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On a generalization of a theorem of S. Bernstein

by M. Frigon (Montreal) and D. O’ReganN (Moscow, U.S.A)

Abstract. In this paper we obtain “weak solutions” via Topological Transversality to
nonlinear boundary value problems of the form " = f(z, y, y), 1[0, 1], with y satislying
appropriate boundary conditions, where f: [0, 1] x R? — R satisfies the Carathéodory Condi-
tions. Our analysis is based on the notions of an essential map and on a priori bounds on
solutions. ‘ v

1. Introduction. In this paper we study the existence of solutions to
second order boundary value problems of the form

(1.1 : y'=ft,y@®),y@), veB, 1te[0,1],
where in fact f: [0, 1]xR? =R may be discontinuous. Here of course B
denotes suitable boundary conditions. We examine in this paper the case
where f satisfies the Carathéordory Conditions, ie.
(a) For fixed (u, v)e R?, f(m, u, v) is Lebesgue measurable on [0, 1].
(b) For all te[0, 1], f(, w, ®) is continuous on R*. v
For notational purposes let I?(0, 1) denote the space of Lebesgue
1

measurable functions g on (0, 1) with j' lg(®O|*dt < 0. I2(0, 1) with norm
: 0]

- 1
lgl,2 = ([lg 01 dr)

By a weak solution to (1.1) we mean a function ye B which together
with its derivative ' is absolutely continuous on [0, 1] with y”e L*(0, 1) and
y' = f(t,y,y) almost everywhere on [0, 1]. This paper in fact extends
results of Granas, Guenther and Lee [10] which deals with the case where f
is continuous. We shall establish, with f satisfying the same physical
assumptions as in [10], that (1.1) has bounded weak solutions. Our analysis
is based on the Topological Transversality Theorem and known results on
Sobolev Spaces.

2. Preliminary notation and results. Let H?(0, 1) denote the space of all
functions u on the interval [0, 1] which are absolutely continuous on [0, 1]
together with their derivative 4’ and whose derivative «” (which exists almost
gverywhere) is an element of L*(0, 1). H?*(0, 1) with norm

Y2 is a Banach Space.
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Hedll g2 = Nadll 2+ )] 2 + Ml
is a Banach Space. Also we let
HE(O, 1) = lue H*(0, 1): ueB!.
Finally we state (without proof) some standard theorems which will be used
in this paper:
Theorem 2.1. Let g be a monotone increasing absolutely continuous
Junction on [a, b] with g(a) =c, g(b) =d. If f is a nonnegative measurable

Juncrion on [c, d], then

d

b
{fWdy = {flg(x)g'(x)dx.

Tueorem 2.2 (Sobolev Imbedding Theorem). HZ2(0, 1) is compacily
imbedded into C'[0, 1], i, the imbedding operator j: H*(0, 1) = C'[0, 17 is
continuous and completely continuous.

3. Homogeneous boundary value problems. In this section we examine
problems of the form

y'=fy,y), tel0, 1],
3.1
yeB,

where [ is defined in [0, 17xR? Here B denotes either the boundary
conditions

@) y©@=0,y(1)=0

~or
. (i) —ayO@+py'(0)=0; a, B> 0; apy()+by'(1) =0; a, b > 0.
Now suppose that f satisfies the following hypothesis:

(3.2)  f satisfies the Carathéordory Conditions;

(3.3) There is a constant M > 0 such that
yi,y,00>0 for |y > M,
(34 e pE < AL W pP+ B, w),
where A(r, u), B(t, u) > 0 are functions bounded on bounded (r, u) séts:

(3.5) ¥, y, p) is lower semicontinuous at all points
of the form (r, y, 0).

Proposition 3.1. Suppose that f: [0, 1] x R? — R satisfies (3.2) and (3.4).
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Then F: C'[0, 1] = L*(0, 1) given by (Fu)(1) = f(t, u(t), u'(t)) is defined and
continuous.
Proof. Let ¢ > 0 be given and suppose u, eC[0, 1]. Consider

G = 1€[0, 17 [lo—(uo (1), up(0))]] < /m
:lf(l’ Uy, vZ)—f([v uO(t)i ui)(f))" < B/L},
where v = (v, v,)e R?, [|v|| = max {|v,], |v,]! and L is a predetermined con-
stant which will be described below. G,,, is measurable since f satisfies (3.2).

let E,, = QzG"’"' Now E,, is measurable and E,, c E,, = ... Also CJIE,,,,;

=(0, 1) for if t5€(0, 1), then there exists m such that [lo—(uo(ro), u5(10))]
< 1/m, and hence |f (1o, v,, v2)—f (1o, o (to), up(to))] < &/L since [ satisfies
(3.2). Hence there exists moe N such that mes(E,,,) > 1—¢/L. Let A, B be
constants such that [4(:/, v){ < A and |B(t, v))| < B for v, < 1+|ugll;,

where [Juoll; = max {|fuoll o, luollw} and |juollo = sup ju(r)]. Now for all & > 0
10,1}

there exists y = y(e) > 0 such that
mes (S) < = [[9 A% (uo () +2B7]dr <}(e)*.
Put i
1 e 2 €
0<d< min%;z;, %%W} } and max {5 (3)”2} < L.
Let ueC'[0, 1] such that [ju—uy|, <8. We will now show that

lfFu—Fuell,» <& I t€E,,, then

(a0, w @) =1 (t, uo (), up ()] <&/L
and so
[ IS u) W @)= (1, uo ), up @) de < /12 < e¥3.
Emge
However, mes(E;, ,) <¢/L <en/e =1, and so

1S u@), W @)=1(t, uo (), up ()] de
e .
<2 [ f (e u@, w @) +|1(t, uolt), w @)} dt
Ege
<2 {[A(r, u(t))(u’(t))2+B(t, u(t))‘2+

Emge
+A(t, o () (o (1) + B(t, uo (1)} dr
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<4 [ (A2 ) + B+ A2 (up () + BY)dr

mge

<4 f {8A (U (1) — up (O + Jup (DI*)+ A2 |uj, (1)]* + 2B2 }dt
E¢

moz
<4 | {947, (O1*+2B*+8A4% juy (1) — ' (1)|* ) dt
Ermge
<4{3(3e)* +8425*) <4e?+4e? =42
Hence ||[Fu—Fu,ll,, <e, so F: C'[0,1] = I2(0, 1) is continuous.

The Sobolev Imbedding Theorem together with Proposition 3.1 are now
used to extend Theorem 2.1 of [11] for the new class of problems (3.1).

TueoreM 3.2 Ler f: [0, 1] x R* — R satisfy (3.2), (34) and 0< i< 1.
Suppose there is a constant K independent of A such that Ivlly2 < K for each
solution y(t) to
3.1, V=i y,¥), te[0,1], yeB.

Then the boundary value (3.1) has a solution y in H?(0, 1).

Proof. Let V= {ueHZ(0, 1): flull 2 < K+1} and define F;: C'[0, 1]
=I1*(0, 1) by (Fo)(t) = 2f (1, v(r), v'(t). Now F, is continuous by Proposi-
tion 3.1. We have the imbedding j: HZ(0, 1) — C![0, 1] completely continu-
ous by Theorem 2.2. Finally we define N: HZ(0, 1) = I1*(0, 1) by Ny =y".
It is easy to check N is linear, onto and continuous. To show N is one-to-
one we observe that the boundary conditions (i) or (ii) imply that y’ vanishes
at least once in [0, 1]. So if Ny = 0 the absolute continuity of y and y’ with
the above observation implies y = 0. Thus N~ ! is a bounded linear operator
by Theorem 5.10 of [15]. Now H,=N"'F,j: V- H3(0,1) defines a
homotopy. It is clear that the fixed points of H, are precisely the solutions to
(3.1);. Now H ; is fixed point free on 8V, Moreover, the complete continuity
of j together with the continuity of N™! and F, imply that the homotopy H,
is compact. Now H, is essential so Theorem 1.5 of [12] implies that H, is
essential. Thus (3.1) has a solution.

Next sufficient conditions of f are given which imply a priori bounds
for solutions to (3.1). Let ye Hj (0, 1) be a solution to (3.1). Suppose [v(£)]?
has a maximum at t,¢(0, 1). Then from elementary calculus y'(1,) = 0.

Tueorem 3.3. Suppose f: [0, 1] xR* =R satisfies (3.2), (3.5) and (3.3).
Then any solution y to (3.1) satisfies

@l <M, tef0,1]
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Proof. We first show that |y cannot have a nonzero maximum at 0 or
1. This is true automatically if y satisfies (i). On the other hand suppose y
satisfies (ii) and that |y| has a nonzero maximum at 0. Then y(0)y (0) < 0.
However,

YOy o= oy s

a contradiction. A similiar argument works for the case t = 1. We conclude
that |y| can only have a nonzero maximum at f,€(0, 1). Now assume the
maximum of |y| is at t,€(0, 1), so y'(to) = 0. Suppose |y(to)] > M. Then from
(3.3), y(to) f (to, ¥(to), 0) > 0. The continuity of y and y’ together with (3.5)
implies there exists a neighborhood N,, of (to, ¥(to), O) such that

(%) yOf(e, y@, y®)>0 for (¢, y(), Y () eN,,.
o .
On the other hand y'(t) = | y"(s)ds and so Fubini’s Theorem implies
to

y(O) =yt + [(t—u)y" (u)du.
o
Thus,
VIO = Y )+ 2 [ —wy [y [ (u, y(), y' )]+ [ ()] du.
to

Since [|y| has a maximum at t,, then for t near t,

4

fe=wlywf(u, yw, y @)]+0v@)2du <0
o
which contradicts (x). Thus |y(t,) < M.
We now prove our basic existence theorem for second order boundary
value problems.

THEOREM 3.4. Suppose that f- [0, 1] x R* - R satisfies (3.2), (3.3), (3.4) and
(3.5). Then the boundary value problem (3.1) has at least one solution in
H?(0, 1).

Proof. To prove existence of a solution in H?(0, 1) we apply Theorem
3.2. To establish a priori bounds for (3.1),, let y(r) be a solution to (3.1),. If A
=0, we have the unique solution y =0. Otherwise, for 0 <l <1,
y(t, y, 00> 0for |yl > M implies Ayf (¢, y, 0) > O for |y} > M. Thus Theorem
3.3 implies |y} < M for any solution y to (3.1), and for each Ae[0, 1]. Hence
1

([1y () ds)"'?
0
It is easy to observe that boundary conditions (i) or (i) imply that y’ vanishes

< M. Finally we obtain a priori bounds on derivatives of y.
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at least once on [0, 1], so each point r€[0, 1] for which y'(1) # O belongs
to an interval [, v] such that y’ maintains a fixed sign on [y, ¢] and ¥’ (u)
and/or y'(v) is zero. Assume that y'(u) =0 and )’ >0 on [u, v]. Thus,
with Ao, B, denoting upper bounds of A(r, u), B(r, u) respectively for
(r, u) €[0, 1] x[— M, M] and since

[Af(t, y, I < Ao(y/)z"“Bo,

we have

LY @)y (w)

VAo [ a7+ By M S M
For u<uxr
- /71 =Ly @713 = 2|{y'(s)y" (s) ds|

<2[y'(s)ly"(s)lds,
SO
Ao [V (W) +Bo < 24, [y (9 ly” (s)| ds+ B,.

Thus the previous inequality implies

} { EAO y @)y (u) }du <44, M.
# (24,

[ (s)ly"(s)lds+ Bo.

Theorem 2.1 with g(u) = 24, j Y (s}y"(s)lds yields
M

g(t) d
[ . <44, M,
o U+ By, '

440M

and so g(t) < By(e ~—1). Moreover, (3.6) yields

D01 <2[y(s)y"(s) ds < %"(e“"fﬂ”~ )
# 0
and so
1/2
v ()l < {g‘i(e“"“— ) } =M,
(5}

The other cases are treated similarly and the same bound is obtained. Thus
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]
[ < M, and, in particular, (}'l)"(s‘)fza!s)l'/2 < M, for each solution y to (3.1),

0
and for each ie[0, 1]. Also (3.3) and the differential equation yields

1 1
(fly" @12 de)'2 < ([[Ao (v () + Bo)  de)"?

0 o]

<A0M12+BO EMz.

So Iyl <K =My+M;+M, and the existence of a solution to (3.1) is

~ established.

Remark. A priori bounds, independent of 4, for y and y” (assuming we
have such a bound on solutions) can be obtained as in Theorem 3.4 if
instead of the fact that y' vanishes at least once on [0, 1], we have

V(< K,
K > 0 a fixed constant independent of 4, for some ue[0, 1]. This result will
be used in our analysis of the inhomogeneous problem.

4. Inhomogeneous boundary value problems. We have analogue results
for the inhomogeneous problem

y'=10 ), telo, 1],

4.1
y€B,

where B denotes either the boundary conditions
i) y(©)=r, y(1) =s or
(i) —ay( Q) +By'(0) =r; a, f>0; ay(1)+by'(1) =s; a, b > 0.

THeEOREM 4.1 Suppose that f satisfies (3.2), (3.3), (3.4) and (3.5). Then the
boundary value problem (4.1) has at least one solution in H*(0, 1).

Proof. Consider the family of problems:

Y=ty y), 0<Aigl,

(4.1),
yE€B,

The existence of a solution in H?(0, 1) follows from a slight modification of
the proof of Theorem 5.1 of [13] once a priori bounds independent of 4 arc
established for solutions y to (4.1),. To establish a priori bounds for (4.1),, let
»{7) be a solution to (4.1);. Now if 4 = 0 we have a unique solution and thus
[y (0 < Lfor some constant L < oc. Otherwise for 0 <i <1, yf (1, y, 0) > 0
for |y| > M implies Ayf(r, y, 0) > 0 for |y| > M. If y satisfies (iii) it follows
immediately from Theorem 3.3 that
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M < Mo = max {M, |r], Is|},
On the other hand, if y satisfies (iv) we have
Iyl < My =max (M, [r/a], |s/a]}.

To see this suppose that |v(r)] assumes its maximum at t = 0. Then
y(0)y'(0) < 0. So

02 y(0)BY (0) = a(y () {——+1

y(0) By’ (0) = a(y(0)) {ay(0)+
and consequently |y (0) < |r/a|. Likewise |y(1)] < |s/a| if |J| achieves its maxi-
mum at t=1. Thus |y < M, = max {M,, M,, L} for any solution y to
(4.1);. A priori bounds independent of 4, for y and y” follow from the
remark after Theorem 3.4 since it is easy to observe that

Wl <K,

K >0 a fixed constant independent of 4, for some point 1ef0, 1]. Thus
existence of a solution to (4.1) follows from Theorem 5.1 of [13].

THEOREM 4.2 (Granas, Guenther and Lee). Suppose f: [0, 1] xR~ R is
continuous and satisfies (3.3) and (3.4). Then the solution u of (4.1) is a classical
solution.

Proof. Let u be a solution (guaranteed by Theorem 4.1) of (4.1), ie.,
() = f(t, u(), w'(r)) almost everywhere for re[0, 1]. Now with g(t)
S(t, u(@), w(1))e C[0, 1] and u” (1) = g(r) almost everywhere for tef0, 1]
we have ue C2[0, 1] by the uniqueness of generalized derivatives.

u/l

ExampLE (Heat Conduction). Suppose V is an isotropic heat conducting
medium with S denoting the surface and 7 the outer normal. We define u
= u(x, t) to be the temperature at location xe V and t > 0. Also ¢ = ¢(x, u)
denotes the specific heat, p = p(x, u) the density and k = k(x, u) the thermal
conductivity. Now the Divergence Theorem and Fourier’s Law together with
conservation of energy yields the heat equation

0
E(CW) =divik?u)+h; xeV, t>0,

where h = h(x, u) represents the rate of heat generation by internal sources.

We now set up boundary conditions which describe the heat transfer
across S. Suppose the surroundings of }V are kept at a time independent
temperature and that heat radiates into the surroundings (according to
Newton’s Law of Cooling) at a rate proportional to the temperature differ-
ence between S and its surrounding environment. The energy balance of
heat flow across S together with Fourier’'s Law yields
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z(x, Wu(x, )+o(x, u)&u(;, H_ g(x); xeS8,t>0,

where 220, 6 >0 and o+z > 0.
We wish to find a steady state solution (temperature distribution)

y = y{x). It will satisfy
1
Ay = —E{vk-vy+h}, x€evV,

e
z{x, ) y(x)+o(x, y)——é(;;l =g(x), xe8§.

Now if Vis a rod of unit length and insulated laternal surfaces then the
steady state problem is
"o 1 . ’ n2 \
V= ey ks (x, )y +k, (x, () +h(x, Y],
z(0, y(0)) ¥ (0)—a (0, y(0))y' (0) = g (0),
z(1, y())y(M+a (1, y(1))y (1) = g(1).

We will assume the case where z, ¢ are independent of temperature and set
x=2(0>0B=0(0)>0,a=2(1)>0,b=0(1)>0,r=g(0) and s =g(1).
So our problem reduces to

1 ,
V' =~ ey H 0 Hhx ) =1 (5, ),

4.2 ay(O) -y () =r; a, >0,
ay()+by (1) =s; a,b>0.
Now we make the following assumptions on h and k:

(4.3)  ky(x, y), k,(x, y) are continuous for (x, y)e[0, 1] xR. Also suppose
for (x, y)e[0, 1] xR, k(x, y) is continuous and k(x, y) > m > 0, where
m is a constant.

(44) Suppose h(x, y) is bounded for bounded (x, y) sets. Suppose also h
satisfies the Carathéordory Conditions.
4.5) yhix, y) <0 for large |y|.

y(x)
k(x,y)

The assumption (4.5) that yh(x, y) <0 for large |y| means that the
internal heat generation A(x, y) opposes large temperature extremes, ie., if
y >0 and |y large, then h(x, y) <0 so heat is removed from the rod by
internal sources and the temperature tends to drop.

4.6) h(x, y) is lower semicontinuous on [0, 1] xR.
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Now assumptions (4.3)+4.6) together with Theorem 4.1 implies that (4.2)

has at least one solution in H2(0, 1).

and
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