((tn em)+)`&b� 2((tnem)&)'&k(1+|vn | `+|wn | `) dx.

So, [un] is bounded in H 1
0(0).
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On the other hand, if (H4*) is satisfied, choose =>0 small enough such
that for j=1, 2,

(b j
1&=) |

[(&1) jem<0]
|em | ` dx>(b j

2+=) |
[(&1) jem>0]

|em | ` dx.

Write b� j
i =b j

i +(&1) i=, i, j=1, 2. By Lemma 4.2, there exists k such that

G(x, un)+ g(x, un)(&vn+qj tn em+wn)

�b j
1(u+

n )`&b j
2(u&

n )`&b j
3 |(&1&qj) vn+(1&qj) wn | `&b j

4

�(b j
1&=)((tnem)+)`&(b j

2+=)((tn em)&)`&k(1+|vn | `+|wn | `)

=b� j
1((tn em)+)`&b� j

2((tnem)&)`&k(1+|vn | `+|wn | `)

=|tn | ` (b� j
1((sgn(tn) em)+)`&b� j

2((sgn(tn) em)&)`)

&k(1+|vn | `+|wn | `). (4.3)

Now, define

pn={q1 ,
q2 ,

if tn�0,
if tn<0.

In combining inequalities (4.1) and (4.3), we get for n sufficiently large

K+&vn&+| pn tn | &em&+&wn&

�&
1
2 \1&

*m

*m&1+ &vn &2+
3
2 \1&

*m

*m+1+ &wn&2+stn(1+ pn) &em&2
L2

+|tn | ` {
b� 1

1 |
[em>0]

e`
m dx&b� 1

2 |
[em<0]

|em | ` dx,

b� 2
1 |

[em<0]
|em | ` dx&b� 2

2 |
[em>0]

|em | ` dx,

if tn�0,

if tn<0,

&k |
0

(1+|vn | `+|wn | `) dx.

So, [un] is bounded in H 1
0(0), and the proof is complete. K

Now, we can prove the main theorem of this section.

Proof of Theorem 4.1. From Proposition 4.3, we know that I satisfies
(PS)c for every c # R. We will show that there exists s0<0 such that for
every s<s0 , there exist R>0 and t̂>0 such that
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sup I(t̂em+�Em&1
B(0, R))<inf I([0, �[ em �E =

m)

�sup I(t̂em+BEm&1
(0, R) )<inf I(E =

m). (4.4)

The conclusion will follow from Theorems 3.1 and 3.9, since

(t̂em+BEm&1
(0, R), t̂em+�Em&1

B(0, R)) links ([0, �[ em�E =
m, E =

m).

More precisely, we will get u a critical point of I such that I(u)<inf I(E =
m).

For w # E =
m, we have

I(w)=|
0

|{w|2

2
&*m

w2

2
+G(x, w) dx

�
(*m+1&*m)

2
&w&2

L2+|
0

A+
2 (w+);&A&

2 (w&)# dx&k� 0

�
(*m+1&*m)

2
&w&2

L2&k� 1 &w&#
L2&k� 2

�K0 . (4.5)

Fix =>0. Using Lemma 4.2, there exists k such that for every v # Em&1 ,
and every t�0, we have

I(v+tem)=|
0

|{(v+tem)|2

2
&*m

(v+tem)2

2
+G(x, v+tem)+ste2

m dx

�
1
2 \1&

*m

*m&1+ &v&2+st &em &2
L2

+|
0

B1+B2 |v+tem |: dx

�
1
2 \1&

*m

*m&1+ &v&2+st &em &2
L2+k1

+|
0

(B2+=) |tem |:+k2 |v|: dx

�
1
2 \1&

*m

*m&1+ &v&2+k(1+&v&:)

+st &em&2
L2+t:(B2+=) |

0
|em |: dx

=K1(&v&)+hs(t)

�K2+hs(t),
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where

K1(r)=
1
2 \1&

*m

*m&1+ r2+k(1+|r| :)�K2 for all r # R,

and

hs(t)=st &em&2
L2+t:(B2+=) |

0
|em |: dx.

For every s<0, the function t [ hs(t) defined on [0, �[ achieves its
minimum at some ts>0 such that hs(ts) � &� as s � &�. Fix s0<0
such that hs(ts)<K0&K2 for every s<s0 . Now, fix s<s0 , and set t̂=ts .
Therefore, we obtain

I(v+ t̂em)<K1(&v&)+K0&K2�K0 for every v # Em&1 . (4.6)

Using (H3), we can choose = small enough such that the function

t [ st &em&2
L2+t; |

[em>0]
(A+

2 &=) e;
m dx&t# |

[em<0]
(A&

2 +=) |em | # dx

is bounded from below on [0, �[. By Lemma 4.2, there exists k� such that
for every w # E =

m and t�0 we have

I(tem+w)=|
0

|{(tem+w)|2

2
&*m

(tem+w)2

2
+G(x, tem+w)+ste2

m dx

�
(*m+1&*m)

2
&w&2

L2+st &em &2
L2&k� 0

+|
0

A+
2 ((tem+w)+);&A&

2 ((tem+w)&)# dx

�
(*m+1&*m)

2
&w&2

L2+st &em &2
L2&k� 1

+|
0

(A+
2 &=)((tem)+);&(A&

2 +=)((tem)&)#&k� 2 |w|; dx

�
(*m+1&*m)

2
&w&2

L2&k� (1+&w&;
L2)

+st &em&2
L2+t; |

[em>0]
(A+

2 &=) e;
m dx

&t# |
[em<0]

(A&
2 +=) |em | # dx

�K3 .
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So,

inf I([0, �[ em�E =
m)�K3 . (4.7)

To conclude, we fix R>0 such that K1(R)+K0&K2<K3 . Thus, by
(4.6),

I(v+ t̂em)<K3 for every v # �Em&1
B(0, R). (4.8)

Combining (4.5)�(4.8) gives (4.4). K

4.2. Some Corollaries

We present some corollaries of Theorem 4.1 in the particular case where
the function g satisfies the following growth condition.

(H5) there exist 1<#�;�:<2, a1 , b1 , b&
2 # R, and a\

2 , b+
2 >0,

such that

a1+a+
2 (u+);&1+b&

2 (u&):&1�g(x, u)�b1+b+
2 (u+):&1+a&

2 (u&)#&1.

Corollary 4.4. Assume (H1), (H2), and (H5) with one of the following
statements satisfied:

(i) #<;;

(ii) #=;, and

a&
2

a+
2
|

[em<0]
|em |; dx<|

[em>0]
e;

m dx<
a+

2

a&
2
|

[em<0]
|em |; dx.

Then there exists s0<0 such that for every s<s0 , the problem (P) has a
solution.

In what follows, we will use the following lemma.

Lemma 4.5. Let %>1, for every =>0, there exists k such that

|u|%&1 (qu+z)�qu |u|%&1&= |u| %&k |z| %

for every u, z, q # R.

Proof of Corollary 4.4. It is easy to deduce that there exist A1 # R, and
A\

2 , Bi>0, i=1, 2, such that

A1+A+
2 (u+);&A&

2 (u&)#�G(x, u)�B1+B2 |u|:;
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and if #=;,

A&
2

A+
2
|

[em<0]
|em |; dx<|

[em>0]
e;

m dx<
A+

2

A&
2
|

[em<0]
|em |; dx.

Thus, (H3) is satisfied.
On the other hand, by Lemma 4.5, we get that for every =>0 there exists

k such that for every u, y # R, and every x # 0,

G(x, u)+ g(x, u)(u+ y)

�A+
2 (u+);&A&

2 (u&)#+a+
2 (u+);&1 (u+ y)+&b+

2 (u+):&1 (u+ y)&

+b&
2 (u&):&1 (u+ y)+&a&

2 (u&)#&1 (u+ y)&&k0&k1 |u|&k2 | y|

�A+
2 (u+);&A&

2 (u&)#+a+
2 (u+);&1 (u+ y)+&a&

2 (u&)#&1 (u+ y)&

&k0&k1 |u|&k3 | y|:

�A+
2 (u+);&A&

2 (u&)#+(a+
2 &=)(u+);

&(a&
2 +=)(u&)#&k4&k5 | y| :

=(A+
2 +a+

2 &=)(u+);&(A&
2 +a&

2 +=)(u&)#&k(1+| y|:).

Therefore, if (i) holds, we deduce (H4), while we deduce (H4*) with
q1=q2=1 if (ii) holds. The conclusion follows from Theorem 4.1. K

Corollary 4.6. Assume (H1), (H2), and (H5) with #=;=:, b&
2 >0,

and

|
[em>0]

e;
m dx>max {a&

2

a+
2

,
b+

2

b&
2 = |

[em<0]
|em |; dx.

Then there exists s0<0 such that for every s<s0 , the problem (P) has at
least two solutions.

Proof. We deduce that there exist A1 , B1 # R, and A\
2 , B\

2 >0 such
that

A1+A+
2 (u+):&A&

2 (u&):�G(x, u)�B1+B+
2 (u+):&B&

2 (u&):;

and

|
[em>0]

e;
m dx>max {A&

2

A+
2

,
B+

2

B&
2 = |

[em<0]
|em |; dx.
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Therefore, for every =>0 and every q<0 there exist k>0 such that for
every u, y # R and every x # 0,

G(x, u)+ g(x, u)(qu+ y)

�A+
2 (u+):&A&

2 (u&):+a+
2 (u+):&1 (qu+ y)+

&b+
2 (u+):&1 (qu+ y)&+b&

2 (u&):&1 (qu+ y)+

&a&
2 (u&):&1 (qu+ y)&&k0&k1 |u|&k2 |y|

�A+
2 (u+):&A&

2 (u&):&b+
2 (u+):&1 (qu+ y)&

+b&
2 (u&):&1 (qu+ y)+&k0&k1 |u|&k3 |y| :

�A+
2 (u+):&A&

2 (u&):+(b+
2 q&=)(u+):

&(b&
2 q+=)(u&):&k(1+| y|:)

=(A+
2 +b+

2 q&=)(u+):&(A&
2 +b&

2 q+=)(u&):&k(1+| y|:).

So, we can choose q1 , q2<0 and =>0 small enough such that for j=1, 2,

(A+
2 +b+

2 qj&=) |
[(&1) j em<0]

|em |: dx

>(A&
2 +b&

2 qj+=) |
[(&1) j em>0]

|em |: dx.

Thus (H4*) is satisfied, and I satisfies (PS )c for every c # R by
Proposition 4.3. Theorem 4.1 gives the existence of a solution u of (P)
which is such that

I(u)<inf I(E =
m).

On the other hand, fix =>0 such that

|
[em<0]

(B+
2 +=) |em |: dx&(B&

2 &=) |
[em>0]

|em |: dx<0.

Using Lemma 4.2 and arguing as in the proof of Theorem 4.1 give the
existence of k� such that for every v # Em&1 , and t # R, we have
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I(v+tem)=|
0

|{(v+tem)|2

2
&*m

(v+tem)2

2
+G(x, v+tem)+ste2

m dx

�\1&
*m

*m&1+
&v&2

2
+st &em&2

L2+k� 0

+|
0

B+
2 ((v+tem)+):&B&

2 ((v+tem)&): dx

�\1&
*m

*m&1+
&v&2

2
+k� (1+&v&:)+st &em&2

L2

+|
0

(B+
2 +=)((tem)+):&(B&

2 &=)((tem)&): dx

=K� 1(&v&)+h� s(t)

�K� 2+h� s(t),

where

K� 1(r)=\1&
*m

*m&1+
r2

2
+k� (1+|r| :)�K� 2 for every r # R,

and

h� s(t)=st &em&2
L2+|

0
(B+

2 +=)((tem)+):&(B&
2 &=)((tem)&): dx.

We can find s0<0 such that for every s<s0 , there exist t1
s <0<t2

s such
that K� 2+h� s(t i

s)<K0 , i=1, 2, where K0 is given in (4.5). Fix s<s0 . We can
choose R>0 such that

K� 1(R)+h� s(t)<K0�inf I(E =
m) for every t # [t1

s , t2
s ].

Therefore,

sup I(�Em
([t1

s , t2
s ] em+BEm&1

(0, R)))

�inf I(E =
m )�sup I([t1

s , t2
s ] em+BEm&1

(0, R)).

Theorem 3.1 implies the existence of a solution u~ of (P) such that

I(u~ )�inf I(E =
m),

since ([t1
s , t2

s ] em+BEm&1
(0, R), �Em

([t1
s , t2

s ] em+BEm&1
(0, R))) links

(E =
m, <). K
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