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A b s t r a c t - - I n  this paper, we establish some existence results for periodic and initial value prob- 
lems for first-order ordinary differential equations in Banach space, where the right member f has a 
decomposition f = g + h with g and h satisfying, respectively, a compactness and Lipschitz assump- 
tions. Our results extend results of [1]. 

K e y w o r d s - - C a u c h y ,  Periodic, Abstract equations, Nonlinear. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

In  this paper,  we are concerned with the  periodic and initial value problems 

y'(t) = f ( t , y ( t ) )  a.e. t e [0, T ] ,  

y'(t) +cy(t )  = f ( t , y ( t ) )  a.e. t e [0, T] ,  

y(0) = a e E; (1) 

y(0) = y(T); (2) 

where E is a real Banach  space and f : [0, T ]  x E --* E has a decomposi t ion f = g + h with g 

and h Ca ra th6odory  functions satisfying, respectively, a compactness  and Lipschitz assumptions.  

The  paper  is divided in three sections. In  the  first one, we give some preliminaries. In  Section 2, 

we ob ta in  existence results wi thout  assuming any growth restriction. To our  knowledge, it is the  

first t ime t h a t  existence results to  such problems in a Banach space (which is not  necessarily 

Hilbert)  are obta ined  wi thout  growth restriction on the right member.  Using the  semi-inner 

product ,  we impose a condit ion which coincides with the existence of  upper  and lower solutions 
in the  scalar case. In Section 3, we show tha t  some classical existence results for the  initial value 

problem can be extended to  problem in Banach space. The  results of  this paper  generalize and 
complement  results of  [1]. 

Th roughou t ,  E is a real Banach space with norm ]1" II. We denote  by C([0, T ] ,  E) ,  the space of  

cont inuous functions u : [0, T]  --* E.  Let u : [0, T]  -* E be a measurable  function. By  f [  u(t)dr, 
we mean  the  Bochner  integral of  u, assuming it exists. We define W1'1([0, T ] ,  E )  as the set of 
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continuous functions u such that  there exists v E LI([O,T],E) with u(t) - u(O) = fo v(s) ds, 
for all t in [0,T]. Notice that  if u E WI'I([0,T],  E), then u is differentiable almost everywhere 
on [0, T], u' e LI([O,T],E),  and u ( t ) -  u(O) = foU'(s)ds for t i n  [0, T]. By a solution to (1) 
or (2), we mean a function u E WI'I([O,T],E) satisfying the differential equation (1) or (2), 
respectively. We deduce easily the following lemma from the previous definition. 

L E M M A  1.1. I f x  e WI'I([O,T],E),  then [[x[[ E WI'I([0, T] ,R).  

The semi-inner products on E are defined by 

(x,y)+ = [[xi[ lim fix + tyl[ - [ixll 
t--~O+ t ' 

(x ,y )_  = ilx[I lim fix + t y i l  - Ilxll 
t--~0- t 

The reader is referred to [2,3] for more details. 

LEMMA 1.2. Let E be a real Banach space. The following properties are satisfied: 

(a) I<x,y)±i _< Ilxii Ilyll; 
(b) (ax, fty)+ = aft(x, y)+ for all aft >_ O; 
(c) <y,x + ay>~ = <y,x)~ + alluli 2 for all a e a;  
(d) (x ,y )_  ~_ (x,y)+, 
(e) f i x  : [0,T] --* E is differentiable at t, then 

IIx(t) ll D +  IIx(t) ll -- <x(t), x'(t)>+,  

IIx(t) ll D -  Ilx(t) ll = <x(t), x'(t)>_, 

where D + and D -  are the upper right and left Dini derivatives, respectively. 

A function g : [0,T] x E --* E is a Carathdodory function if: 

(1) the map t -* g(t, z) is measurable for each z in E; 
(2) the map z --* g(t, z) is continuous for almost all t in [0,T]; 
(3) for each r > 0, there exists hr • LI([0, T] ,R)  such that  [[z[[ _< r implies [[g(t,z)[[ < hr(t) 

for almost all t in [0,T]. 

For the sake of completeness, let us recall [1, Theorem 2.1] which follows from the Krasnoselskii 
fixed point Theorem for contraction plus compact mappings. 

THEOREM 1.3. Assume f : [0,T] x E --* E has the decomposition f = g + h with g and h 
Carathdodory functions such that 

(i) for each t • [0,T], the set {fog(S,U(s) ) ds : u • C([O, T I ,E) } is relatively compact; 
(ii) there exists q • LI([0 ,T] ,R)  with [[h(t,u) - h(t,v)[[ < q(t)[[u - vii a.e. t • [0, T], and all 

u , v • E .  

Then problem (1) has a solution. 

Similarly, we obtain the following existence theorem. 

THEOREM 1.4. Let c ~ O. Assume f : [0,T] x E --* E is as in the previous theorem. If  

fo T q(t) < felT, dt 

then problem (2) has a solution. 

PROOF. We endow C([0, T], E) with the norm 

max lie"-Q(~)u(t)ll, if c > 0, 
iIU]]* = t e [ 0 , r  ] 

max ec(T-t)-d~(t)u(t) , i f c  < 0, 
t e  [0,T ] 
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t 
where Q(t) = fo q(s )ds  and Q(t) = f ?  q(t)dt.  Essentially, the same argument  as in [1, Theo- 
rem 2.1] establishes the result. II 

REMARK 1.5. Condit ion (i) is satisfied if g is a K-Cara th~odory  function, i.e., g is Carath~o- 
dory and is such tha t  for each r > 0, there exist a nonnegative function ~ E Lx( [0 ,T] ,R)  and 
a compact  set K r  in E such tha t  [Iz[[ <: r implies g( t , z )  E ~?~(t)K~, for almost all t in [0,T],  
(see [4]). 

In the sequel, we will say tha t  a function f : [0,T] × E --~ E satisfies condition (A) if 
(a) 

(b) 

(c) 

f has the decomposit ion f = g + h with g and h Carath&)dory functions; 
for each t E [0,T] and r > 0, the set { f o g ( S , U ( s ) ) d s : u  E C([O,T],E)  with [[u(s)[[ _< r, 
for all s E [0,T]} is relatively compact; 
for each r > 0, there exists q E LI ( [0 ,T ] ,R)  such tha t  [Ih(t,u) - h(t,v)[[ <_ q(t)[lu - vii 
a.e. t E [0,T], and all u ,v  E E with [[ul[ , [[vl[ _< r. 

2 .  E X I S T E N C E  R E S U L T S  W I T H O U T  G R O W T H  C O N D I T I O N  

We first present a result for the initial value problem which generalizes results in [1]. 

THEOREM 2.1. Assume f : [0, T] x E -* E satisfies condition (A), and 

(i) there exist v E WI ' I ([O,T] ,E)  and M E WI ' I ( [0 ,T] ,  [0,oo)) such that 

(y - v(t), f ( t ,  y) - v '( t))_ <_ M ( t ) M ' ( t ) ,  

for a.e. t E [0,T] and all y E E with HY - v(t)[[ = M(t ) ;  
(ii) f ( t , v ( t ) )  = v'(t) a.e. on {t E [0,T] : M(t)  = 0}; 

(iii) Ha - v(0)[[ <_ M(0).  

Then problem (1) has a solution such that []y(t) - v(t)H _< g ( t )  for all t E [0,T]. 

PROOF. Consider the initial value problem 

y'(t) = f ( t ,p ( t , t ( t ) ) )  a.e. t E [0, T] ,  y(0) = a, (3) 

where 
M(t)  (1 - min {1, M(t)  p ( t , y ) =  min {1, [[y-v(t) ,[  } Y +  [[y---~((t)[, } ) v ( t ) .  

It  is easy to check tha t  

liP(t, Yl) --p(t, Y2)It -< 2 [lYl - Y2[I, for all Yl, Y2 E E. 

Theorem 1.3 implies tha t  (3) has a solution y. It remains to show tha t  [ly(t) - v(t)H < M(t)  for 
all t E [0, T] .  

Suppose there exists tx E (0, T] with I l y ( t x )  - v ( t l ) l l  > M(t l ) .  It follows from (iii) that  thor(' 
exists to E [0, h )  such tha t  I l y ( t o )  - v ( t 0 ) l l  = M(to) and I l y ( t )  - v(t)ll > M( t )  for t E (to, tl ). We 
deduce from Lemmas 1.1 and 1.2 and condition (i) tha t  a.e. on (to,t1), 

[ly(t) - v(t)ll' = D + Ily(t) - v(t)]l = D -  Ily(t) - v(t)ll 

(u( t )  - v ( t ) ,  y ' ( t )  - v ' ( t ) ) _  

Ily(t) - v'(t)ll 
(p (t ,  y ( t ) )  - v ( t ) ,  y ' ( t )  - ¢ ( t ) ) _  

M(t)  

< M'( t ) .  

Thus, the function [lY - v i i  - M is decreasing on (to, tx), which is a contradiction. | 

REMARK 2.2. In the scalar case, if a < ~3 E WI ' I ( [0 ,T ] ,R)  are, respectively, lower and upper 
solutions of (1), then  

a+f  
v = ~ and M = 

2 2 ' 
satisfy (i), (ii), and (iii) in Theorem 2.1. 

We have analogous results for the periodic problem. 
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THEOREM 2.3.  Let  c > 0. Assume f : [0 ,T]  x E ~ E satisfies condition (.4), and 

(i) there  exist v 6 WI ' I ([O,T] ,E)  and M 6 W l ' t ( [ 0 , T ] , [ 0 ,  c~)) such tha t  

(y - v ( t ) , f ( t , y )  - (v'(t) + cv(t))>_ <_ M( t )  (M'( t )  + cM(t) )  , 

for a.e. t ~ [0 ,T] ,  and all y 6 E with fly - v(t)([ = M(t) ;  
(ii) f ( t , v ( t ) )  = v'(t) +cv( t )  a.e. on {t 6 [0 ,T]  : M( t )  = 0}; 

(iii) I[v(0) - v(T)[[ _< g ( 0 )  - M ( T ) .  

I f  f :  2q(t) dt < cT, where q is the function given in condition (A) for r = [Ivll0 + IIMllo, then 
problem (2) has a solution such that fly(t) - v(t)[ I _< M(t )  for all t 6 [0 ,T] .  

PROOF. The  ideas in Theorem 2.1 together  with Theorem 1.4 guarantees  the  existence of a 
solut ion y to  the problem 

y ' ( t )  + cy(t)  = f ( t , p ( t , y ( t ) ) )  a.e. t E [0, T] ,  y(0) = y(T).  

We claim tha t  flY(t) - v(t)[[ < M( t )  for every t 6 [0,T].  First  of all, observe t h a t  Assump- 
t ions (i), (ii), and Lemmas  1.1 and 1.2 imply tha t  almost  everywhere on {t : Ily(t) -v ( t ) }  I > M( t )} ,  

lly(t) - v(t)l I' < M' ( t )  + c ( M ( t )  - [[y(t) - v(t)[[).  (4) 

This  inequali ty with the periodic condit ion and (iii) imply tha t  

S = { t :  Ily(t) - v(t)l  I ___ M( t )}  # 0, 

since if S = 0, we would have 

M(O) - M ( T )  < Ily(0) - v ( 0 ) l l  - I l y ( 0 )  - v ( T ) [ t  < [ I v ( T )  - v ( 0 ) J } .  

Next  not ice t ha t  if to E S and to < T, then  {to, T] C S. If it was not  true, then 11y(t)-v( t ) l l -  M( t )  
for t 6 [to,T], a t ta ins  a positive max imum at tl  ~ (to,T]. Also, there  exists t2 6 [to,t1) with 

0 < I l y ( t )  - v ( t ) l l  - M(t)  < I l y ( t l )  - v ( t ) l l  - M ( t l ) ,  for all t 6 (t~, t,}, 

and [/y(t2) - v(t2)ll - M(t2)  = 0. Thus,  

M ( t l )  - M( t2)  <_ I l y ( t x )  - v ( h ) l l  - I l y ( t 2 )  - v ( t ~ ) l l  • 

On the  o ther  hand,  inequali ty (4) implies 

I l Y ( h )  - v ( t l ) l l  - J l y ( t 2 )  - v ( t 2 ) l l  < M ( h )  - M( t2 ) ,  

a contradict ion.  Thus ,  if to 6 S, then  fro,T] C S. So, T E S. It follows from the  bounda ry  
condit ions T 6 S and (iii) that :  

I l y ( 0 )  - v ( 0 ) l l  = IIy(T) - v(0)[[  < M(T) + I I v ( T )  - v ( 0 ) l l  _< M ( 0 ) ,  

soOe S. | 

Using the  change of variable s = 1 - t (or again using ideas similar to those in Theorem 2.3), 
we get the  following result. 
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THEOREM 2.4. Let c < O. Assume f : [0 ,T]  x E ~ E satisfies condition (.4), and 

(i) there  exist v E WLI([O,T] ,E)  and M E wl 'X( [0 ,T] , [0 ,  oc)) such tha t  

(y - v(t) ,  f (t, y) - (v'(t) + cv(t)))+ > M(t)  (M'( t )  + cM( t ) ) ,  

for a.e. t E [O,T], and a11 y E E with Ily - v(t)tl = M(t ) ;  
(ii) f ( t , v ( t ) )  = v'(t) +cv( t )  a.e. on {t ~ [O,T] : M(t )  = 0}; 

(iii) IIv(T) - v(O)ll <_ M(T)  - M(O). 

If f :  2q( t )d t  < - c T ,  where q is the function given in condition (.4) for r = Ilvll0 + tlMII0, then 
problem (2) has a solution such that [[y(t) - v(t)[[ _< M(t)  for all t E [0,T].  

REMARK 2.5. In the  scalar case, if a _> /? E W I ' I ( [ 0 , T ] , R )  are, respectively, lower and upper  
solutions of (2), then 

a + f ~  a - j 3  
v - and M - 

2 2 ' 

satisfy (i), (ii), and (iii) in Theorem 2.4. 

REMARK 2.6. In this paper,  it is also possible to consider the more general periodic problem 

y'(t) + c(t) y(t) = f (t, y(t)) i .e.  t E [0, T],  U(0) = y ( T )  

Theo rem  2.3 (respectively, Theorem 2.4) holds with c E Ll([0, T] , [0 ,  oc)) (respectively, c E 

LI([0,  T ] ,  ( - c ¢ , 0 ] ) )  and f [ 2 q ( t ) d t  < [ f [c ( t )d t [ .  

3 .  R E S U L T S  W I T H  G R O W T H  R E S T R I C T I O N  

We first present  an existence result with a Win tner - type  growth condition. 

THEOREM 3.1. Le t  f : [0 ,T]  x E ~ E be a function satisfying condition (A). Assume that there  
are  a E LI([0,  T ] ,  [0, oo)) and ~ :  [0, oo) ~ (0, oe), a Bore1 measurable  function such that for i .e.  
t E [0, T ] and all y E E, 

(v, f ( t ,  v))_ _< ~(t)~(llyll) .  

/ f  IT /oo X 
a( s) ds < dx, 

all 

then problem (I)  has a solution. 

PROOF. Let  I ( z )  = fibril ( x /~ (x ) )  dx. Define M = I - X ( f [  a(s)  dE), and iS(y) the  radial project ion 
onto  {y E E : [[y[[ _~ M}.  Consider the initial value problem 

y'(t) = f ( t , ~ ( y ( t ) ) )  i .e.  t e [0, T ] ,  y(0) = a. (5) 

Theo rem  1.3 implies tha t  (5) has a solution y. The  assumptions,  and Lemmas  1.1 and 1.2 imply 
tha t  

Ily(t)ll' <_ ~(t)  ~ (lly(t)ll) { t :  [[y(t)l [ i .e.  on []y(t)[] > 0}.  

L e m m a  3.2 in [1] applied with R = Hail, ¢(x)  = qa(x)/x, and z(t) = t[y(t)[[ implies t ha t  []y(t)[[ _< 
M for all t E [0, T] .  | 

THEOREM 3.2. Let f : [0, T ]  x E --~ E be a function satisfying condition (A). Assume there  
exists a Carathdodory function g : [0,T] x R --* R such that Hf ( t ,y)  ll <_ g( t, [lYI[) for almost every 
t E [0, T ] and all y E E. In addition, assume tha t  the problem 

z '( t )  = g( t , z ( t ) )  i.e. t 6 [O,T], z(O) = Ilall, 

has a maximal solution r(t) on [O,T]. Then problem (1) has a solution. 
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PROOF. 

problem 
Define ~(t, y(t)) the radial projection of y on {y • E : [[y[[ < r(t) + 1}, and consider the 

y'(t) = f( t ,~(t ,y( t)))  a.e. t • [0,T], y(0) = a. 

Theorem 1.3 gives the existence of y a solution to this problem. Since 

[[y(t)][' < g( t ,  HyH) a.e. t • [0, T] ,  

using the comparison [5, Theorem 1.10.2], we deduce that  Ily(t)ll < r(t) for every t • [0, T], and 
the proof is complete. | 

A special case of Theorem 3.2 is the following result. 

COROLLARY 3.3. Let f : [0, T] × E --* E be a function satisfying condition (A). Assume that 
there are a • LI([o, T], [0, oo)) and ~a : [0, oo) --* (0, oo), a continuous function such that for a.e. 
t E [0, T] and all y • E, 

Hf(t, y)[[ ~ o~(t)cp (HyH), 

and 
fo T fH °° dx ~(s) ds < 

oll 

Then problem (1) has a solution. 

REMARK 3.4. We would like to remark that  Corollary 3.3 could be deduced from Theorem 3.1; 
this has the advantage of not having to rely on classical theory (namely, [5, Theorem 1.10.2]). 
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