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Abstract. We present results on the global existence of analytic solutions to
the Cauchy problem in starshaped or convex complex domains. No growth
conditions are imposed. Our results rely on a notion of solution-tube that we
introduce.
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0. Introduction

In 1990, in a note published in the Comptes rendus de l’Académie des sciences de
Paris [1], results on the global existence of an analytic solution to the following
system of differential equations in a complex domain were presented:

u′(z) = f(z, u(z)), z ∈ Ω,

u(0) = u0 ∈ C
n.

(0.1)

That note was presented by Jean Leray. Thanks to him, the results in that note and
their presentation were much nicer than they were in the first version of that paper.
Following that note, Jean Leray [5] established results on the analytic extension of
the solution of a nonlinear analytic differential system using the method developed
in a paper of Hamada, Leray and Takeuchi [4]. This special volume dedicated to
Jean Leray leads me to reconsider this problem.

In [1], the results concerned analytic maps f satisfying a growth condition of
Wintner type (see [8]). They generalized O’Regan’s results [7].

In this paper, we establish the existence of an analytic solution to (0.1) on
a starshaped domain without assuming any growth condition on f . We intro-
duce a notion of solution-tube for this problem. This notion is inspired by the
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notion of solution-tube introduced in [2] for real second order systems of differen-
tial equations, and in [6] for real first order systems of differential equations (see
also [3]). This concept permits us to get a priori bounds for the solutions of a
suitable family of systems of differential equations. Our existence result relies on
the Leray–Schauder degree theory.

Finally, we consider other initial conditions, namely u(0) = w0 (resp. u(ζ)
= w0) and we deduce the existence of a solution (z, w0) 7→ u(z, w0) (resp. (z, w0, ζ)
7→ u(z, w0, ζ)) analytic on Ω ×O for a suitable open set O.

1. Preliminaries

Let 〈·, ·〉 be the sesquilinear form inducing the usual norm ‖ · ‖ in Cn. For Ω ⊂ C

a complex domain, we let A(Ω, Cn) (resp. A1(Ω, Cn)) be the Banach space of
maps u : Ω → C

n analytic on Ω, and continuous on Ω (resp. with u′ continuous
on Ω) endowed with the norm ‖u‖0 := max{‖u(z)‖ : z ∈ Ω} (resp. ‖u‖1 :=
max{‖u‖0, ‖u

′‖0}).
The following lemma will be used to get a priori bounds.

Lemma 1.1. Let u ∈ A1(Ω, Cn) and z, ζ ∈ Ω with z 6= ζ and [ζ, z] ⊂ Ω. Then for

all t ∈ [0, 1],

d

dt
‖u(ζ + t(z − ζ))‖2 = 2 Re((z − ζ)〈u′(ζ + t(z − ζ)), u(ζ + t(z − ζ))〉).

In what follows, we consider a complex domain Ω starshaped at 0 (i.e. tz ∈ Ω
for all (t, z) ∈ [0, 1] × Ω). We let DD(Ω, R) be the space of directionally differen-
tiable maps, i.e.

DD(Ω, R) := {M : Ω → R continuous : ∀z ∈ Ω \ {0}, the map t 7→ M(tz)

defined on [0, 1] is differentiable at t = 1}.

For M ∈ DD(Ω, R), we define

DzM(z) :=
d

dt
M(tz)|t=1.

2. Main result

Let Ω ⊂ C be a starshaped domain and f : Ω×Cn → Cn. We introduce the notion
of solution-tube for Problem (0.1).

Definition 2.1. We say that (v, M) ∈ A1(Ω, Cn) × DD(Ω, R) is a solution-tube

of (0.1) if

(i) M(z) > 0 for all z ∈ Ω, and ‖u0 − v(0)‖ < M(0);
(ii) for all (z, u) ∈ (Ω \ {0}) × C

n such that ‖u − v(z)‖ = M(z),

Re(z〈f(z, u) − v′(z), u − v(z)〉) < M(z)DzM(z);

(iii) there exists c ∈ C such that M(z) Re(cz) + DzM(z) ≥ 0 for all z ∈ Ω \ {0}.
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Remark 2.2. In the particular case where M > ‖u0‖ is a real constant, (0, M) is
a solution-tube of (0.1) if and only if

Re(z〈f(z, u), u〉) < 0 ∀z ∈ Ω \ {0} and ‖u‖ = M.

The notion of solution-tube leads to the following global existence result.

Theorem 2.3. Let the map f : Ω×Cn → Cn be analytic on Ω×Cn and continuous

on Ω×Cn. Assume that there exists a solution-tube (v, M) ∈ A1(Ω, Cn)×DD(Ω, R)
of (0.1). Then Problem (0.1) has a solution u ∈ A1(Ω, Cn) such that ‖u(z)−v(z)‖
< M(z) for all z ∈ Ω.

Proof. For λ ∈ [0, 1], we consider the family of problems

u′(z) = fλ(z, u(z)), z ∈ Ω,

u(0) = λu0 + (1 − λ)v(0);
(P1λ)

where

fλ(z, u) := λf(z, u) + (1 − λ)(v′(z) − c(u − v(z))),

where c is given in Definition 2.1.
We claim that

‖u(z) − v(z)‖ < M(z) ∀z ∈ Ω, (2.1)

for all solutions u of (P1λ) for any λ ∈ [0, 1]. Indeed, assume that u is a solution
of (P1λ) such that there exists z ∈ Ω for which ‖u(z) − v(z)‖ ≥ M(z). Obviously
λ > 0 and z 6= 0 by Definition 2.1(i) and the initial value condition. We can assume
without loss of generality that ‖u(tz)− v(tz)‖ < M(tz) for all t ∈ [0, 1[. Therefore

d

dt
(‖u(tz) − v(tz)‖2 − M2(tz))

∣

∣

∣

∣

t=1

≥ 0.

By Lemma 1.1, this means that

0 ≤ Re(z〈u′(z) − v′(z), u(z) − v(z)〉) − M(z)DzM(z).

It follows from Definition 2.1 that

0 ≤ Re(z〈fλ(z, u(z)) − v′(z), u(z) − v(z)〉) − M(z)DzM(z)

= λ(Re(z〈f(z, u(z)) − v′(z), u(z) − v(z)〉) − M(z)DzM(z))

+ (λ − 1)(M2(z) Re(cz) + M(z)DzM(z))

< 0,

a contradiction.
Now, define H : A(Ω, Cn) × [0, 1] → A(Ω, Cn) by

H(u, λ)(z) := λu0 + (1 − λ)v(0) +

∫ z

0

fλ(ζ, u(ζ)) dζ.

This operator is continuous and completely continuous since (z, u, λ) 7→ fλ(z, u, λ)
is continuous on Ω × Cn × [0, 1], and analytic on Ω × Cn with respect to (z, u).
Notice that fixed points of H(·, λ) are solutions to (P1λ).
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Define U := {u ∈ A(Ω, Cn) : ‖u(z) − v(z)‖ < M(z) ∀z ∈ Ω}. From (2.1),
H(·, λ) has no fixed point on ∂U for any λ ∈ [0, 1]. The Leray–Schauder degree
theory implies that

deg(I − H(·, 1),U , 0) = deg(I − H(·, 0),U , 0).

Here is a simple argument to show that this degree is one. Consider the family of
problems for λ ∈ [0, 1],

u′(z) = v′(z) − λc(u(z) − v(z)), z ∈ Ω,

u(0) = v(0),
(P2λ)

and define T : A(Ω, Cn) × [0, 1] → A(Ω, Cn) by

T (u, λ)(z) := v(0) +

∫ z

0

(v′(ζ) − λc(u(ζ) − v(ζ))) dζ.

Observe that T (·, 1) = H(·, 0). Also v is the unique solution of (P2λ), i.e. the
unique fixed point of T (·, λ), for every λ ∈ [0, 1]. Since I − T (·, 0) = I − v, and
v ∈ U ,

1 = deg(I − T (·, 0),U , 0) = deg(I − T (·, 1),U , 0) = deg(I − H(·, 1),U , 0).

Therefore, (P11) and hence (0.1) have a solution u ∈ U ∩ A1(Ω, Cn). �

Example 2.4. Let Ω be the open unit ball in C. Consider the problem

u′(z) = α + βzk + ez〈γ,u〉u/5, z ∈ Ω,

u(0) = 0,
(2.2)

with k ∈ N and α, β, γ ∈ C
n such that ‖α‖ ≤ 1, ‖β‖ ≤ 1, and ‖γ‖ ≤ 1/4.

Obviously, the map M : Ω → R defined by M(z) := 1 + 3‖z‖ is in DD(Ω, R).
It is easy to verify that (0, M) is a solution-tube of (2.2) with c = 0. Therefore,
Theorem 2.3 implies the existence of a solution u ∈ A1(Ω, Cn) such that ‖u(z)‖ <
M(z) for all z ∈ Ω.

Now, consider the Cauchy problem with a different initial value:

u′(z) = f(z, u(z)), z ∈ Ω,

u(0) = w0.
(2.3)

Observe that if (v, M) is a solution-tube of (0.1), it is also a solution-tube of (2.3)
for every

w0 ∈ W := {w0 ∈ C
n : ‖w0 − v(0)‖ < M(0)}.

This remark leads to the following result.

Theorem 2.5. Let the map f : Ω×C
n → C

n be analytic on Ω×C
n and continuous

on Ω×Cn. Assume that there exists a solution-tube (v, M) ∈ A1(Ω, Cn)×DD(Ω, R)
of (0.1). Then there exists u : Ω×W → C

n analytic on Ω×W such that for every

w0 ∈ W, u(·, w0) ∈ A1(Ω, Cn) is a solution of (2.3) such that ‖u(z, w0)− v(z)‖ <
M(z) for all z ∈ Ω.
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Again, we want to consider a different initial condition, and also a different
domain. Consider

u′(z) = f(z, u(z)), z ∈ Ω,

u(ζ) = w0,
(2.4)

where Ω ⊂ C is a convex domain. For ζ ∈ Ω, we define

DDζ(Ω, R) := {M : Ω → R continuous : ∀z ∈ Ω \ {ζ}, the map

t 7→ M(ζ + t(z − ζ)) defined on [0, 1] is differentiable at t = 1}.

For M ∈ DDζ(Ω, R), we set

Dz,ζM(z) :=
d

dt
M(ζ + t(z − ζ))

∣

∣

∣

∣

t=1

.

Using Lemma 1.1 and arguing as in the proof of Theorem 2.3, we can prove the
following result.

Theorem 2.6. Let Ω be a convex domain in C and Γ ⊂ Ω an open subset. Let the

map f : Ω × Cn → Cn be analytic on Ω× Cn and continuous on Ω × Cn. Assume

that there exist continuous maps v : Ω × Γ → Cn and M : Ω × Γ → ]0,∞[ such

that for every ζ ∈ Γ,

(i) v(·, ζ) ∈ A1(Ω, Cn) and M(·, ζ) ∈ DDζ(Ω, R);

(ii) for all (z, u) ∈ (Ω \ {ζ}) × Cn such that ‖u − v(z, ζ)‖ = M(z, ζ),

Re

(

(z − ζ)

〈

f(z, u) −
∂v

∂z
(z, ζ), u − v(z, ζ)

〉)

< M(z, ζ)Dz,ζM(z, ζ);

(iii) there exists cζ ∈ C such that M(z, ζ) Re(cζ(z − ζ)) + Dz,ζM(z, ζ) ≥ 0 for all

z ∈ Ω \ {ζ}.

Let

O := {(w0, ζ) ∈ C
n × Γ : ‖w0 − v(ζ, ζ)‖ < M(ζ, ζ)}.

Then there exists u : Ω×O → C
n analytic on Ω×O such that for every (w0, ζ) ∈ O,

u(·, w0, ζ) ∈ A1(Ω, Cn) is a solution of (2.4) such that ‖u(z, w0, ζ) − v(z, ζ)‖ <
M(z, ζ) for all z ∈ Ω.

Acknowledgments

This work was partially supported by CRSNG Canada.

References

[1] M. Frigon, Sur l’existence de solutions pour l’équation différentielle u′(z) = f(z, u(z))
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H3C 3J7, Canada
e-mail: frigon@dms.umontreal.ca


