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Abstract

This paper presents a variety of fuzzy "xed point theorems for contractive type maps. Our theory can be derived directly
from results in the literature related to multivalued contractive maps with closed values; this observation seems to have been
overlooked in the literature. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we present fuzzy "xed point theorems
for fuzzy contractive maps. Our analysis is based on
the simple observation that fuzzy "xed point results
can be deduced immediately from the "xed point
theory of multivalued maps with closed values. This
elementary observation seems to have been over-
looked in the literature. We note here also that the
claim made in [1,4,9] show that their theorems are
generalizations, are not justi"ed. In Section 2, we be-
gin by presenting a local version of Heilpern’s fuzzy
"xed point theorem. This automatically leads to a
generalization of Heilpern’s theorem [4]; we assume
a weaker contractive condition and our � level sets
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are not assumed to be convex and compact. Also,
in this section we present nonlinear alternatives of
Leray–Schauder type for fuzzy contractive and fuzzy
nonexpansive maps. Section 3 presents a fuzzy "xed
point theory for generalized contractive maps of Kul-
shreshtha type. In addition, we present a homotopy
result for maps of this type.

Let (X; d) be a metric space. By B(x; r) we denote
the open ball in X centered at x of radius r and by
B(C; r) we denote

⋃
x∈C B(x; r) where C is a subset of

X . For C and K two nonempty closed subsets of X ,
we de"ne the generalized HausdorC distance H by

H (C; K) = inf{� ¿ 0: C ⊆ B(K; �);

K ⊆ B(C; �)} ∈ [0;∞]:

A fuzzy set in X is a function with domain X and
values in [0; 1]. We let F(X ) denote the collection of
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fuzzy sets in X . Let A∈F(X ) and �∈ [0; 1]. The �
level set of A, denoted [A]�, is

[A]� = {x: A(x) ¿ �} if � ∈ (0; 1]

and A0 = {x: A(x) ¿ 0}:

We say that

(i) A∈FC(X ) if A∈F(X ) and [A]1 is nonempty
and closed;

(ii) A∈FK(X ) if A∈F(X ) and [A]1 is nonempty
and compact; and

(iii) A∈FW (X ) if A∈F(X ) and [A]� is nonempty,
closed and bounded for each �∈ [0; 1].

For A; B∈FC(X ), we de"ne

D1(A; B) = H ([A]1; [B]1);

and for A; B∈FW (X ), we de"ne

D�(A; B) = H ([A]�; [B]�) for � ∈ [0; 1]

and

D(A; B) = sup
�

D�(A; B):

For A; B∈F(X ), A⊆B means that A(x)6B(x) for
each x∈X . If A is a subset of X , its characteristic
function �A is a fuzzy set. Thus we note that a subset
of X can be seen as a fuzzy set if we denote with the
same symbol the subset and its characteristic function.

2. Fixed point theory for contractive maps

We begin this section by presenting a local version
of a "xed point result for contractive maps. Heilpern’s
fuzzy "xed point result [4] will then be generalized
from our result. We also show how standard "xed
point results for multivalued contractions (in particular
Nadler’s "xed point theorem) could be used to deduce
immediately Heilpern’s fuzzy "xed point result; this
elementary idea seems to have been overlooked in the
literature [1,4,9].

Theorem 2.1. Let (X; d) be a complete metric space;
x0 ∈X and T : B(x0; r)→FC(X ) (here r¿0). Sup-
pose there exists a constant k ∈ (0; 1) with

D1(Tx; Ty) 6 kd(x; y) for all x; y ∈ B(x0; r)

and

dist(x0; [Tx0]1) ¡ (1 − k)r

holding. Then T has a fuzzy ?xed point. That is there
exists x∈B(x0; r) with {x}⊆Tx (i.e. Tx(x) = 1).

Proof. Choose x1 ∈X such that

{x1}⊆Tx0 and d(x0; x1)¡(1 − k)r;

this is possible since

[Tx0]1 �= ∅ and dist(x0; [Tx0]1)¡(1 − k)r:

Now choose �¿0 such that

kd(x0; x1) + � ¡ k(1 − k)r:

Then choose x2 ∈X such that {x2}⊆Tx1 and

d(x1; x2) 6 D1(Tx1; Tx0) + �:

As a result we have

d(x1; x2) 6 kd(x1; x0) + � ¡ k(1 − k)r

and note that x2 ∈B(x0; r) since

d(x0; x2)6 (1 − k)r[1 + k]

6 (1 − k)r[1 + k + k2 + · · ·] = r:

Continue this process to obtain {xn}⊆Txn−1 with
d(xn; xn−1)¡kn−1(1 − k)r, for n = 3; 4; : : : . Notice
that (xn) is a Cauchy sequence and, since X is com-
plete, there exists x∈B(x0; r) with limn→∞ xn = x. It
remains to show {x}⊆Tx. Notice

dist(x; [Tx]1)6 d(x; xn) + dist(xn; [Tx]1)

6 d(x; xn) + D1(Txn−1; Tx)

6 d(x; xn) + kd(xn−1; x)

→ 0 as n → ∞:

Thus x∈ [Tx]1 = [Tx]1 and so {x}⊆Tx.

Next we present a generalization of Heilpern’s
fuzzy "xed point theorem. Notice here we assume a
weaker contractive condition and our � level sets are
not assumed to be convex and compact.
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Theorem 2.2. Let (X; d) be a complete metric space;
T : X →FC(X ) and suppose there exists a constant
k ∈ (0; 1) with

D1(Tx; Ty) 6 kd(x; y) for all x; y ∈ X:

Then T has a fuzzy ?xed point.

Proof. Fix x0∈X . Choose r¿0 so that dist(x0; [Tx0]1)
¡(1 − k)r. Now Theorem 2.1 guarantees that there
exists x∈B(x0; r) with {x}⊆Tx.

In fact, Theorem 2.2 could easily be deduced from
Nadler’s "xed point theorem [2]: if (X; d) is a com-
plete metric space and F : X →C(X ) is k-contractive
(here k ∈ (0; 1)), then there exists x∈X with x∈Fx
(here C(X ) denotes the family of nonempty, closed
subsets of X and F being k-contractive means
H (Fx; Fy)6kd(x; y) for all x; y∈X ).
Another proof of Theorem 2:2. Let F : X →C(X )

be given by Fx = [Tx]1. Notice F satis"es the condi-
tions of Nadler’s "xed point theorem. As a result there
exists x∈X with x∈Fx = [Tx]1.

Once one realises the above elementary idea, then
many results from the literature on contractive or in-
deed nonexpansive multifunctions have fuzzy ana-
logues. For completeness, we present fuzzy analogues
of the nonlinear alternative of Leray–Schauder type
for contractive and nonexpansive multifunctions. We
note here that we could present a more general ver-
sion of Theorem 2.3 if we used the notion of contrac-
tive homotopy [2] (see Section 3 for a generalization).
First recall the following two results from [2,3].

Theorem 2.3. Let E be a Banach space; U an open
subset of E; 0∈U and F : LU →C(E) a k-contraction
(here k ∈ (0; 1)) such that F( LU ) is bounded. Then
either

(A1) F has a ?xed point; or
(A2) there exists x∈ 9U and �∈ (0; 1) with x∈ �Fx.

Theorem 2.4. Let E = (E; ‖ · ‖) be a uniformly con-
vex Banach space and U a bounded; convex; open
subset of E with 0∈U . Suppose F : LU →K(E) is non-
expansive with F( LU ) bounded (here K(E) denotes
the family of nonempty; compact subsets of E and F

being nonexpansive means H (Fx; Fy)6‖x − y‖ for
all x; y∈ LU). Then either

(A1) F has a ?xed point; or
(A2) there exists x∈ 9U and �∈ (0; 1) with x∈ �Fx.

We now establish immediately the fuzzy analogue’s
of Theorems 2.3 and 2.4.

Theorem 2.5. Let E = (E; ‖ · ‖) be a Banach space;
U an open subset of E, 0∈U and T : LU →FC(E).
Suppose there exists k ∈ (0; 1) with

D1(Tx; Ty) 6 k‖x − y‖ for all x; y∈ LU (2.1)

and

Tx
( x

�

)
�= 1 for all x ∈ 9U and � ∈ (0; 1) (2.2)

holding; and assume [T LU ]1 is bounded. Then T has
a fuzzy ?xed point. That is there exists x∈ LU with
{x}⊆Tx.

Proof. Let F : LU →C(E) be given by Fx = [Tx]1. We
will apply Theorem 2.3. Suppose (A2) holds. Then
there exists x∈ 9U and �∈(0; 1) with x∈�Fx = �[Tx]1
(i.e. Tx(x=�) = 1). This contradicts (2:2) so (A1) must
hold. That is there exists x∈ LU with x∈Fx = [Tx]1.

Theorem 2.4 and a similar argument yields the fol-
lowing result.

Theorem 2.6. Let E = (E; ‖ · ‖) be a uniformly con-
vex Banach space and U a bounded; convex; open
subset of E with 0∈U , and T : LU →FK(E). Suppose

D1(Tx; Ty) 6 ‖x − y‖ for all x; y ∈ LU

and

Tx
( x

�

)
�= 1 for all x ∈ 9U and � ∈ (0; 1)

hold; and assume [T LU ]1 is bounded. Then there exists
x∈ LU with {x}⊆Tx.

Remark 1. In the above spirit it is easily seen that the
nonexpansive results in [1,10] can be generalized.

Next we present some "xed point theory for maps
T : FW (X )→FW (X ). As we shall see a stronger con-
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tractive condition will be needed to guarantee the ex-
istence of a "xed point.

Lemma 2.7. Let (X; d) be a complete metric space.
Then (FW (X ); D) is a complete metric space.

Proof. Let {un} be a Cauchy sequence in FW (X ).
Then [un]�, for every �, is a Cauchy sequence in
CB(X ) (here CB(X ) denotes the family of nonempty,
closed, bounded subsets of X ). Recalling that
(CB(X ); H) is complete, see for example [5, p. 24],
then for every � there exists A� ∈CB(X ) with

[un]� → A� =
⋂
n

⋃
m¿n

[um]�:

De"ne

u(x) = sup
x ∈ A�

�:

Essentially the same analysis as in [8, p. 420–421],
shows that [u]� = A�.

Theorem 2.8. Let (X; d) be a complete metric space
and T : FW (X )→FW (X ). Suppose there exists
k ∈ (0; 1) with

D(Tx; Ty) 6 kD(x; y) for all x; y ∈ FW (X )

holding. Then there exists x∈FW (X ) with x = Tx.

Proof. This is immediate from Lemma 2.7 and the
Banach contraction principle.

We now present a result where the map is not
de"ned on all of FW (X ). It is an immediate con-
sequence of Lemma 2.7 and a result on contractive
homotopy [3].

Theorem 2.9. Let (X; d) be a complete metric space.
Suppose U is an open subset of FW (X ) and N : LU ×
[0; 1]→FW (X ) is such that

(a) there exists k ∈ (0; 1) with

D(N (x; t); N (y; t))6kD(x; y)

for all x; y∈ LU and t ∈ [0; 1];
(b) there exists ! : [0; 1]→R with

D(N (x; t); N (x; s))6|!(t) − !(s)|
for all t; s∈ [0; 1] and x∈ LU ;

(c) x �= N (x; t) for all x∈ 9U and t ∈ [0; 1].

Then N (·; 0) has a ?xed point if and only if N (·; 1)
has a ?xed point.

3. Fixed point theory for maps of Kulshrestha type

In this section we begin by presenting "xed point
results for Kulshreshtha contractive maps with closed
values de"ned on complete metric spaces. From these
results we deduce immediately some fuzzy "xed
point theorems which generalize results of Singh and
Talwar [9].

Theorem 3.1. Let (X; d) be a complete metric space;
x0 ∈X; r¿0 and F : B(x0; r)→C(X ). Suppose there
exists q∈ (0; 1) such that for x; y∈B(x0; r) we have

H (Fx; Fy)6 q max{d(x; y); dist(x; Fx); dist(y; Fy);

1
2 [dist(x; Fy) + dist(y; Fx)]}

and

dist(x0; Fx0) ¡ (1 − q)r:

Then F has a ?xed point (i.e. there exists x∈B(x0; r)
with x∈Fx).

Proof. Choose x1 ∈Fx0 with d(x1; x0)¡(1 − q)r, so
x1 ∈B(x0; r). Now choose �¿0 such that

qd(x1; x0) +
�

1 − q
¡ q(1 − q)r: (3.1)

Then choose x2 ∈Fx1 with

d(x1; x2)

6 H (Fx0; Fx1) + �

6 q max{d(x0; x1); dist(x0; Fx0); dist(x1; Fx1);

1
2 [dist(x0; Fx1) + dist(x1; Fx0)]} + �

6 qd(x0; x1) +
�

2 − q
;

this is immediate since if say the maximum of the
right-hand side of the above displayed equation is
1
2 [dist(x0; Fx1) + dist(x1; Fx0)], then

d(x1; x2)6(q=2)d(x0; x1) + �
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and so

d(x1; x2) 6
q

2 − q
d(x0; x1) + �

(
2

2 − q

)

(note q=(2 − q)¡q and 2=(2 − q)¡1=(1 − q)). The
other cases are easier. Now with � chosen as in (3:1)
we have

d(x1; x2) ¡ q(1 − q)r:

Notice x2 ∈B(x0; r) since

d(x0; x2)6 (1 − q)r + q(1 − q)r

6 (1 − q)r[1 + q + q2 + · · ·] = r:

Next choose $¿0 such that

qd(x1; x2) +
$

1 − q
¡ q2(1 − q)r:

Then choose x3 ∈Fx2 with

d(x2; x3)6H (Fx1; Fx2) + $ 6 qd(x1; x2) +
$

1 − q

¡ q2(1 − q)r:

Notice as well that x3 ∈B(x0; r). Proceed inductively
to obtain xn ∈Fxn−1; n = 4; 5; : : : with d(xn+1; xn)
¡qn(1 − q) r and xn ∈B(x0; r). Now since q∈ (0; 1)
we have that (xn) is Cauchy and so there exists
x∈B(x0; r) with limn →∞ xn = x. It remains to show
x∈Fx. Notice

dist(x; Fx)6 d(x; xn) + dist(xn; Fx)

6 d(x; xn) + q max{d(x; xn−1);

dist(x; Fx); dist(xn−1; Fxn−1);

1
2 [dist(x; Fxn−1) + dist(xn−1; Fx)]}

6 d(x; xn) + q max{d(x; xn−1);

dist(x; Fx); d(xn−1; xn);

1
2 [d(x; xn) + d(xn−1; x) + dist(x; Fx)]}:

Letting n→∞ gives

dist(x; Fx) 6 q dist(x; Fx) i:e: dist(x; Fx) = 0:

Thus x∈Fx = Fx.

We next note that we obtain Kulshrestha’s [6] "xed
point result as a Corollary of Theorem 3.1, see also
[7].

Theorem 3.2. Let (X; d) be a complete metric space
and F : X →C(X ). Suppose there exists q∈ (0; 1)
such that for x; y∈X we have

H (Fx; Fy)6 q max{d(x; y); dist(x; Fx); dist(y; Fy);

1
2 [dist(x; Fy) + dist(y; Fx)]}:

Then F has a ?xed point.

Proof. Fix x0 ∈X . Choose r¿0 so that

dist(x0; Fx0) ¡ (1 − q)r:

Now Theorem 3.1 guarantees that there exists x∈
B(x0; r) with x∈Fx.

Next we extend the homotopy results in [2,3] for
generalized contractive homotopy of Kulshrestha type.

Theorem 3.3. Let (X; d) be a complete metric space
and U open in X. Suppose N : LU × [0; 1]→C(X ) is a
closed map (i.e. has closed graph) with the following
satis?ed:

(a) x =∈N (x; t) for x∈ 9U and t ∈ [0; 1];
(b) there exists q∈ (0; 1) such that for all t ∈ [0; 1]

and x; y∈ LU we have

H (N (x; t); N (y; t))

6 q max{d(x; y); dist(x; N (x; t)); dist(y; N (y; t));

1
2 [dist(x; N (y; t)) + dist(y; N (x; t))]};

(c) there exists a continuous increasing function
! : [0; 1]→R such that

H (N (x; t); N (x; s)) 6 |!(t) − !(s)|
for all t; s ∈ [0; 1] and x ∈ LU:

Then N (·; 0) has a ?xed point if and only if N (·; 1)
has a ?xed point.

Proof. Suppose N (·; 0) has a "xed point. Consider

Q = {(t; x) ∈ [0; 1] × U : x ∈ N (x; t)}:
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Now Q is nonempty since N ( · ; 0) has a "xed point.
On Q de"ne the partial order

(t; x) 6 (s; y) iC t 6 s

and d(x; y)6
2 [!(s) − !(t)]

1 − q
:

Let P be a totally ordered subset of Q and let

t? = sup{t: (t; x) ∈ P}:

Take a sequence {(tn; xn)} in P such that (tn; xn)6
(tn+1; xn+1) and tn → t?. We have

d(xm; xn) 6
2

1 − q
[!(tm) − !(tn)] for all m ¿ n;

so (xm) is a Cauchy sequence, which converges to
some x? ∈ LU . Now since N is a closed map we have
x? ∈N (x?; t?) and also (a) implies x? ∈U . Thus
(t?; x?)∈Q. It is also immediate from the de"nition
of t? and the fact that P is totally ordered that

(t; x) 6 (t?; x?) for every (t; x) ∈ P:

Thus (t?; x?) is an upper bound of P. By Zorn’s
lemma Q admits a maximal element (t0; x0)∈Q.

We claim t0 = 1 (if our claim is true then we are
"nished). Suppose our claim is false. Then, choose
r¿0 and t ∈ (t0; 1] with

B(x0; r) ⊆ U and r =
2[!(t) − !(t0)]

1 − q
:

Notice

dist(x0; N (x0; t))

6 dist(x0; N (x0; t0)) + H (N (x0; t0); N (x0; t))

6 !(t) − !(t0) =
(

1 − q
2

)
r ¡ (1 − q)r:

Now Theorem 3.1 guarantees that N (·; t) has a "xed
point x∈B(x0; r). Thus (x; t)∈Q and notice since

d(x0; x) 6 r =
2 [!(t) − !(t0)]

1 − q
and t0 ¡ t;

we have (t0; x0)¡(t; x). This contradicts the maximal-
ity of (t0; x0).

We now establish the fuzzy analogue of Theorems
3:1, 3:2 and 3:3.

Theorem 3.4. Let (X; d) be a complete metric space,
x0 ∈X; r¿0 and T : B(x0; r)→FC(X ). Suppose there
exists q∈ (0; 1) such that for x; y∈B(x0; r) we have

D1(Tx; Ty)

6 q max{d(x; y); dist(x; [Tx]1); dist(y; [Ty]1);

1
2 [dist(x; [Ty]1) + dist(y; [Tx]1)]}

and

dist(x0; [Tx0]1) ¡ (1 − q)r:

Then T has a fuzzy ?xed point. That is there exists
x∈B(x0; r) with {x}⊆Tx.

Proof. Let F : X →C(X ) be given by Fx = [Tx]1.
Now apply Theorem 3.1.

Next we present a generalization of the main result
in [9] which follows directly from Theorem 3.2. No-
tice we assume a weaker contractive type condition
and the � level sets are not assumed to be convex and
compact.

Theorem 3.5. Let (X; d) be a complete metric space
and T : X →FC(X ). Suppose there exists q∈ (0; 1)
such that for x; y∈X we have

D1(Tx; Ty)

6 q max{d(x; y); dist(x; [Tx]1); dist(y; [Ty]1);
1
2 [dist(x; [Ty]1) + dist(y; [Tx]1)]}:

Then F has a fuzzy ?xed point.

As an immediate consequence of Theorem 3.3 we
have the following fuzzy result.

Theorem 3.6. Let (X; d) be a complete metric space
and U open in X. Suppose T : LU × [0; 1]→FC(X ) is
a closed map with the following satis?ed:

(a) x =∈ [T (x; t)]1 for x∈ 9U and t ∈ [0; 1];
(b) there exists q∈ (0; 1) such that for all t ∈ [0; 1]

and x; y∈ LU we have

D1(T (x; t); T (y; t))
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6 q max{d(x; y); dist(x; [T (x; t)]1);

dist(y; [T (y; t)]1);
1
2 [dist(x; [T (y; t)]1)

+dist(y; [T (x; t)]1)]};
(c) there exists a continuous increasing function

! : [0; 1]→R such that
D1(T (x; t); T (x; s))6|!(t) − !(s)|
for all t; s∈ [0; 1] and x∈ LU .

Then T (·; 0) has a fuzzy ?xed point if and only if
T (·; 1) has a fuzzy ?xed point.
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