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MULTIPLICITY RESULTS FOR SYSTEMS OF SECOND ORDER

DIFFERENTIAL EQUATIONS

M. FRIGON AND E. MONTOKI

Abstract. Multiplicity results are obtained for systems of second order dif-
ferential equations with periodic or Sturm-Liouville boundary conditions. Re-
sults rely on the notion of strict solution-tube. Different growth conditions of
Wintner-Nagumo type are considered.

1. Introduction

In this paper, we establish multiplicity results for the following system of second
order differential equations:

(1.1)
x′′(t) = f(t, x(t), x′(t)), a.e. t ∈ [0, 1],

x ∈ BC.

Here f : [0, 1]×R2n → Rn is a Carathéodory function, and BC denotes the Strum-
Liouville or the periodic boundary conditions:

(1.2)
A0x(0)− β0x

′(0) = r0,

A1x(1) + β1x
′(1) = r1;

(1.3)
x(0) = x(1),

x′(0) = x′(1);

where for i = 0, 1, βi ∈ {0, 1}, and Ai is a n×n matrix such that there exists αi ≥ 0
satisfying ⟨Aix, x⟩ ≥ αi∥x∥2, and αi + βi > 0.

In the literature, there are very few multiplicity results for systems (n > 1) of
second order differential equations. Let us mention results of Barutello, Capietto
and Habets [1] where systems of two second order differential equations are consid-
ered. Multiplicity results with prescribed nodal structure were obtained for systems
of second order differential equations by Capietto with Dalbono [2] and Dambro-
sio [4] (see also [3]). Multiplicity results for systems of superlinear second order
equations were also obtained in [13] via a continuation theorem and computation
of the degree associated to some scalar equations.

In the particular case of a boundary value problem for a single differential equa-
tion of second order, more results were obtained. Our results extend to systems
the results of Henderson and Thompson [12] for classical upper and lower solutions.
Other multiplicity results for a single equation can be found for instance in [10].
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In order to obtain multiplicity results to (1.1), we will assume the existence of
solution-tubes of (1.1). This notion was introduced in [6], and generalizes the no-
tions of upper and lower solutions of a differential equation. Also, we introduce the
notion of strict solution-tube. Different growth conditions of Wintner-Nagumo type
will be imposed, and for which different arguments will be needed. Indeed, in sec-
tion 4, using the Schauder degree theory, we will prove a multiplicity result (which
slightly generalizes a result obtained in the Ph.D. thesis of the second author [14])
when f satisfies the growth condition:

there exist a Borel measurable function ϕ : [0,∞[→ ]0,∞[ and γ ∈ L1(I)
such that

|⟨p, f(t, x, p)⟩| ≤ ϕ(∥p∥)(γ(t) + ∥p∥) and

∫ ∞

k

sds

ϕ(s) + s
= ∞ ∀k ≥ 0.

On the other hand, in section 5, we will establish multiplicity results in the case
where f satisfies the more standard growth condition:

there exist a Borel measurable function ϕ : [0,∞[→ ]0,∞[ and γ ∈ L1(I)
such that

∥f(t, x, p)∥ ≤ ϕ(∥p∥)(γ(t) + ∥p∥) and

∫ ∞

k

ds

ϕ(s)
= ∞ ∀k ≥ 0.

The proof of these multiplicity results will rely on degree theory for multi-valued
compact upper semi-continuous maps with closed, convex values.

It is well known that for systems of second order differential equations, a Nagumo
type growth condition is not sufficient to guarantee the existence of a priori bounds
on the derivative of solutions. Two different types of hypothesis will be considered.
The first one (see (H4) ) is the well known condition introduced by Hartman [11].
The second one (see (H5) or (H8) ) is a generalization of a condition introduced by
the first author in [7]. It has the advantage of being trivially satisfied in the scalar
case.

In what follows, we will use the following notations: I = [0, 1], Ck(I,Rn) is
the space of k-times continuously differentiable functions endowed with the usual
norm that we denote ∥ · ∥k; Ck

B(I,Rn) is the subset of x in Ck(I,Rn) satisfying the
boundary condition BC; C0(I,Rn) = {x ∈ C(I,Rn) : x(0) = x(1) = 0}; L1(I,Rn)
is the space of integrable functions with the usual norm ∥ · ∥L1 ; W 2,1(I,Rn) is the
Sobolev space {x ∈ C1[0, 1] : x′ is absolutely continuous} endowed with the norm

∥x∥2,1 = ∥x∥L1 + ∥x′∥L1 + ∥x′′∥L1 ; W 2,1
B (I,Rn) =W 2,1(I,Rn) ∩ CB(I,Rn).

We will denote single-valued maps with lower case letters while we will use
capital letters for multi-valued maps. Let X and Y be topological spaces, we say
that a multi-valued map F : X → Y is upper semi-continuous (u.s.c.) (resp. if
X = [0, 1], F is measurable) if {x ∈ X : F (x)∩B ̸= ∅} is closed (resp. measurable)
for every closed set B of Y . We say that f : [0, 1] × R2n → Rn a single-valued
map (resp. F : [0, 1] × R2n → Rn a multi-valued map with closed convex values)
is Carathéodory if t 7→ f(t, x, p) (resp. t 7→ F (t, x, p)) is measurable for all x, p;
(x, p) 7→ f(t, x, p) is continuous (resp. (x, p) 7→ F (t, x, p) is u.s.c.) for a.e. t ∈ I; for
every k > 0, there exists dk ∈ L1(I) such that f(t, B(0, k), B(0, k)) ⊂ B(0, dk(t))
(resp. F (t, B(0, k), B(0, k)) ⊂ B(0, dk(t))) a.e. t ∈ I, where B(0, r) is the closed
ball of radius r centered at the origin.
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2. Main Theorem

The notion of solution-tube will play a fundamental role in our main result. This
notion was introduced in [6] and generalizes naturally to systems the well known
notion of upper and lower solutions.

Definition 2.1. Let v ∈ W 2,1(I,Rn), and ρ ∈ W 2,1(I,R). We say that (v, ρ) is a
solution-tube of (1.1) if

(i) for a.e. t ∈ I, and every (x, p) ∈ R2n such that ∥x − v(t)∥ = ρ(t) and
⟨x− v(t), p− v′(t)⟩ = ρ(t)ρ′(t),

⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2 ≥ ρ(t)ρ′′(t) + ρ′(t)2;

(ii) v′′(t) = f(t, v(t), v′(t)) a.e. on {t ∈ [0, 1] : ρ(t) = 0};
(iii) if BC denotes (1.2),

∥A0v(0)− β0v
′(0)− r0∥ ≤ α0ρ(0)− β0ρ

′(0),

∥A1v(1) + β1v
′(1)− r1∥ ≤ α1ρ(1) + β1ρ

′(1);

and if BC denotes (1.3),

ρ(0) = ρ(1), v(0) = v(1), ∥v′(0)− v′(1)∥ ≤ ρ′(1)− ρ′(0).

We denote

T (v, ρ) = {x ∈ C(I,Rn) : ∥x(t)− v(t)∥ ≤ ρ(t) ∀t ∈ I}.

Our goal is to establish multiplicity results for the system of second order differ-
ential equation (1.1). To this aim, we introduce the notion of strict solution-tube.

Definition 2.2. Let (v, ρ) ∈ W 2,1(I,Rn) × W 2,1(I,R). We say that (v, ρ) is a
strict solution-tube of (1.1) if

(i) ρ(t) > 0 for all t ∈ I;
(ii) for every t ∈ I, there exist ε > 0 and V a neighborhood of t such that

⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2 − ρ(t)ρ′′(t)− ρ′(t)2 ≥ 0

a.e. t ∈ V and for every (x, p) ∈ St,ε, where

St,ε = {(x, p) ∈ R2n : ρ(t)− ε ≤ ∥x− v(t)∥ ≤ ρ(t),

|⟨x− v(t), p− v′(t)⟩ − ρ(t)ρ′(t)| ≤ ε};

(iii) if BC denotes (1.2),

∥A0v(0)− β0v
′(0)− r0∥ < α0ρ(0)− β0ρ

′(0),

∥A1v(1) + β1v
′(1)− r1∥ < α1ρ(1) + β1ρ

′(1);

and if BC denotes (1.3),

ρ(0) = ρ(1), v(0) = v(1), ∥v′(0)− v′(1)∥ < ρ′(1)− ρ′(0).

In the particular case where n = 1, if (v, ρ) is a strict solution-tube of (1.1) then
v − ρ (resp. v + ρ) is a strict lower (resp. upper) solution of (1.1), see [5].

We will consider the following assumptions:

(H1) f : I × R2n → Rn is Carathéodory;
(H2) there exist (v0, ρ0) a solution-tube of (1.1) and (v1, ρ1), (v2, ρ2) two strict

solution-tubes of (1.1) such that T (v1, ρ1) ∩ T (v2, ρ2) = ∅, and T (vi, ρi) ⊂
T (v0, ρ0), i = 1, 2;
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(H3) there exist a Borel measurable function ϕ : [0,∞[→ ]0,∞[ and γ ∈ L1(I)
such that

|⟨p, f(t, x, p)⟩| ≤ ϕ(∥p∥)(γ(t) + ∥p∥)
a.e. t ∈ I and for all (x, p) ∈ R2n such that ∥x− v0(t)∥ ≤ ρ0(t), and∫ ∞

k

sds

ϕ(s) + s
= ∞ ∀k ≥ 0;

(H4) there exist a ≥ 0 and l ∈ L1(I) such that

∥f(t, x, p)∥ ≤ a(⟨x, f(t, x, p)⟩+ ∥p∥2) + l(t)

a.e. t ∈ I and for all (x, p) ∈ R2n such that ∥x− v0(t)∥ ≤ ρ0(t);
(H5) there exist R > 0, b > 0, c ≥ 0, and h ∈ L1(I) such that

(b+ c∥x∥)σ(t, x, p) ≥ ∥p∥ − h(t),

for a.e. t ∈ I and for all (x, p) ∈ R2n such that ∥x−v0(t)∥ ≤ ρ0(t), ∥p∥ ≥ R,
where

σ(t, x, p) =
⟨x, f(t, x, p)⟩+ ∥p∥2

∥p∥
− ⟨p, f(t, x, p)⟩⟨x, p⟩

∥p∥3
.

Observe that (H5) is trivially satisfied in the scalar case i.e. when n = 1.
Now, we can state our main result.

Theorem 2.3 (Main Theorem). Assume that (H1)–(H3), and (H4) or (H5) are
satisfied then the problem (1.1) has at least three distinct solutions x0, x1, x2 such
that xi ∈ T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2, i ̸= j.

3. Auxiliary results

As in the method of upper and lower solutions, the assumptions on the existence
of solution-tubes will permit to obtain a priori bounds on the solutions. First of
all, we recall a result of [7] (see [7, Lemma 3.2]).

Lemma 3.1. Let ε ≥ 0, and (v, ρ) ∈ W 2,1(I,Rn) × W 2,1(I,R) a solution-tube

of (1.1). If x ∈W 2,1
B (I,Rn) satisfies

(3.1)
⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥

− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
− ε∥x(t)− v(t)∥ ≥ ρ′′(t)− ερ(t)

for a.e. t ∈ {t ∈ I : ∥x(t)− v(t)∥ > ρ(t)}, then x ∈ T (v, ρ).

Next, we want to show that if x is a solution of (1.1) lying in T (v, ρ) for (v, ρ) a
strict solution-tube of (1.1), then x belongs to the interior of T (v, ρ).

Lemma 3.2. Let (v, ρ) ∈W 2,1(I,Rn)×W 2,1(I,R) be a strict solution-tube of (1.1).

If x ∈W 2,1
B (I,Rn) ∩ T (v, ρ) is a solution of (1.1), then ∥x(t)− v(t)∥ < ρ(t) for all

t ∈ I.

Proof. We claim that

(3.2) ∥x(0)− v(0)∥ < ρ(0) and ∥x(1)− v(1)∥ < ρ(1).
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Indeed, if BC denotes (1.2) and if ∥x(0)− v(0)∥ = ρ(0), then by Definition 2.2 and
since ∥x(t)− v(t)∥ ≤ ρ(t) for all t,

0 ≥ β0
2

d

dt
(∥x(t)− v(t)∥2 − ρ(t)2)|t=0

= β0
(
⟨x(0)− v(0), x′(0)− v′(0)⟩ − ρ(0)ρ′(0)

)
> β0⟨x(0)− v(0), x′(0)− v′(0)⟩+ ρ(0)∥A0v(0)− β0v

′(0)− r0∥ − α0ρ(0)
2

≥ β0⟨x(0)− v(0), x′(0)− v′(0)⟩ − ⟨x(0)− v(0), A0v(0)− β0v
′(0)− r0⟩

− α0∥x(0)− v(0)∥2

= ⟨A0(x(0)− v(0)), x(0)− v(0)⟩ − α0∥x(0)− v(0)∥2

≥ 0,

contradiction. Similarly, we show that ∥x(1)− v(1)∥ < ρ(1).
If BC denotes (1.3), then

∥x(0)− v(0)∥ < ρ(0) if and only if ∥x(1)− v(1)∥ < ρ(1).

Therefore, if the claim is false, by Definition 2.2, ∥x(0) − v(0)∥ = ρ(0) = ρ(1) =
∥x(1)− v(1)∥, and

0 ≤ 1

2

( d
dt

(∥x(t)− v(t)∥2 − ρ(t)2)|t=1 −
d

dt
(∥x(t)− v(t)∥2 − ρ(t)2)|t=0

)
= ⟨x(1)− v(1), x′(1)− v′(1)⟩ − ⟨x(0)− v(0), x′(0)− v′(0)⟩
− ρ(1)ρ′(1) + ρ(0)ρ′(0)

= ⟨x(1)− v(1), v′(0)− v′(1)⟩ − ρ(1)
(
ρ′(1)− ρ′(0)

)
< ρ(1)

(
ρ′(1)− ρ′(0)

)
− ρ(1)

(
ρ′(1)− ρ′(0)

)
;

which is a contradiction.
Now assume that E = {t ∈ ]0, 1[ : ∥x(t) − v(t)∥ = ρ(t)} ̸= ∅. Let t1 = inf E.

By (3.2), t1 ∈ ]0, 1[ and ⟨x(t1)− v(t1), x
′(t1)− v′(t1)⟩ = ρ(t1)ρ

′(t1). Definition 2.2
implies that there exist ε > 0 and V a neighborhood of t1 such that

⟨y − v(t), f(t, y, p)− v′′(t)⟩+ ∥p− v′(t)∥2 − ρ(t)ρ′′(t) + ρ′(t)2 ≥ 0

a.e. t ∈ V and for every (y, p) ∈ St1,ε which is defined in Definition 2.2. Since
x ∈ C1, we can find O ⊂ V a neighborhood of t1 such that (x(t), x′(t)) ∈ St1,ε for
all t ∈ O. On the other hand, by definition of t1, we can choose t0 ∈ O∩ [0, t1[ such
that

d

dt
(∥x(t)− v(t)∥2 − ρ(t)2)|t=t0 > 0.

Therefore,

0 >
1

2

∫ t1

t0

d2

dt2
(∥x(t)− v(t)∥2 − ρ(t)2) dt

=

∫ t1

t0

(
⟨x(t)− v(t), f(t, x(t), x′(t))− v′′(t)⟩+∥x′(t)− v′(t)∥2

− ρ(t)ρ′′(t)− ρ′(t)2
)
dt

≥ 0,

and the proof is complete. �
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In order to obtain a priori bounds on the derivative of the solutions, we recall the
following results of [7]. The first one concerns a priori bounds that can be obtained
under a Wintner-Nagumo growth condition (see [7, Lemma 3.4]).

Lemma 3.3. Let r, k ≥ 0, m ∈ L1(I), and ψ : [0,∞[→ ]0,∞[ a Borel measurable
function such that ∫ ∞

r

sds

ψ(s)
> ∥m∥L1 + k.

Then there exists K > 0 such that ∥x′∥0 < K for every x ∈W 2,1(I,Rn) satisfying

(i) mint∈I ∥x′(t)∥ ≤ r;
(ii) ∥x′∥L1[t0,t1] ≤ k for every [t0, t1] ⊂ {t ∈ I : ∥x′(t)∥ ≥ r};
(iii) |⟨x′(t), x′′(t)⟩| ≤ ψ(∥x′(t)∥)(m(t) + ∥x′(t)∥) a.e. on {t ∈ I : ∥x′(t)∥ ≥ r}.

The previous result shows that to obtain an a priori bound of the derivative x′

with respect to norm of the uniform convergence, we need to obtain an a priori
bound of x′ in the L1-norm.

The following result generalizes and simplifies [7, Lemma 3.3].

Lemma 3.4. Let u ∈ W 2,1(I,Rn), ξ > 0, ζ ≥ 0, r > 0, m ∈ L1(I). Then there
exists ω : [0,∞[→ [0,∞[ an increasing function such that we have for any interval
[t0, t1] on which ∥x′(t)− u′(t)∥ ≥ r,

∥x′ − u′∥L1[t0,t1] ≤ ω(∥x− u∥0),

and

min
t∈I

∥x′(t)− u′(t)∥ ≤ max{r, ω(∥x− u∥0)}.

for every x ∈W 2,1(I,Rn) satisfying almost everywhere on {t ∈ I : ∥x′(t)−u′(t)∥ ≥
r},

(ξ+ ζ∥x(t)− u(t)∥)σu(t, x) +
ζ⟨x(t)− u(t), x′(t)− u′(t)⟩2

∥x(t)− u(t)∥ ∥x′(t)− u′(t)∥
≥ ∥x′(t)− u′(t)∥−m(t),

where

σu(t, x) =
⟨x(t)− u(t), x′′(t)− u′′(t)⟩+ ∥x′(t)− u′(t)∥2

∥x′(t)− u′(t)∥

− ⟨x′(t)− u′(t), x′′(t)− u′′(t)⟩⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥3

.

Proof. First of all, observe that

(3.3)
d

dt

(ξ + ζ∥x(t)− u(t)∥)⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥

= (ξ + ζ∥x(t)− u(t)∥)σu(t, x) +
ζ⟨x(t)− u(t), x′(t)− u′(t)⟩2

∥x(t)− u(t)∥ ∥x′(t)− u′(t)∥
.
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Assume that ∥x′(t)− u′(t)∥ ≥ r on [t0, t1] then the assumptions and (3.3) yield∫ t1

t0

∥x′(t)− u′(t)∥ dt

≤ ∥m∥L1[0,1] +

∫ t1

t0

d

dt

(ξ + ζ∥x(t)− u(t)∥)⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥

dt

≤ ∥m∥L1[0,1] + 2(ξ + ζ∥x− u∥0)∥x− u∥0
= ω(∥x− u∥0).

�

An a priori bound of x′ in L1-norm can also be obtained using a condition
introduced by Hartman [11].

Lemma 3.5. Let k ≥ 0 and m ∈ L1(I). Then there exists ω : [0,∞[→ ]0,∞[ an
increasing function such that for every x ∈W 2,1(I,Rn) satisfying

∥x′′(t)∥ ≤ k
(
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

)
+m(t) a.e. t ∈ I,

we have ∥x′∥L1 ≤ ω(∥x∥0).

Proof. Let x ∈W 2,1(I,Rn). Observe that

(3.4)
x′(t)

2
= x(t+

1

2
)− x(t)−

∫ t+ 1
2

t

(t+
1

2
− s)x′′(s) ds for 0 ≤ t ≤ 1

2
.

So, for t ∈ [0, 1/2],

∥x′(t)∥
2

≤ 2∥x∥0 + ∥m∥L1 + k

∫ t+ 1
2

t

(t+
1

2
− s)

(
⟨x(s), x′′(s)⟩+ ∥x′(s)∥2

)
ds

= 2∥x∥0 + ∥m∥L1 +
k

2

∫ t+ 1
2

t

(t+
1

2
− s)

d2

ds2
∥x(s)∥2 ds.

Using (3.4) with ∥x∥2, we obtain

(3.5)
∥x′(t)∥

2
≤ 2∥x∥0 + ∥m∥L1 + k∥x∥20 −

k

2
⟨x(t), x′(t)⟩ for 0 ≤ t ≤ 1

2
.

Similarly, using the identity

(3.6)
x′(t)

2
= x(t)− x(t− 1

2
)−

∫ t

t− 1
2

(t− 1

2
− s)x′′(s) ds for

1

2
≤ t ≤ 1,

we obtain

(3.7)
∥x′(t)∥

2
≤ 2∥x∥0 + ∥m∥L1 + k∥x∥20 +

k

2
⟨x(t), x′(t)⟩ for

1

2
≤ t ≤ 1.
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Combining (3.5) and (3.7), we deduce that

∥x′∥L1 =

∫ 1/2

0

∥x′(t)∥ dt+
∫ 1

1/2

∥x′(t)∥ dt

≤ 4∥x∥0 + 2∥m∥L1 + 2k∥x∥20 −
k

2

∫ 1/2

0

d

dt
∥x(t)∥2 dt

+
k

2

∫ 1

1/2

d

dt
∥x(t)∥2 dt

≤ 4∥x∥0 + 2∥m∥L1 + 2k∥x∥20 +
k

2

(
∥x(1)∥2 + ∥x(0)∥2 − 2∥x(1/2)∥2

)
≤ 4∥x∥0 + 2∥m∥L1 + 3k∥x∥20.

The conclusion follows if we define ω(r) = 3kr2 + 4r + 2∥m∥L1 . �

4. Proof of the Main Theorem

Fix ε ≥ 0 such that the operator lε : C
1
B(I,Rn) → C0(I,Rn) defined by

lε(x)(t) = x′(t)− x′(0)− ε

∫ t

0

x(s) ds

is invertible.
For λ ∈ [0, 1], and (v, ρ) ∈W 2,1(I,Rn)×W 2,1(I, [0,∞[), we define

fλv,ρ : I × R2n → Rn by fλv,ρ = λf̄v,ρ + gλv,ρ − ε(1− λ)v,

where

f̄v,ρ(t, x, p) =

{
ρ(t)

∥x−v(t)∥f(t, x̃v,ρ, p̂v,ρ)− εx̃v,ρ, if ∥x− v(t)∥ > ρ(t),

f(t, x, p)− εx, if ∥x− v(t)∥ ≤ ρ(t)

gλv,ρ(t, x, p) =


(
1− λρ(t)

∥x−v(t)∥

)(
v′′(t) + ρ′′(t)

∥x−v(t)∥ (x− v(t))
)
, if ∥x− v(t)∥

> ρ(t),

(1− λ)
(
v′′(t) + ρ′′(t)

ρ(t) (x− v(t))
)
, otherwise;

with

x̃v,ρ = v(t) +
ρ(t)

∥x− v(t)∥
(x− v(t)),

p̂v,ρ = p+
(
ρ′(t)− ⟨x− v(t), p− v′(t)⟩

∥x− v(t)∥

)( x− v(t)

∥x− v(t)∥

)
,

and where we mean ρ′′(t)(x− v(t))/ρ(t) = 0 on {t ∈ [0, 1] : ρ(t) = 0}.

Remark 4.1. For (x, p) ∈ R2n such that ∥x− v(t)∥ > 0,

∥x̃v,ρ − v(t)∥ = ρ(t), ⟨x̃v,ρ − v(t), p̂v,ρ − v′(t)⟩ = ρ(t)ρ′(t),

∥p̂v,ρ − v′(t)∥2 = ∥p− v′(t)∥2 + (ρ′(t))2 − ⟨x(t)− v(t), p− v′(t)⟩2

∥x(t)− v(t)∥2
;

and for x ∈ C1(I,Rn),

(x̃(t)v,ρ, x̂
′(t)v,ρ) = (x(t), x′(t)) a.e. on {t ∈ I : ∥x(t)− v(t)∥ = ρ(t) > 0}.
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We consider for i = 0, 1, 2, and λ ∈ [0, 1], the problem

(Pi,λ)
x′′(t)− εx(t) = fλvi,ρi

(t, x(t), x′(t)) a.e. t ∈ [0, 1],

x ∈ BC.

A priori bounds can be obtained for the solutions of (Pi,λ).

Proposition 4.2. Assume that (H1) and (H2) are satisfied. Then

(a) every solution x of (Pi,λ) with i = 0, 1, 2, λ ∈ [0, 1], is such that x ∈
T (vi, ρi);

(b) every solution x of (Pi,1) for i = 1, 2, satisfies ∥x(t)− vi(t)∥ < ρi(t) for all
t ∈ [0, 1].

Proof. (a) For i ∈ {0, 1, 2} and λ ∈ [0, 1], let x be a solution of (Pi,λ). To simplify
the notation, let v and ρ stand for vi and ρi respectively, and x̃(t) and x̂

′(t) stand

for x̃(t)vi,ρi
and x̂′(t)vi,ρi

. Then for almost every t ∈ {t ∈ I : ∥x(t)− v(t)∥ > ρ(t)},

1

∥x(t)− v(t)∥
(
⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

)
− 1

∥x(t)− v(t)∥3
⟨x(t)− v(t), x′(t)− v′(t)⟩2 − ε∥x(t)− v(t)∥

=
1

∥x(t)− v(t)∥

(⟨
x(t)− v(t),

λρ(t)

∥x(t)− v(t)∥
(f(t, x̃(t), x̂′(t))− v′′(t))

⟩
− ε
⟨
x(t)− v(t), λx̃(t) + (1− λ)v(t)− x(t)

⟩)
+
(
1− λρ(t)

∥x(t)− v(t)∥

)
ρ′′(t)

+
∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
− ε∥x(t)− v(t)∥

=
λ

∥x(t)− v(t)∥

(
⟨x̃− v(t), f(t, x̃(t), x̂′(t))− v′′(t)⟩+ ∥x̂′(t)− v′(t)∥2

)
+

1

∥x(t)− v(t)∥

(
∥x′(t)− v′(t)∥2 − λ∥x̂′(t)− v′(t)∥2

)
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
+
(
1− λρ(t)

∥x(t)− v(t)∥

)
ρ′′(t)− ελρ(t)

≥ λ

∥x(t)− v(t)∥
(
ρ(t)ρ′′(t) + ρ′(t)2

)
+
(
1− λρ(t)

∥x(t)− v(t)∥

)
ρ′′(t)

+
1

∥x(t)− v(t)∥

(
(1− λ)∥x̂′(t)− v′(t)∥2 − ρ′(t)2

)
− ελρ(t)

≥ ρ′′(t)− ερ(t).

It follows from Lemma 3.1 that statement (a) holds.
(b) Observe that if x is a solution of (Pi,1) for some i ∈ {1, 2}, then by (a), x is

a solution of (1.1). Lemma 3.2 yields to the conclusion. �

We associate to fλv,ρ an operator

ηv,ρ : [0, 1]× C1(I,Rn) → C0(I,Rn)
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defined by

ηv,ρ(λ, x) =

∫ t

0

fλv,ρ(s, x(s), x
′(s)) ds.

The following result establishes some properties of ηv,ρ. The proof of this result is
a direct consequence of [7, Proposition 3.5].

Proposition 4.3. Let f : I × R2n → Rn be a Carathéodory function, and (v, ρ) ∈
W 2,1(I,Rn) ×W 2,1(I, [0,∞[) a solution-tube of (1.1). Then the operator ηv,ρ is
continuous and completely continuous.

In order to prove our main theorem, we first establish the following general result.

Theorem 4.4. Assume that (H1) and (H2) are satisfied. Assume also that there
exists a constant K > 0 such that every solution x of (Pi,λ) with i = 0, 1, 2,
λ ∈ [0, 1], satisfies ∥x′∥0 < K. Then the problem (1.1) has at least three distinct
solutions x0, x1, x2 such that xi ∈ T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2,
i ̸= j.

Proof. For i = 0, 1, 2, let us define

hi, hi : [0, 1]× C1(I,Rn) → C1(I,Rn)

by hi(λ, x) = lε ◦ ηvi,ρi(λ, x), and hi(λ, x) = λhi(0, x) respectively. Proposition 4.3

implies that hi, and hence hi, are continuous and completely continuous. Observe
that hi is bounded, so we can find an open bounded set W ⊂ C1(I,Rn) such that
hi([0, 1]× C1(I,Rn)) ⊂W . Therefore,

(4.1) 1 = deg(id,W, 0) = deg(id− hi(1, ·),W, 0) = deg(id− hi(0, ·),W, 0).
We denote

Ui = {x ∈ C1(I,Rn) : ∥x(t)− vi(t)∥ < ρi(t) + 1, ∥x′(t)∥ < K ∀t ∈ I},
Vi = {x ∈ C1(I,Rn) : ∥x(t)− vi(t)∥ < ρi(t), ∥x′(t)∥ < K ∀t ∈ I}.

Without lost of generality, we can assume that Ui ⊂ W . It follows from Propo-
sition 4.2(a), the excision property, and the homotopic invariance of the degree,
and (4.1) that

(4.2) 1 = deg(id− hi(1, ·), Ui, 0).

Also, for i = 1, 2, we have by Proposition 4.2(b), and the excision property of the
degree that

(4.3) 1 = deg(id− hi(1, ·), Vi, 0).
On the other hand, since for i = 1, 2, T (vi, ρi) ⊂ T (v0, ρ0),

hi(1, x) = h0(1, x) for all x ∈ Vi,

and hence,

(4.4) 1 = deg(id− h0(1, ·), Vi, 0) for i = 1, 2.

Also, V1 ∪ V2 ⊂ U0 and V1 ∩ V2 = ∅ since T (v1, ρ1)∩ T (v2, ρ2) = ∅, combining (4.2)
and (4.4) leads to

deg(id− h0(1, ·), U0\V1 ∪ V2, 0) = deg(id− h0(1, ·), U0, 0)

− deg(id− h0(1, ·), V1, 0)− deg(id− h0(1, ·), V2, 0) = −1.
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Therefore, there exists x0 ∈ U0\V1 ∪ V2, x1 ∈ V1 and x2 ∈ V2 solutions of (P0,1),
and hence of (1.1). �

With this general result, we can prove our main theorem.

Proof of Theorem 2.3. We have to show that there exists a constant K such that
∥x′∥0 < K for every x solution of (Pi,λ) for λ ∈ [0, 1] and i = 0, 1, 2. Let x be a
solution of (Pi,λ). From Proposition 4.2, we know that x ∈ T (vi, ρi). To simplify
the notation, we write v, ρ instead of vi, ρi respectively.

We have by (H3) that

|⟨x′(t), x′′(t)⟩| = |⟨x′(t), fλv,ρ(t, x(t), x′(t)) + εx(t)⟩|
≤ λ|⟨x′(t), f(t, x(t), x′(t))⟩|

+ (1− λ)∥x′(t)∥
(
ε∥x(t)− v(t)∥+ ∥v′′(t)∥+ |ρ′′(t)|

)
≤ ϕ(∥x′(t)∥)

(
γ(t) + ∥x′(t)∥

)
+ ∥x′(t)∥

(
ερ(t) + ∥v′′(t)∥+ |ρ′′(t)|

)
.

So, for

γ0(t) = γ(t) + max
i=0,1,2

{ερi(t) + ∥v′′i (t)∥+ |ρ′′i (t)|},

|⟨x′(t), x′′(t)⟩| ≤
(
ϕ(∥x′(t)∥) + ∥x′(t)∥

)(
γ0(t) + ∥x′(t)∥

)
.(4.5)

Now, to verify assumptions (i) and (ii) of Lemma 3.3, we consider two cases.
1st case: (H4) is satisfied. We have

∥x′′(t)∥ = ∥fλv,ρ(t, x(t), x′(t)) + εx(t)∥
≤ λ∥f(t, x(t), x′(t))∥+ ε∥x(t)− v(t)∥+ ∥v′′(t)∥+ |ρ′′(t)|

≤ λa
(
⟨x(t), f(t, x(t), x′(t))⟩+ ∥x′(t)∥2

)
+ l(t)

+ ε∥x(t)− v(t)∥+ ∥v′′(t)∥+ |ρ′′(t)|

≤ a
(
⟨x(t), fλv,ρ(t, x(t), x′(t)) + εx(t)⟩+ ∥x′(t)∥2

)
− a(1− λ)⟨x(t), v′′(t) +

(ρ′′(t)
ρ(t)

+ ε
)
(x(t)− v(t))⟩

+ ε∥x(t)− v(t)∥+ ∥v′′(t)∥+ |ρ′′(t)|+ l(t)

≤ a
(
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

)
+ z0(t),

with

z0(t) = l(t) + max
i=0,1,2

{
(aρi(t) + a∥vi(t)∥+ 1)(ερi(t) + ∥v′′i (t)∥+ ∥ρ′′i (t)∥)}.

The conclusion follows from (4.5), and Lemmas 3.3 and 3.5.
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2nd case: (H5) is satisfied. Let σ0 be the function introduced in Lemma 3.4.
Observe that

σ0(t, x)

=
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), x′′(t)⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

= λ

(
⟨x(t), f(t, x(t), x′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), f(t, x(t), x′(t))⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

)
+ (1− λ)

[
∥x′(t)∥+

( ⟨x(t), v′′(t)⟩
∥x′(t)∥

− ⟨x′(t), v′′(t)⟩⟨x(t), x′(t)⟩
∥x′(t)∥3

)
+
(
ε+

ρ′′(t)

ρ(t)

)( ⟨x(t), x(t)− v(t)⟩
∥x′(t)∥

− ⟨x′(t), x(t)− v(t)⟩⟨x(t), x′(t)⟩
∥x′(t)∥3

)]
≥ λ

(
⟨x(t), f(t, x(t), x′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), f(t, x(t), x′(t))⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

)
+ (1− λ)∥x′(t)∥ − 2

∥x(t)∥
(
∥v′′(t)∥+ ερ(t) + |ρ′′(t)|)

∥x′(t)∥
.

It follows from (H5) that on {t ∈ [0, 1] : ∥x′(t)∥ ≥ R},

(4.6) (b+ c∥x(t)∥)σ0(t, x) ≥ λ(∥x′(t)∥ − h(t)) + b(1− λ)∥x′(t)∥ − δ0(t),

with

δ0(t) =
2

R

(
b+ c(ρ0(t) + ∥v0(t)∥)

)(
ρ0(t) + ∥v0(t)∥

)
max

i=0,1,2

{
ερi(t) + |ρ′′i (t)|+ ∥v′′i (t)∥

}
.

The conclusion follows from (4.5), (4.6), and Lemmas 3.3 and 3.4. �

Other existence results can also be obtained. In particular, we can remove (H4)
and (H5) if we impose a condition stronger than (H3) with the Sturm-Liouville
boundary condition.

Theorem 4.5. Let BC denote the Strum-Liouville boundary condition (1.2) with
max{β0, β1} > 0. Assume (H1), (H2) and

(H6) there exist γ ∈ L1(I) and ψ : [0,∞[→ [1,∞[ a Borel measurable function
such that ∥f(t, x, p)∥ ≤ γ(t)ψ(∥p∥) a.e. t ∈ I and for all (x, p) ∈ R2n such
that ∥x− v0(t)∥ ≤ ρ0(t) for all t ∈ [0, 1], and∫ ∞

k

ds

ψ(s)
= ∞ ∀k ≥ 0.

Then the problem (1.1) has at least three solutions x0, x1, x2 such that xi ∈
T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2, i ̸= j.

Proof. The conclusion will follows from Theorem 4.4 if we can show that there
exists a constant K > 0 such that ∥x′∥0 < K for every x solution of (Pi,λ).

Let x be a solution of (Pi,λ). We already know that x ∈ T (vi, ρi). Set

µ = min
i=0,1,2

{
∥r0∥+ a0(ρi(0) + ∥vi(0)∥)

β0
,
∥r1∥+ a1(ρi(1) + ∥vi(1)∥)

β1

}
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where ∥Ajz∥ ≤ aj∥z∥ for all z ∈ Rn, and j = 0, 1. Obviously

min{∥x′(0)∥, ∥x′(1)∥} ≤ µ.

Assume that ∥x′∥0 > µ. Let t1 ∈ [0, 1] such that ∥x′(t1)∥ = ∥x′∥0. There exists
t0 < t1 such that ∥x′(t)∥ > µ on (t0, t1) and ∥x′(t0)∥ = µ. We have

d

dt
∥x′(t)∥ =

⟨x′(t), x′′(t)⟩
∥x′(t)∥

≤ ∥f(t, x(t), x′(t))∥+
(
ε+

|ρ′′(t)|
ρ(t)

)
∥x(t)− v(t)∥+ ∥v′′(t)∥

≤ γ(t)ψ(∥x′(t)∥) + ερ(t) + |ρ′′(t)|+ ∥v′′(t)∥
≤ γ0(t)ψ(∥x′(t)∥),

with γ0(t) = γ(t) + maxi=0,1,2{ερi(t) + |ρ′′i (t)|+ ∥v′′i (t)∥}. Therefore,

∥γ0∥L1 ≥
∫ t1

t0

∥x′(t)∥′

ψ(∥x′(t)∥)
dt =

∫ ∥x′(t1)∥

µ

ds

ψ(s)
.

We get the conclusion choosing K > µ such that∫ K

µ

ds

ψ(s)
> ∥γ0∥L1 .

�

5. Wintner-Nagumo growth condition

In this paragraph, we present a modification of our Main Theorem in which
the Wintner-Nagumo condition (H3) is replaced by a more standard one. More
precisely, we establish the following result.

Theorem 5.1. Assume that (H1), (H2), and (H4) or (H5) are satisfied. Assume
also

(H7) there exist a Borel measurable function ψ : [0,∞[→ ]0,∞[ and γ ∈ L1(I)
such that

∥f(t, x, p)∥ ≤ ψ(∥p∥)(γ(t) + ∥p∥)
a.e. t ∈ I and for all (x, p) ∈ R2n such that ∥x− v0(t)∥ ≤ ρ0(t), and∫ ∞

k

ds

ψ(s)
= ∞ ∀k ≥ 0.

Then the problem (1.1) has at least three distinct solutions x0, x1, x2 such that
xi ∈ T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2, i ̸= j.

To prove this result, we consider for i = 0, 1, 2, and λ ∈ [0, 1], the differential
inclusion

(Ii,λ)
x′′(t)− εx(t) ∈ Fλ

vi,ρi
(t, x(t), x′(t)) a.e. t ∈ [0, 1],

x ∈ BC.

where for (v, ρ) ∈ W 2,1(I,Rn)×W 2,1(I, [0,∞[), Fλ
v,ρ : I × R2n → Rn is the multi-

valued map defined by

Fλ
v,ρ = λf̄v,ρ +Gλ

v,ρ − ε(1− λ)v,
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where f̄v,ρ is defined in the previous section, and

Gλ
v,ρ(t, x, p) =


gλv,ρ(t, x, p)

(x−v(t))
∥x−v(t)∥ , if ∥x− v(t)∥ > ρ(t),

[0, gλv,ρ(t, x, p)]
(x−v(t))
∥x−v(t)∥ , if ∥x− v(t)∥ = ρ(t),

0, if ∥x− v(t)∥ < ρ(t);

with

gλv,ρ(t, x, p) =

((
1− λρ(t)

∥x− v(t)∥

)(
ρ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)

+ (1− λ)
( ⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥3
− ∥p− v′(t)∥2

∥x− v(t)∥

))+

.

Observe that t 7→ Gλ
v,ρ(t, x, p) is measurable for every (x, p, λ) ∈ Rn × [0, 1], and

(x, p, λ) 7→ Gλ
v,ρ(t, x, p) is u.s.c. a.e. t ∈ I.

We associate to Fλ
v,ρ a multi-valued operator

Nv,ρ : [0, 1]× C1(I,Rn) → C0(I,Rn)

defined by

Nv,ρ(λ, x) = {u ∈ C0(I,Rn) : ∃w ∈ L1(I,Rn) such that

w(t) ∈ Fλ
v,ρ(t, x(t), x

′(t)) a.e. t ∈ I, and u(t) =

∫ t

0

w(s) ds}.

This operator has some nice properties.

Proposition 5.2. Let f : I × R2n → Rn be a Carathéodory function, and (v, ρ) ∈
W 2,1(I,Rn) ×W 2,1(I, [0,∞[) a solution-tube of (1.1). Then the operator Nv,ρ is
completely continuous, u.s.c. with nonempty, compact, convex values.

This result can be proved using the following lemma with [8, Lemma 2.7], and
arguing as in [8, Lemmas 2.4] with µ : I × R2n → R2n defined by

µ(t, x, p) =

{
(x̃v,ρ, p̂v,ρ) if ∥x− v(t)∥ > ρ(t),

(x, p) otherwise,

since we obtain a Carathéodory function if we replace in the definition of f̄v,ρ, x̃v,ρ
and p̂v,ρ respectively by x and p, and by Remark 4.1.

Lemma 5.3. Let f : I × R2n → Rn be a Carathéodory function, and (v, ρ) ∈
W 2,1(I,Rn) ×W 2,1(I, [0,∞[) a solution-tube of (1.1). Then the operator Gλ

v,ρ is
integrably bounded on bounded sets uniformly in λ, i.e. for every k > 0, there exists
dk ∈ L1[0, 1] such that Gλ

v,ρ(t, x, p) ⊂ B(0, dk(t)) for a.e. t ∈ [0, 1] and for all

(x, p) ∈ R2n with ∥x∥ ≤ k, ∥p∥ ≤ k.
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Proof. Definition 2.1 and Remark 4.1 imply that if Gλ
v,ρ(t, x, p) ̸= {0}, then for

every z ∈ Gλ
v,ρ(t, x, p),

∥z∥ ≤
∣∣gλv,ρ(t, x, p)∣∣

=
(
1− λρ(t)

∥x− v(t)∥

)(
ρ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)
+ (1− λ)

( ⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥3
− ∥p− v′(t)∥2

∥x− v(t)∥

)
=
(
1− ρ(t)

∥x− v(t)∥

)(
ρ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)
+

1− λ

∥x− v(t)∥

[
ρ(t)ρ′′(t) +

ρ(t)⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

+
⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥2
− ∥p− v′(t)∥2

]
=
(
1− ρ(t)

∥x− v(t)∥

)(
ρ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)
+

1− λ

∥x− v(t)∥

(
ρ(t)ρ′′(t) + ⟨x̃v,ρ − v(t), v′′(t)⟩+ ρ′(t)2

− ∥p̂v,ρ − v′(t)∥2
)

≤ |ρ′′(t)|+ ∥v′′(t)∥+ 1

∥x− v(t)∥
⟨x̃v,ρ − v(t), f(t, x̃v,ρ, p̂v,ρ)⟩

≤ |ρ′′(t)|+ ∥v′′(t)∥+ ∥f(t, x̃v,ρ, p̂v,ρ)∥.

The conclusion follows from the fact that f is a Carathéodory function and

∥x̃v,ρ∥ ≤ ∥v∥0 + |ρ|0 and ∥p̂v,ρ∥ ≤ 2∥p∥+ ∥v′∥0 + |ρ′|0.

�

In order to prove our main theorem, we can first establish a general result as in
the previous section.

Theorem 5.4. Assume that (H1) and (H2) are satisfied. Assume that there exists
a constant K > 0 such that every solution x of (Ii,λ) with i = 0, 1, 2, λ ∈ [0, 1],
satisfies ∥x′∥0 < K. Then the problem (1.1) has at least three distinct solutions
x0, x1, x2 such that xi ∈ T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2, i ̸= j.

The proof of this result is analogous to the proof of Theorem 4.4 where we
replace the operators ηvi,ρi by Nvi,ρi and we use degree theory of compact, upper
semi-continuous multi-valued maps with closed, convex values, and the following
proposition.

Proposition 5.5. Assume that (H1) and (H2) are satisfied. Then

(a) every solution x to (Ii,λ) is such that x ∈ T (vi, ρi) for i = 0, 1, 2, λ ∈ [0, 1];
(b) for i = 1, 2, every solution x to (Ii,1) satisfies ∥x(t)− vi(t)∥ < ρi(t) for all

t ∈ [0, 1].

Proof. (a) Let i ∈ {0, 1, 2}, λ ∈ [0, 1], and let x be a solution of (Ii,λ). To simplify
the notation, let v and ρ stand for vi and ρi respectively, and x̃(t) and x̂

′(t) stand
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for x̃(t)vi,ρi
and x̂′(t)vi,ρi

. Then for almost every t ∈ {t ∈ I : ∥x(t)− v(t)∥ > ρ(t)},

1

∥x(t)− v(t)∥
(
⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

)
− 1

∥x(t)− v(t)∥3
⟨x(t)− v(t), x′(t)− v′(t)⟩2 − ε∥x(t)− v(t)∥

=
λ

∥x(t)− v(t)∥

(
⟨x̃i(t)− v(t), f(t, x̃i(t), x̂

′
i(t))− v′′(t)⟩+ ∥x̂′i(t)− v′(t)∥2

)
− ελρ(t) +

( λρ(t)

∥x(t)− v(t)∥2
− 1

∥x(t)− v(t)∥

)
⟨x(t)− v(t), v′′(t)⟩

+
∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
− λ∥x̂′i(t)− v′(t)∥2

∥x(t)− v(t)∥
+ gλv,ρ(t, x(t), x

′(t))

≥ λ

∥x(t)− v(t)∥
(
ρ(t)ρ′′(t) + ρ′(t)2

)
− ελρ(t)

+
( λρ(t)

∥x(t)− v(t)∥2
− 1

∥x(t)− v(t)∥

)
⟨x(t)− v(t), v′′(t)⟩

+ (1− λ)
(∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
)

− λρ′(t)2

∥x(t)− v(t)∥
+ gλv,ρ(t, x(t), x

′(t))

≥ ρ′′(t)− ερ(t).

The conclusion (a) follows from Lemma 3.1.
(b) We argue as in the proof of Proposition 4.2 using Lemma 3.2. �

The following lemmas will lead to the existence of a priori bounds on the deriv-
ative of the solutions of (Ii,λ).

Lemma 5.6. If (H1), (H2), (H7) are satisfied then every solution x of (Ii,λ) for
i = 0, 1, 2 and λ ∈ [0, 1], satisfies

∥x′′(t)∥ ≤ 2ψ(∥x′(t)∥)(γ(t) + ∥x′(t)∥) + ε∥ρ0∥0 a.e. t ∈ [0, 1].

Proof. Let i ∈ {0, 1, 2}, λ ∈ [0, 1], and x a solution to (Ii,λ). By Proposition 5.5,
we know that x ∈ T (vi, ρi). Again, to simplify the notation, we do not write the
subscripts. We have that

(5.1) ∥x′′(t)∥ ≤ ∥f(t, x(t), x′(t))∥+ ε∥x(t)− v(t)∥

+

{
gλv,ρ(t, x(t), x

′(t)), if ∥x(t)− v(t)∥ = ρ(t),

0, otherwise.

Let us examine the third part of the right member of this equation. Since (v, ρ) is a
solution-tube of (1.1) and by Remark 4.1, we have a.e. on {t ∈ [0, 1] : ∥x(t)−v(t)∥ =
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ρ(t), gλv,ρ(t, x(t), x
′(t)) > 0},

gλv,ρ(t, x(t), x
′(t))

= (1− λ)

(
ρ′′(t) +

⟨x(t)− v(t), v′′(t)⟩+ ρ′(t)2 − ∥x̂′(t)− v′(t)∥2

∥x(t)− v(t)∥

)

≤ ⟨x(t)− v(t), f(t, x(t), x̂′(t))⟩
∥x(t)− v(t)∥

≤ ∥f(t, x(t), x̂′(t))∥ = ∥f(t, x(t), x′(t))∥.

This inequality combined with (5.1) and (H7) leads to the conclusion. �

Lemma 5.7. Under (H1), (H2), (H5) there exist b0 > 0, c0 ≥ 0, and δ0 ∈ L1[0, 1]
such that every solution x of (Ii,λ) for i = 0, 1, 2, λ ∈ [0, 1], satisfies a.e. on
{t ∈ [0, 1] : ∥x′(t)∥ ≥ R}

(b0 + c0∥x(t)∥)σ0(t, x) ≥ ∥x′(t)∥ − δ0(t),

where R is given in (H5) and σ0 is defined in Lemma 3.4.

Proof. Let x be a solution to (Ii,λ) for some i ∈ {0, 1, 2}, and λ ∈ [0, 1]. Again
to simplify the notation, we don’t write the subscripts. From Proposition 5.5,
x ∈ T (v, ρ). Also, a.e. on {t ∈ [0, 1] : ∥x(t)− v(t)∥ = ρ(t), gλv,ρ(t, x(t), x

′(t)) ̸= 0},

|gλv,ρ(t, x(t), x′(t))| = gλv,ρ(t, x(t), x
′(t))

≤ z0(t) := max
i=0,1,2

{|ρ′′i (t)|+ ∥v′′i (t)∥ }.
(5.2)

It follows that a.e. on {t ∈ [0, 1] : ∥x′(t)∥ ≥ R},

(b+ c∥x(t)∥)σ0(t, x)
= λ(b+ c∥x(t)∥)σ(t, x(t), x′(t)) + (1− λ)(b+ c∥x′(t)∥)∥x′(t)∥

+ (b+ c∥x′(t)∥)
(
ε(1− λ) +

θ(t)gλv,ρ(t, x(t), x
′(t))

∥x(t)− v(t)∥

)( ⟨x(t), x(t)− v(t)⟩
∥x′(t)∥

− ⟨x′(t), x(t)− v(t)⟩⟨x(t), x′(t)⟩
∥x′(t)∥3

)
,

where b, c are given in (H5) and

θ(t) ∈

{
[0, 1], if ∥x(t)− v(t)∥ = ρ(t),

{0}, otherwise.

It follows from (H5) and (5.2) that

(b+ c∥x(t)∥)σ0(t, x) ≥ (λ+ b(1−λ))∥x′(t)∥−h(t)− 2
( b
R

+ c
)
∥x(t)∥(ερ(t)+ z0(t)).

Set ν = minλ∈[0,1]{λ + b(1 − λ)}. The conclusion follows choosing b0 = b/ν and
c0 = c/ν and

νδ0(t) = h(t) +
2

R

(
b+ c(∥v0(t)∥+ ρ0(t))

)(
∥v0(t)∥+ ρ0(t)

)(
ερ0(t) + z0(t)

)
.

�
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Lemma 5.8. Under (H1), (H2), (H4) there exists m0 ∈ L1[0, 1] such that every
solution x of (Ii,λ) for i = 0, 1, 2, λ ∈ [0, 1], satisfies

∥x′′(t)∥ ≤ a
(
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

)
+m0(t) a.e. t ∈ [0, 1],

where a is given in (H4).

Proof. Let x be a solution of (Ii,λ) for some i ∈ {0, 1, 2} and λ ∈ [0, 1] which is in
T (vi, ρi) by Proposition 5.5. As always, to simplify the notation, we don’t write
the subscript i. We have by (H4) and (5.2)

∥x′′(t)∥ ≤ λ∥f(t, x(t), x′(t))∥+ ε(1− λ)∥x(t)− v(t)∥+ z0(t)

≤ aλ
(
⟨x(t), f(t, x(t), x′(t))⟩+ ∥x′(t)∥2

)
+ l(t) + ερ0(t) + z0(t)

≤ a
(
⟨x(t), x′′(t))⟩+ ∥x′(t)∥2

)
+ l(t) + ερ0(t) + z0(t)

+ a∥x(t)∥(ερ0(t) + z0(t));

and the proof is complete. �

Now, we can prove the main theorem of this section.

Proof of Theorem 5.1. The conclusion is a direct consequence of Theorem 5.4, Lem-
mas 3.3–3.5, and 5.6–5.8. �

Arguing as in the proofs of Theorems 2.3 and 5.1, we can see that we can obtain
the following more general results.

Theorem 5.9. Assume that (H1), (H2), and (H3) or (H7) are satisfied. Assume
also

(H8) there exist R > 0, b > 0, c ≥ 0, h ∈ L1(I), and u ∈ W 2,1([0, 1],Rn) such
that

(b+ c∥x− u(t)∥)σu(t, x, p) +
c⟨x− u(t), p− u′(t)⟩2

∥x− u(t)∥ ∥p− u′(t)∥
≥ ∥p− u′(t)∥ − h(t),

for a.e. t ∈ I and for all (x, p) ∈ R2n such that ∥x − v0(t)∥ ≤ ρ0(t),
∥p− u′(t)∥ ≥ R, where

σu(t, x, p) =
⟨x− u(t), f(t, x, p)− u′′(t)⟩+ ∥p− u′(t)∥2

∥p− u′(t)∥

− ⟨p− u′(t), f(t, x, p)− u′′(t)⟩⟨x− u(t), p− u′(t)⟩
∥p− u′(t)∥3

.

Then the problem (1.1) has at least three distinct solutions x0, x1, x2 such that
xi ∈ T (vi, ρi), xi ̸∈ T (vj , ρj), i = 0, 1, 2, j = 1, 2, i ̸= j.

Theorem 5.10. Assume that (H1) and

(H9) there exist (v0, ρ0) a solution-tube of (1.1) and for i = 1, . . .m with m ≥
2, there exists (vi, ρi) a strict solution-tube of (1.1) such that T (vi, ρi) ∩
T (vj , ρj) = ∅, and T (vi, ρi) ⊂ T (v0, ρ0), i, j ∈ {1, . . . ,m}, i ̸= j.

Assume also (H3) or (H7), and (H4) or (H5) or (H8) are satisfied. Then the
problem (1.1) has at least m + 1 distinct solutions x1, . . . , xm+1 such that xi ∈
T (vi, ρi), xm+1 ∈ T (v0, ρ0), xm+1 ̸∈ T (vi, ρi), i = 1, . . . ,m.
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Idea of the proof. As before, for i = 0, . . . ,m, we define appropriate maps hi and
families of problems (Pi,λ) (or (Ii,λ)) such that solutions to (Pi,λ) are fixed points of
hi(λ, ·). A priori bounds are obtained which permit to define open sets U0, V1, . . . , Vm
with Vi ⊂ U0, Vi ∩ Vj = ∅ for i ̸= j,

hi(1, x) = h0(1, x) for all x ∈ Vi, i = 1, . . . ,m,

and

1 = deg(id− h0(1, ·), U0, 0),

1 = deg(id− hi(1, ·), Vi, 0) = deg(id− h0(1, ·), Vi, 0), i = 1, . . . ,m.

Thus,

deg(id− h0(1, ·), U0\V1 ∪ · · · ∪ Vm, 0) = deg(id− h0(1, ·), U0, 0)

− deg(id− h0(1, ·), V1, 0)− · · · − deg(id− h0(1, ·), Vm, 0) = 1−m ̸= 0.

So, there exists a solution in U0\V1 ∪ · · · ∪ Vm and hence in

T (v0, ρ0)\T (v1, ρ1) ∪ · · · ∪ T (vm, ρm),

and for each i = 1, . . .m, there exists a solution in Vi and hence in T (vi, ρi). �

In the scalar case, we have the following result. Let us recall that u,w are
respectively strict lower and upper solutions if

(
(u + w)/2, (w − u)/2

)
is a strict

solution-tube of (1.1). See Henderson and Thompson [12] for a result with more
general upper and lower solutions.

Corollary 5.11. Let f : [0, 1]×R2 → R be a Carathéodory function. Assume that
there exist w1, . . . , wm, m strict upper solutions, and u1, . . . , um, m strict lower
solutions such that

(i) ui ≤ wi, for i = 1, . . . ,m;
(ii) u1 ≤ u2 ≤ · · ·um, w1 ≤ w2 ≤ · · ·wm;
(iii) ui+1 ̸≤ wi, i = 1, . . . ,m− 1;
(iv) there exist a Borel measurable function ψ : [0,∞[→ ]0,∞[ and γ ∈ L1(I)

such that

∥f(t, x, p)∥ ≤ ψ(∥p∥)(γ(t) + ∥p∥)
a.e. t ∈ I for all (x, p) ∈ R2n such that u1(t) ≤ x ≤ wm(t), and∫ ∞

k

ds

ψ(s)
= ∞ ∀m > 0.

Then the problem (1.1) has at least m+1 distinct solutions x1, . . . , xm+1 such that
ui ≤ xi ≤ wi, u1 ≤ xm+1 ≤ wm, xm+1 ̸∈ [ui, wi], i = 1, . . . ,m.

Finally, we present an example.

Example 5.12. Consider the following system

(5.3)

x′′ = 5x− b(x, y)y − u(t, x, y, x′, y′)x′ + v(t, x, y, x′, y′)− 5

y′′ = 5y + b(x, y)x− u(t, x, y, x′, y′)y′ + w(t, x, y, x′, y′)− 5

x(0) = x(1), y(0) = y(1), x′(0) = x′(1), y′(0) = y′(1),
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where u, v, w are bounded Carathéodory functions such that u ≥ 0, ∥v(t, x, p, q)∥ ≤
1, ∥w(t, x, p, q)∥ ≤ 1, and

b(x, y) =
5
(
(x2 + y2 − 2y + 3/4)2 − (x2 + y2 − 2x+ 3/4)2

)
(x2 + y2 − 2y + 3/4)2 + (x2 + y2 − 2x+ 3/4)2

.

We can find a constant ρ0 ≥ 2 big enough such that
(
(0, 0), ρ0) is a solution-tube

of (5.3). Also, we define ρ(t) = 1/2+δ(t−1/2)2. We can verify that for δ > 0 small
enough,

(
(1, 0), ρ

)
and

(
(0, 1), ρ

)
are strict solution-tubes of (5.3), T

(
(1, 0), ρ

)
⊂

T
(
(0, 0), ρ0

)
, T
(
(0, 1), ρ

)
⊂ T

(
(0, 0), ρ0

)
, and T

(
(1, 0), ρ

)
∩T
(
(0, 1), ρ

)
= ∅. Finally,

it is easy to check that assumptions (H3) and (H5) are satisfied.
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