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FIXED POINTS OF CONE-COMPRESSING AND
CONE-EXTENDING OPERATORS IN FRÉCHET SPACES

M. FRIGON and D. O’REGAN

Abstract

A generalization of norm type cone-compression and -expansion results due to Krasnosel’skiı̆ (see Dokl.
Akad. Nauk SSSR NS 135 (1960) 527–530) is presented here for single-valued completely continuous
maps defined on a Fréchet space. Applications to second-order differential equations on the half line are
presented, and the existence of nontrivial solutions is established.

1. Introduction

We present a generalization – for single-valued completely continuous maps defined
on a Fréchet space – of norm type cone-compression and -expansion results due to
Krasnosel’skiı̆ [5], establishing the existence of a fixed point in the intersection of an
annulus and a cone. Even though our result holds for k-set contraction, we choose
for the sake of simplicity to present it for completely continuous maps. Here, we
consider admissible maps in the sense of Frigon [3], and we therefore use the theory
of upper semi-continuous multivalued maps. This type of result was also obtained
by Agarwal and O’Regan [1] for appropriate sequences of upper semi-continuous
multivalued maps and decreasing sequences of Banach spaces.

Applications to second-order differential equations on the half line are presented,
and the existence of nontrivial solutions is also established. For other results on
these types of problem, the interested reader can consult [4] or [8].

Our main result will rely on the following particular case of a result due to
Petryshyn [7, Theorem 3] for upper semi-continuous multivalued maps.

Theorem 1.1. Let E be a Banach space and let C ⊂ E be a closed cone. Let U

and V be bounded open sets in E such that 0 ∈ U ⊂ U ⊂ V , and let F : V ∩C −→ C

be a compact, upper semi-continuous multivalued map with nonempty compact convex
values. Assume that:

(1) ‖y‖ � ‖x‖, for all y ∈ F(x) and x ∈ ∂U ∩ C;
(2) ‖y‖ � ‖x‖, for all y ∈ F(x) and x ∈ ∂V ∩ C;

or

(1′) ‖y‖ � ‖x‖, for all y ∈ F(x) and x ∈ ∂U ∩ C;
(2′) ‖y‖ � ‖x‖, for all y ∈ F(x) and x ∈ ∂V ∩ C .

Then F has a fixed point in C ∩ V \ U.

For the sake of completeness, we recall some notations and definitions – given
in [3] – that will be needed in what follows.
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Let E be a Fréchet space with the topology generated by a family of semi-norms
{‖·‖n}n∈�. For the sake of simplicity, it is assumed that the following condition is
satisfied:

‖x‖1 � ‖x‖2 � . . . , for every x ∈ E. (∗)

For r > 0 and x ∈ E, we denote B(x, r) = {y ∈ E : ‖x − y‖n � r, ∀n ∈ �}. A subset
X of E is bounded if, for every n ∈ �, there exists rn > 0 such that ‖x‖n � rn for
every x ∈ X.

To E we associate, for every n ∈ �, a Banach space �n as follows. For each
n ∈ �, we write

x ∼n y, if and only if ‖x − y‖n = 0.

This defines an equivalence relation on E. We denote by En = E/∼n the quotient
space, and by �n the completion of En with respect to ‖·‖n. (The norm on En

induced by ‖·‖n and its extension to �n are still denoted by ‖·‖n.) This construction
defines a continuous map µn : E −→ �n. For r > 0 and x ∈ �n, we denote
Bn(x, r) = {y ∈ �n : ‖x − y‖n � r}.

For each subset X ⊂ E, and each n ∈ �, we set Xn = µn(X), and we denote by
Xn, and ∂Xn, respectively, the closure and the boundary of Xn with respect to ‖·‖n
in �n. Similarly, for every m � n, we can define an equivalence relation on �m, still
denoted ∼n, which defines a continuous map µn,m : �m −→ �n, since �m /∼n can be
regarded as a subset of �n. In fact, E is the projective limit of (�n)n∈�.

Lemma 1.2. Assume that the condition (∗) is satisfied, and let X be a closed
subset of �. Then, for every sequence (zn)n∈� with zn ∈ Xn, such that (µn,m(zm))m�n is
a Cauchy sequence in Xn for every n ∈ �, there exists an x ∈ X such that (µn,m(zm))m�n

converges to µn(x) ∈ Xn for every n ∈ �.

For every n ∈ �, let D(n) ⊂ �n. We define

D(∞) = {x ∈ E : ∃N0 ⊂ � infinite and zn ∈ D(n) for n ∈ N0 such that

∀n ∈ �, µn,m(zm) → µn(x) as m → ∞ with m ∈ N0 and m � n}.
(1.1)

Let us recall the notion of a pseudo-interior, introduced in [3].

Definition 1.3. Let X be a subset of E. The pseudo-interior of X is defined as
follows:

pseudo-int(X) = {x ∈ X : µn(x) ∈ Xn \ ∂Xn, for every n ∈ �}.
The set X is pseudo-open if X = pseudo-int(X).

We define, for every n ∈ �, the multivalued map Sn : X −→ X by

Sn(x) = {y ∈ X : ‖x − y‖n = 0}.

Definition 1.4. Let X be a closed subset of E. A compact map f : X −→ E is
called admissible if, for every n ∈ �, the following conditions hold.

(1) The multivalued map Fn : Xn −→ �n defined by

Fn(µn(x)) = co(µn ◦ f ◦ Sn(x))

admits an upper semi-continuous extension �n : Xn −→ �n with convex, compact
values.
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(2) For every ε > 0, there exists m � n such that for every x ∈ X,

diamn(f(Sm(x))) < ε.

Remark 1.5. Notice that if Y is a closed convex subset of E and f : X −→ E

is an admissible map such that f(X) ⊂ Y , then, for every n ∈ �, the extension
�n can be chosen such that �n(Xn) ⊂ Yn, since Fn(Xn) ⊂ Yn. Indeed, otherwise, its
intersection with Yn is also an extension of Fn.

2. Fixed point results

Theorem 2.1. Let (E, {‖·‖n}n∈�) be a Fréchet space, let C be a closed cone in E,
and let f : C −→ C be admissible and completely continuous. Assume that there exist
U and V , two bounded pseudo-open subsets of E such that 0 ∈ U ⊂ U ⊂ V , and for
every n ∈ �,

(1) ‖y‖n � ‖x‖n, for all y ∈ �n(x) and x ∈ ∂Un ∩ Cn;
(2) ‖y‖n � ‖x‖n, for all y ∈ �n(x) and x ∈ ∂Vn ∩ Cn;

or

(1′) ‖y‖n � ‖x‖n, for all y ∈ �n(x) and x ∈ ∂Un ∩ Cn;
(2′) ‖y‖n � ‖x‖n, for all y ∈ �n(x) and x ∈ ∂Vn ∩ Cn;

(where �n is as given in the definition of an admissible map). Then there exists x ∈
C ∩ V ∩ D(∞), with x = f(x); here,

D(n) = Cn ∩ Vn \ Un

and D(∞) is as defined in (1.1).

Proof. Since f is admissible, for every n ∈ � we have �n : Cn −→ �n an upper
semi-continuous extension of Fn, defined by

Fn(µn(x)) = co(µn ◦ f ◦ Sn(x)) ⊂ Cn.

Note that for every n ∈ �, Cn is a cone. Indeed, let x̂, ŷ ∈ Cn, and let λ ∈ [0, 1].
For every x ∈ µ−1

n (x̂) and y ∈ µ−1
n (ŷ), we have λx + (1 − λ)y ∈ C , and hence

µn(λx + (1 − λ)y) = λµn(x) + (1 − λ)µn(y) = λx̂ + (1 − λ)ŷ ∈ Cn.

Similarly, it is easy to show that tx̂ ∈ Cn for every t � 0. So Cn (and hence Cn) is a
cone.

Observe that for every n ∈ �, we know that Un and Vn are open, and that
0 ∈ Un ⊂ Un ⊂ Vn. Also, from Remark 1.5, we can consider that �n : Vn ∩Cn −→ Cn

for every n ∈ �.
Theorem 1.1 implies that �n has a fixed point xn ∈ D(n) for every n ∈ �.

Obviously, µn,m(xm) ∈ �n(µn,m(xm)) for every m � n. The compactness and the
upper semi-continuity of �1 permit us to deduce the existence of a subsequence
(µ1,m(xm))m∈N1

, converging to z1 ∈ V1, such that z1 ∈ �1(z1). Now take N ′
1 = {m ∈

N1 : m � 2}. The same argument, applied to (µ2,m(xm))m∈N ′
1
, implies the existence of a

subsequence (µ2,m(xm))m∈N2
, converging to z2 ∈ V2, such that z2 ∈ �2(z2). Moreover,

µ1,2(z2) = z1. By repeating the argument, we obtain

. . . ⊂ N2 ⊂ N ′
1 ⊂ N1 ⊂ �,
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and, for every n ∈ �,

zn ∈ �n(zn) ∩ Vn such that (µn,m(xm))m∈Nn
converges to zn.

By a diagonalization process, we deduce the existence of a subsequence (xm)m∈N0
such

that (µn,m(xm))m∈N0
converges to zn for every n ∈ �. Lemma 1.2 and the definition

given in (1.1) imply the existence of x ∈ C ∩ V ∩ D(∞) such that µn(x) ∈ �n(µn(x))
for every n ∈ �.

To conclude, we have to show that x = f(x). If this is not true, there exists n ∈ �
such that ‖x − f(x)‖n = d > 0. Since f is admissible, there exists m � n such that

d/2 > diamn(f(Sm(x))) = diamn(co(f(Sm(x)))).

The fact that µm(x) ∈ �m(µm(x)) implies that there exists y ∈ co(f(Sm(x))) such that
‖x − y‖m < d/2. Thus

d = ‖x − f(x)‖n
� ‖x − y‖n + ‖y − f(x)‖n
< ‖x − y‖m + d/2

< d,

a contradiction. �

Remark 2.2. The last theorem is true for f defined on C ∩ V if

Cn ∩ Vn ⊂ µn(C ∩ V )

for every n ∈ �. In that case, it is also true if Condition (1) in Definition 1.4 is
replaced by the following condition.

(1′) For every n ∈ �, the multivalued map Fn : Cn ∩ Vn −→ �n defined by

Fn(µn(x)) = co(µn ◦ f ◦ Sn(x))

admits an upper semi-continuous extension �n : Cn ∩ Vn −→ �n with convex,
compact values.

Remark 2.3. Theorem 2.1 can be generalized to k-set contraction.

Corollary 2.4. Let (E, {‖·‖n}n∈�) be a Fréchet space, let C be a closed cone in
E, and let f : C −→ C be admissible and completely continuous. Assume that there
exist R > r > 0 such that, for every n ∈ �,

(1) ‖y‖n � r, for all y ∈ �n(x) and x ∈ ∂Bn(0, r) ∩ Cn;
(2) ‖y‖n � R, for all y ∈ �n(x) and x ∈ ∂Bn(0, R) ∩ Cn;

or

(1′) ‖y‖n � r, for all y ∈ �n(x) and x ∈ ∂Bn(0, r) ∩ Cn;
(2′) ‖y‖n � R, for all y ∈ �n(x) and x ∈ ∂Bn(0, R) ∩ Cn.

Then there exists x ∈ C ∩ B(0, R) ∩ D(∞), with x = f(x); here

D(n) = Cn ∩ Bn(0, R) \ Bn(0, r),

and D(∞) is as defined in (1.1).
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3. Application

To illustrate how easily the fixed point theory of the previous section can be
applied in practice, we consider the boundary value problem

y′′(t) − m2y(t) + q(t)g(y(t)) = 0, t ∈ [0,∞),

y(0) = 0,

lim
t→∞

y(t) = 0,

(3.1)

where m > 0 is a constant.
To establish the existence of a solution, we will need some lower- and upper-type

inequalities for the Green’s function k of the boundary value problem

y′′(t) − m2y(t) = 0, t ∈ [0,∞),

y(0) = 0,

lim
t→∞

y(t) = 0.

(3.2)

It is easy to see that

k(t, s) =




e−mt

2m
(ems − e−ms), if s � t,

e−ms

2m
(emt − e−mt), if s > t.

The following inequalities will be needed:

k(t, s)e−mt � k(s, s)e−ms, for all t, s ∈ [0,∞). (3.3)

Also, for any a, b ∈ (0,∞), a < b, we have

k(t, s) � k0e
−msk(s, s), for all t ∈ [a, b], s ∈ [0,∞); (3.4)

here, k0 = min{e−mb, ema − e−ma}. Now, for t, s ∈ [0,∞), we have

k(t, s)e−mt

k(s, s)e−ms
=




e−2mt

e−2ms
, if s � t,

1 − e−2mt

1 − e−2ms
, if s > t,

�




e−2ms

e−2ms
, if s � t,

1 − e−2ms

1 − e−2ms
, if s > t,

= 1,

whereas for t ∈ [a, b] and s ∈ [0,∞), we have

k(t, s)

k(s, s)e−ms
=



e2ms−mt, if s � t,
emt − e−mt

1 − e−2ms
, if s > t,

�

{
e−mb, if s � t,

ema − e−ma, if s > t,

� k0.

We are now in position to prove our main existence result.
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Theorem 3.1. Let q : [0,∞) −→ [0,∞) be measurable, and let g : [0,∞) −→ [0,∞)
be continuous and nondecreasing. Suppose that the following conditions are satisfied:

(i) limt→∞ e−mt
∫t

0
emsq(s) ds = 0;

(ii) limt→∞ emt
∫∞
t
e−msq(s) ds = 0;

(iii) there exists R > 0 such that

R � sup
t∈[0,∞)

e−mt

∫∞

0

k(t, s)q(s)g(emsR) ds;

(iv) for fixed a, b ∈ (0,∞) with a < b, there exists r ∈ (0, R) such that

r � g(k0r) sup
t∈[a,b]

e−mt

∫ b

a

k(t, s)q(s) ds,

where k0 is as defined in inequality (3.4).

Then (3.1) has a solution y with

sup
t∈[0,∞)

|e−mty(t)| � R and y(t) � k0r, for t ∈ [a, b].

Proof. Choose {bn} an increasing sequence such that b1 = b and bn → ∞. We
endow C([0,∞)) with the family of semi-norms {‖·‖n}n∈�, defined as follows:

‖y‖n = sup
t∈[0,bn]

|e−mty(t)|.

We denote E = (C([0,∞)), {‖·‖n}n∈�) and

C = {y ∈ E : y(t) � 0 on [0,∞) and y(t) � k0‖y‖n, ∀t ∈ [a, b], ∀n ∈ �}.

For n ∈ �,

�n = (C[0, bn], ‖·‖n),
Cn = Cn = {y ∈ �n : y(t) � 0 on [0, bn] and y(t) � k0‖y‖n, ∀t ∈ [a, b]},

and

D(n) = Cn ∩ {z ∈ �n : r � ‖z‖n � R}.

Notice that

D(∞) ⊂ {y ∈ B(0, R) : y(t) � 0 on [0,∞) and y(t) � k0r, ∀t ∈ [a, b]}.

Let f : C ∩ B(0, R) −→ E be given by

f(y)(t) =

∫∞

0

k(t, s)q(s)g(y(s)) ds, for t ∈ [0,∞).

We will establish the existence of a solution to (3.1) by applying Corollary 2.4.
First, notice that Cn ∩ Bn(0, R) ⊂ µn(C ∩ B(0, R)) for every n ∈ �. To see this, fix
n ∈ �, and let y ∈ Cn ∩ Bn(0, R). If we let z be defined by

z(t) =

{
y(t), if t ∈ [0, bn],

y(bn), if t > bn,

then z ∈ C ∩ B(0, R), and ‖y − z‖n = 0. Thus y ∈ µn(C ∩ B(0, R)).
Next, we show that f : C ∩B(0, R) −→ C . To see this, let y ∈ C ∩B(0, R). Clearly,

f(y)(t) � 0 for t ∈ [0,∞). Now fix n ∈ �; then inequalities (3.3) and (3.4) imply that
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for t ∈ [a, b],

f(y)(t) =

∫∞

0

k(t, s)q(s)g(y(s)) ds

� k0

∫∞

0

e−msk(s, s)q(s)g(y(s)) ds

� k0

∫∞

0

e−mxk(x, s)q(s)g(y(s)) ds

= k0e
−mxf(y(x)),

for any x ∈ [0,∞). As a result, we have

f(y)(t) � k0‖f(y)‖n, for all t ∈ [a, b].

Thus f(y) ∈ C .
The argument in [3, Lemma 5.4 and Proposition 5.5] guarantees that the function

f : C ∩ B(0, R) −→ C is admissible and compact. It remains for us to check
Conditions (1) and (2) in Corollary 2.4.

First, however, we must describe the extension �n that we are considering. Fix
n ∈ � and u ∈ Cn ∩ Bn(0, R). Let

S∗
n (u) = {v ∈ C ∩ B(0, R) : v is a continuous extension of u},

and observe that

Fn(u) = co
(
µn ◦ f ◦ Sn

(
µ−1
n (u)

))
= f ◦ S∗

n (u),

and

f ◦ S∗
n (u)(t) =

∫∞

0

kn(t, s, u(s)) ds,

where

kn(t, s, x) =

{
k(t, s)q(s)g(x), if s � bn,

{k(t, s)q(s)g(emsy) : |y| � R}, if s > bn.

We know from [3, Proposition 5.5] that f ◦ S∗
n is continuous and has compact,

convex values. We therefore take �n = Fn = f ◦ S∗
n .

Fix n ∈ �, let x ∈ ∂Bn(0, R) ∩ Cn, and let y ∈ �n(x). We must show that

‖y‖n � R. (3.5)

Since g is nondecreasing and ‖x‖n = R, for t ∈ [0, bn] we have

|y(t)| �

∫ bn

0

k(t, s)q(s)g(x(s)) ds +

∫∞

bn

k(t, s)q(s)g(emsR) ds

�

∫ bn

0

k(t, s)q(s)g(emsR) ds +

∫∞

bn

k(t, s)q(s)g(emsR) ds

=

∫∞

0

k(t, s)q(s)g(emsR) ds.

Taken together with assumption (iii), this yields

‖y‖n = sup
t∈[0,bn]

|e−mty(t)| � sup
t∈[0,bn]

(
e−mt

∫∞

0

k(t, s)q(s)g(emsR) ds

)
� R;

so (3.5) holds.
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Next, fix n ∈ �, let x ∈ ∂Bn(0, r) ∩ Cn, and let y ∈ �n(x). We must show that

‖y‖n � r. (3.6)

Again, since g is nondecreasing, ‖x‖n = r and x(t) � k0r for t ∈ [a, b], we have, for
t ∈ [0, bn],

e−mty(t) � e−mt

∫ bn

0

k(t, s)q(s)g(x(s)) ds

� e−mt

∫ b

a

k(t, s)q(s)g(x(s)) ds

� e−mt

∫ b

a

k(t, s)q(s)g(k0r) ds.

Consequently,

‖y‖n � g(k0r)e
−mt

∫ b

a

k(t, s)q(s) ds, for all t ∈ [0, bn],

which, together with assumption (iv), yields

‖y‖n � g(k0r) sup
t∈[a,b]

e−mt

∫ b

a

k(t, s)q(s) ds � r.

Thus, (3.6) holds.
We apply Corollary 2.4 and Remark 2.2 to deduce the result. �

Remark 3.2.

(a) If there exists r < R with

r � k0g(k0r) sup
t∈[a,b]

∫ b

a

e−m(t+s)k(s, s)q(s) ds,

then (3.4) guarantees that assumption (iv) is satisfied.
(b) If there exists R > 0 with

R �

∫∞

0

e−msk(s, s)q(s)g(emsR) ds,

then (3.3) guarantees that assumption (iii) is satisfied.

Example. Let

q(s) = e−λs and g(x) = Axα + Bxβ + C,

with λ > 0, α, β ∈ (0, 1), A,B > 0 and C � 0. It is clear that g is continuous and
nondecreasing. Also, assumptions (iii) and (iv) of the previous theorem are satisfied.
To see this, notice that max{α, β} < 1 guarantees that

lim
r→∞

r

A0rα + A1rβ + A2
= ∞,

for any constants A0, A1 > 0, A2 � 0. Now, let a, b ∈ (0, 1) with a < b, and notice
that (iv) is verified since

lim
r→0

r

g(k0r)
= lim

r→0

r

Akα0r
α + Bk

β
0 r

β + C
= 0.

Therefore, the problem (3.1) has a non-trivial solution. Notice that if C = 0, then
y ≡ 0 is a solution of (3.1).
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The ideas in this section can easily be extended to the more general boundary
value problem

y′′(t) − m2y(t) + g(t, y(t)) = 0, t ∈ [0,∞),

y(0) = 0,

lim
t→∞

y(t) = 0.

(3.7)

Here, g : [0,∞) × [0,∞) −→ [0,∞) is such that:
(1) s �→ g(s, y) is measurable for any y ∈ [0,∞);
(2) y �→ g(s, y) is continuous and nondecreasing for almost every s ∈ [0,∞);
(3) for any r > 0, there exists hr ∈ L1([0,∞)) such that g(s, y) � hr(s) for all

y ∈ [0, r] and almost all s ∈ [0,∞), and

lim
t→∞

e−mt

∫ t

0

emshr(s) ds = 0 and lim
t→∞

emt
∫∞

t

e−mshr(s) ds = 0;

(4) there exists R > 0 such that

R � e−mt

∫∞

0

k(t, s)g(s, emsR) ds;

(5) for fixed a, b ∈ (0,∞) with a < b, there exists r ∈ (0, R) such that

r � sup
t∈[a,b]

e−mt

∫ b

a

k(t, s)g(s, k0r) ds.

Then (3.7) has a solution y with

sup
t∈[0,∞)

|e−mty(t)| � R and y(t) � k0r, for t ∈ [a, b].

The details are essentially the same, so they are left to the reader.
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to differential and integral equations’, Bull. Soc. Math. Belgique 9 (2002) 23–37.
4. A. Granas, R. B. Guenther, J. W. Lee and D. O’Regan, ‘Boundary value problems on infinite

intervals and semiconductor devices’, J. Math. Anal. Appl. 116 (1986) 335–348.
5. M. A. Krasnosel’skiı̆, ‘Fixed points of cone-compressing and cone-extending operators’, Dokl. Akad.

Nauk SSSR NS 135 (1960) 527–530 (Russian); translated in Soviet Math. Dokl. 1 (1960) 1285–
1288.
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