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EXISTENCE RESULTS FOR SOME INITIAL 
AND BOUNDARY VALUE PROBLEMS 
WITHOUT GROWTH RESTRICTION 

MARLENE FRIGON AND DONAL O'REGAN 

(Communicated by Hal L. Smith) 

ABSTRACT. In this paper, using the Schauder Fixed Point Theorem, we establish 
some existence results or initial and boundary value problems for differential 
equations withouth growth restriction on the right member. 

1. INTRODUCTION 

In this paper, we give existence results for initial and boundary value prob- 
lems without growth restriction on the right member. The paper is divided into 
two sections. In ?2 we examine second-order problems of the form: 

(py')'(t) = f(t, y(t), p(t)y'(t)) a.e. t E [0, 1], 

(B) aOy (0) - bo lim p(t)y'(t) = ro, 

aly(1) + b, limp(t)y'(t) = rl, 
(-+1 

where p e C[0, 1] n C1(0, 1) with p(t) > 0 on t e (0, 1), and f: [0, 1] x 
-2 IR is a Caratheodory function. By a solution to (B), we mean a function 

y E C[O, 1] n CI(0, 1) such that py' is absolutely continuous on [0, 1], and 
which satisfies the differential equation and boundary conditions. Boundary 
value problems of the form (B) have been extensively treated in the literature. In 
most of these papers, f satisfies a growth condition in y' . The results presented 
in this section are obtained without any growth assumption on f, and generalize 
some results deduced from the location of the zeros of the nonlinearity; see, for 
example, [3, 5, 6, 9]. They rely on the notion of upper and lower surfaces for 
(B), that is, surfaces having a particular form and on which the function f has 
a given sign. This notion was introduced in [3] in the particular case where 
p = 1 . 

In ?3 we examine the existence of solutions for a first-order initial value 
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problem of the form: 

y'(t) = f(t, y(t)) a.e. t E [0, T], 
y(O) = r 

where f: [0, T] x IR -+ IR is a Caratheodory function. Here, by a solution to 
(I), we mean an absolutely continuous function on [0, T] which satisfies the 
differential equation and the initial condition. The existence theorems presented 
here generalize some known results based on the notion of upper and lower 
solutions for the initial value problem; see [1, 6, 8]. In this paper, we prove 
the existence of a solution for the problem (I) between two functions s1 and 
so which are not necessarily absolutely continuous or continuous, without using 
the derivative or the Dini derivates of those functions. 

All our results are obtained via the Schauder Fixed Point Theorem. 
First of all, let us establish some notation. Let p E C[O, 1]nfC1 (O , 1) be such 

that p(t) > 0 on t E (0, 1). We define the Banach space K1[0, 1] by {y E 
C[O, 1 ] n C1 (0, 1) JPY' E C[O, 1 ] } with the norm Ily 1v I = max{ Ily 11o, 1py'Hllo} 
where jjyjjo=max{jy(t)j I t E [0, 1]}, and we define K2[0, 1] by {y eK1[0, 1] I 
py' E W 01 [0, 1] }I. We denote Kb[0, 1] = {y E KI[0, l] Iy satisfies boundary 
conditions aoy(O) - bolimt op(t)y'(t) = ro, a1y(l) + b1 limt ip(t)y'(t) = r1 }, 
Kb2[0, 1] = K2[0,~ 1 ] n Kb [?, 1]; and Cr[0,l1]={y E C[0,l]jIY(O) = r } 

For the sake of completeness, we give the following two results which will be 
used later. The second one is a Maximum Principle. 

Lemma 1.1. Let x: [0, 1] -+ R be an absolutely continuous function, and U c 

[0, 1] be a measurable set such that x(U) is negligeable. Then x'(t) = 0 a.e. 
te U. 

Lemma 1.2. Let p E C[c, d] n C1(c, d) be such that p(t) > 0 for all t E 
(c, d); and let y E K2[c, d] be such that (py')'(t) > 0 a.e. t E (c, d), 
aoy(c) - bolimt cp(t)y'(t) < 0, and aly(d) + b1 limt dp(t)y'(t) < 0, where 
max{ao, al} > 0 aj, bi > 0, max{ai, bi} > 0, i = 0,1 . Then y(t) < 0 for 
all t E [c, d]. 
Proof. Define 

n 
y(t)2 if y(t) > 0, 

Gk) j0 otherwise. 

Then (py')'(t) G(t) > 0 a.e. t E (c, d). Integrating from c to d and using 
the integration by parts formula gives: 

d 
G(d) limp(t)y'(t) - G(c) limp(t )y'(t) - p (t)y'(t) G'(t) d t > 0. 

t--+d t-~C 
We deduce that y(t) < 0 for all t E [c, d]. O 

2. BOUNDARY VALUE PROBLEMS 

In this section, we consider the boundary value problem (B) where aj, bi > 
0, max{aj, bi} > 0, i = 0, 1, max{ao, al} > 0, and p and f satisfy the 
following assumption: 

(H) peC[O, 1]nC1(0, 1), p(t)>0 forall te(0, 1), f :[0, 1]xIR2-+IR 
is a Caratheodory function, that is: (i) t | - f(t, y, q) is measurable for all 
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(y, q) e R2; (ii) (y, q) 1- f(t, y, q) is continuous for a.e. t e [0, 1]; (iii) 
for any r > 0, there exists hr E L1[O, 1] such that If(t, y, q)l < hr(t) a.e. 
t E [0, 1], and for all /y/ < r, IqI < r. Moreover, f1 p-1(s) Jf hr(x) dxds < oo 
if a, # 0, and f1 p1 (s) f hr(x)dxds < 0 if ai = 0; and p-1 E L1 [O, 1] if 
ao = ro = 0 or a, = r1 = 0 do not occur. 

We start with a particular case in order to illustrate arguments which will be 
used in a more general result (Theorem 2.8). 

Consider the problem 

(py')'(t) = f(t, y(t), p(t)y'(t)) a.e. t e [0, 1], 

(2.1) limp(t)y'(t) = 0, 

y(1) + b limp(t)y'(t) = 0 
t--+1 

where b > 0. 

Theorem 2.1. Assume there exist Mo > 0 > M1 such that f(t, MO, 0) > 
0 > f(t, M1, 0) a.e. t E [0, 1] and there exist two functions so : [0, 11 x 
[M1, Mo] -+ , oo), sI : [0, 1] x [M1, Mo] -+ (-oo, 0] such that: 

(1) x si(t, x) is continuousfor a.e. t e [0, 1], i = 0, 1; 
(2) s0(t, X1) < sO(t2, X2) for all tl < t2, XI < X2; and S1(t, , x1) < 

S1(t2, x2) for all t1 ? t2, x1 < x2; 
(3) f(t, x, so(t, x)) < ? < f(t, x, s1(t, x)) for a.e. t E [0, 1] and all 

x E [M1, Mo]. 

Then the problem (2.1) has a solution such that M1 < y(t) < Mo, s1(t, y(t)) < 
p(t)y'(t) < so(t, y(t)) for all t e [0, 1]. 

To prove this theorem, we modify the problem (2.1), and we show that this 
modified problem has a solution which is also a solution to (2.1). 

Define the function f : [0, 1] x -2 R by 

f(t, Mo, 0) if y > Mo, 

f(t, M1, 0) ify<M1, 

f(t~ y5 q) =f(t, y, so(t, y)) if M1 < y < Mo, q > so(t, y), 
f(t, y, s1(t, y)) if M1 < y < Mo, q < s1(t, y), 
f(tyq) if M1 <y<MosI(t,y)<q <so(t, y). 

It is clear that this function may not be Caratheodory, but we have the following 
result: 

Proposition 2.2. Under the assumptions of the previous theorem, the operator 
N1: KI[0, 1] -* Co[O, 1] defined by N1(y)(t) =jo fif(, y(T), p(T)y'(T))dT is 
well defined, continuous, and compact. 

Proof. Let R > max{IMoI, IMit } such that Isi(t, y)I < R for all t E [0, 1] 
and y e [MI, Mo]; and let hR E L1[0, 1] be the function given in (H)(iii). 
Then 

(2.2) 1f1(t, y(t), p(t)y'(t))I < hR(t) a.e. t E [0, 1] and for all y E Ki[0, 1]. 
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So, N1 is well defined. Now, assume that yn -* y in K1[0, 1]. By the in- 
equality (2.2) and the Lebesgue Convergence Dominated Theorem, it suffices to 
show that 

(2.3) fl(t, Yn(t), p (t)Y'(t)) -* f1(t, y(t), p(t)y'(t)) a.e. t E [0, 1] 

to get that Nyn )- Nly in CO[0, 1]. 
It is clear that (2.3) holds a.e. on {t E [0, 1] y(t) $? MO, and y(t) $ Al1 }. 

On the other hand, by Lemma 1.1, y'(t) = 0 a.e. on {t E [0, 1] I y(t) = 

MO, or y(t) = Ml }. So, sl(t, y(t)) < p(t)y'(t) = 0 < so(t, y(t)) a.e. on that 
set. The assumptions (1) and (H)(ii) imply that (2.3) holds a.e. on that set. 

The compactness of N1 follows from (2.2) and the Arzela-Ascoli Theo- 
rem. 5 

We consider the modified problem 

(py')'(t) = f1(t, y(t),p(t)y'(t)) a.e. t e [0, 1], 

(2.4) limp(t)y'(t) = 0, 

y(l) + b limp(t)y'(t) = 0. 
t-*1 

Proposition 2.3. Under the assumptions of Theorem 2.1, problem (2.4) has a 
solution. 
Proof. Set Co' = {g E Co[0, 1] g(t)I < f0 hR(s) ds} where hR is the function 
satisfying inequality (2.2). Define the continuous operator L-1: COR - Kb by 

L 1(g)(t) = -bg(1) - j g(s)p 1(s) ds. 

From (2.2), N, (y) E COR for all y E Kb . Remark that y is a solution to (2.4) 
if and only if y is a fixed point of L-1 o N1: Kb - Kb (see [4] for details). 
By Proposition 2.2, the operator L-1 o N1 is compact. The Schauder Fixed 
Point Theorem gives the existence of a fixed point to this operator, and hence 
a solution to (2.4). E 

Proof of Theorem 2.1. Let y be a solution to (2.4) given by the previous propo- 
sition. We want to show that y is a solution to (2.1). 

We claim that Ml < y(t) < MO . Indeed, let u(t) = y(t)-Mo . By assumption 
and the definition of fi , we have 

(pu')'(t) > 0 a.e. on {t I u(t) > 0 }. 

Boundary conditions and Lemma 1.2 imply that y(t) < Mo for all t E [0, 1]. 
Similarly we get the other inequality. 

On the other hand, assume there exists tj E [0, 1] such that p(tl)y'(tl) > 
so(t1 , y(tj)) . Since limt.op(t)y'(t) = 0 < so(O, y(O)), there exists t2 < tl such 
that s0(t2, y(t2)) > p(t2)y'(t2) and so(t, y(t)) < p(t)y'(t) for all t E (t2, t1) 
By assumption (2) and the definition of fi , we get 

0< p(tl)y'(tl) - p(t2)y'(t2)= J (py')'(t) dt < 0 

a contradiction. The other inequality is obtained in the same way. 
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Therefore, the solution y is such that M1 < y(t) < Mo and s1(t, y(t)) < 
p(t)y'(t) < so(t, y(t)) for all t E [0, 1]; and consequently, y is a solution to 
(2.1). O 

Now, we give a more general result. First of all, we need to introduce some 
definitions. The notion of upper and lower surfaces was introduced in [3] in 
the particular case where p _ 1 . 

Definition 2.4. A function a E K2[0, 1] (resp. /3 E K2[0, 1] ) is called a lower 
solution (resp. upper solution) to (B) if (pa')'(t) > f (t, a(t), p(t)a'(t)) a.e t E 
[O , 1]; aoa(O) - bo limt op(t)a'(t) < ro, aia(l) +bi limtj ip(t)a'(t) < r1 (resp. 
(pB')'(t) < f(t, ,B(t), p(t),B'(t)) a.e t E [O, 1]; ao/3(O) - bolimt op(t)/3'(t) > 

ro, a1,B(1) + b1 limt i p(t),B'(t) > r1 ). 

Let a/< in C[O, 1] and D={(t,y) E [O. 1] xR I a(t) <y < ,B(t)}. 

Definition 2.5. A surface S c D x IR is an upper surface to D for (B) if 
there exist two functions s D -+ [0, oc), c E K1[0, 1] such that S = 
{(t, x, s(t, x)) I (t, x) E D }, a < c < /3, and satisfying the following condi- 
tions: 

(i) (x-c(t))f(t,x,s(t,x)) 0 a.e. te[O, 1], (tx)eD; 
(ii) there exist N c [O, 1] and E c IR, two negligeable sets such that the 

function x - s(t, x) is continuous for all (t, x) E D\(N x E); 

(iii) p(t)c'(t) < s(t, c(t)) for all t E [O, 1]; 
(iv) s(t1 , x1) > s(t2, x2) (resp. s(t1 , x1) < s(t2, x2)) for all t1 < t2, 

x1 < x2 such that (t1, x1) and (t2, x2) are in the same connected part 
of D+ = {(t, x) I x > c(t)} (resp. D- = {(t, x) I x < c(t)}); 

(v) aoc(O) < ro + bos(O, ca(O)), alc(l) > r1 - bis(l, /3(1)). 

Definition 2.6. A surface S c D x IR is a lower surface to D for (B) if there exist 
two functions s : D -+ (-oc, 0], c E K1[O, 1] such that S = {(t, x, s(t, x)) I 
(t, x) E D}, 5a < c < /3, and satisfying (i), (ii) of Definition 2.5 and the 
following conditions: 

(iii) p(t)c'(t) > s(t, c(t)) for all t E [O, 1]; 
(iv) s(t1 , xI) < s(t2, x2) (resp. s(t1 , xI) > s(t2, x2)) for all t1 > t2, 

x1 < x2 such that (t1, xi ) and (t2, x2) are in the same connected part 
of D+ = {(t, x) I x > c(t)} (resp. D- = {(t, x) I x < c(t)}); 

(v) aoc(0) > ro + bos(0, /3(0)), aic(l) < r1 - bis(l, a(l)). 

Remark 2.7. If f is a Caratheodory function and S is an upper (resp. lower) 
surface to D for (B), without loss of generality, we can assume that 

(1) S is bounded; 
(2) for y = a (t), /3(t), and c(t), s(t, y) = limsuP(t X)ED x yS(t, x) 

(resp. s(t, y) = lim inf(t X)ED, xy s(t, x) ). 

Theorem 2.8. Let p, f be functions satisfying (H). Assume there exist a < 3,B 

respectively, lower and upper solutions to (B). Set D = {(t, y) E [O, 1]xlR I a (t) < 
y < /3(t) }, and suppose there exist SI = SI(si, ci) and So = So(so, co), re- 
spectively, lower and upper surfaces to D for (B). Then the problem (B) has a 
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solution such that a(t) < y(t) < /3(t), si(t, y(t)) < p(t)y'(t) < so(t, y(t)) for 
all te[O, 1]. 

To (t, y, q) E D x R we associate q defined by 

so(t, y) if q > so(t, y), 
q = j, q if sl(t, y) < q < so(t, y), 

si(t, y) if q < si(t, y). 

Lemma 2.9. Under the assumptions of Theorem 2.8, there exist four measurable 
functions gi, fp: [O, 1] - [0, oo) such that 

fa (t) < a(t) + co,(t) < co(t) if a(t) < co(t), so(t, a(t)) < p(t)a'(t), 

l so, a (t) = O otherwise; 

f /3(t) > /3(t) - Co,(t) > co(t) if ,B(t) > co(t), so(t /3(t)) < p(t),B'(t), 

go, (t) = 0 otherwise; 

moreover, q > so(t, y) for all (y, q) E Bo,0(t) U Bo,fl(t). Similarly for i = 1, 
where 

f {(Y.I q) I(t, y) E DI 
Bl ,(t) = 1I(y, q) - (a(t), p(t)a'(t))Hl < 61,,(t) } if c ,0(t) $ 0, 

0 otherwise; 

f{(Y q) (t, y) eD, 

Bi, f (t) = 11(y, q) - (/3(t), p(t),B'(t))H1 < 81,fl(t)} jifc1,pl(t) $ 0, 
1 0 otherwise. 

Proof. Let 

Ai(t) = co{(y, s,(t, y)) I (t, y) e DI, 
dl, f(t) = dist( (a(t), p(t)a'(t)), Ai(t) ). 

Choose ci,,(t) < min{c,(t) - a(t), d1,0(t)}/2. Remark that if p(t)a'(t) $ 
p(t)a'(t) and ci(t) - a(t) > 0, then di,,(t) > 0 by Definitions 2.5 and 2.6 
and Remark 2.7(2). We define gc similarly. 5 

Define the function f2 [0, 1] x -+2 ,11R by 

max{f(t, /3(t), p(t)/3'(t)), f(t, /3(t), p(t)/3'(t))} if y > /3(t), 

min{f(t, a(t), p(t)a'(t)), f(t, a(t), p(t)a'(t))} if y < a(t), 

(1 - A,,f(t, y, q)) maxff(t, y,q), f(t, y, q)} 
f2(t, y, q) =+Aj,f(t, y, q)f(t, y, q-) if (y, q) E Bj,f(t), i = O. 1, 

(I1 - Al, a,(t, y, q)) min ff(t, Iy, q), f (t, y, q-) 
+A,,,(t, y, q)f(t, y, q-) if (y, q) E B,,,(t), i = O. 1, 

f(t, y, q) otherwise. 

where A,1, (t, y, q) = (g c,(t))1H(y, q) - (3(t), p(t)/3'(t))H if (y, q) E 

B1,f(t), and A,,,(t, y, q) =( (t)) (Y, q) - (a(t), p(t)a'(t))Hl if (y, q) E 
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Remark 2.10. On {(t,y,q) E [0, 1]x1R2a(t) <y < ,6(t),si(t,y) < q < 
so(t, y) } , f2(t, y, q) = f(t, y, q) . 

For the sake of brevity, we assume that a1 $? 0; the proof of Theorem 2.8 is 
similar for a, = 0. Without loss of generality, fix a, = 1 . 

Proposition 2.11. Under the assumptions of Theorem 2.8, the operator N2 

K1[0, 1] Co[0, 1] defined by 
t 

N2(Y)(t) = j f2(T, y(T), p(T)y'(T)) d T 

is well defined, continuous, and compact. 
Proof. Let R > max{lacello, 11fillo, L1pa'Hjo, IIPB'Io } such that Isi(t, y)l < R for 
all (t, y) E D; and let hR E L1[0, 1] be the function given in (H)(iii). We 
have 

(2.5) jf2(t, y(t), p(t)y'(t))j < hR(t) a.e. t E [0, 1] and all y E K'[0, 1]. 

Hence, N2 is well defined and the compactness of N2 follows from (2.5) and 
the Arzela-Ascoli Theorem. 

To show that N2 is continuous, according to the inequality (2.5) and the 
Lebesgue Dominated Convergence Theorem, it suffices to show that 

(2.6) f2(t, Yn(t), p(t)Y'(t)) -* f2(t, y(t), p(t)y'(t)) a.e. t E [0, 1] 

when yn `*y in KI[0, 1]. 
It is clear that the relation (2.6) holds a.e. on {t I a(t) $? y(t)and /B(t) $? y(t) } . 

On the other hand, on {t I sa(t) = y(t), B ,0(t) $? 0 }, p(t) a'(t) = p(t)y'(t) a.e. 
and 

f2(t, y(t) , p(t)y'(t)) = minI f (t, a(t), p(t)a'(t)) , f (t, a (t), p(t)aW'(t)) } 

If Yn (t) > a (t), then for n sufficiently large, we have (Yn (t), P(t)Yn (t)) E 
Bi,,(t) and )i,0(t, yn(t), p(t)yn(t)) -* 0. Hence (2.6) holds a.e. on that set. 
On {t I a (t) = y(t), Bo,0(t) = BI ,0(t) = 0 } , p(t)a'(t) = p(t)a'(t) = p(t)y'(t) 
a.e. and (2.6) holds a.e. Similarly, the relation (2.6) holds a.e. on {t / ,B(t) = 
y(t) } and the proof is complete. 5 

Consider the modified problem 

(py')'(t) = f2(t, y(t), p(t)y'(t)) a.e. t E [0, 1], 

(2.7) aoy(0) - bo lim p(t)y'(t) = rO, 

y(l) + bi limp(t)y'(t) = rl. 
t-. 1 

Proposition 2.12. Under the assumptions of Theorem 2.8, problem (2.7) has a 
solution. 
Proof. To prove this result, argue as for Proposition 2.3 with 

L-l( )(t) |ri + rob 1bo- I - l( 1) + ft'(robo 
- g (s))p- (s) ds if ao = ?, = f g)ifa0=0, 1 (ro+boA)a- + fg(A+g(s))p-I(s)ds if ao 0 

where 
A r, - r0a1- bi g(1) - g g(s)p-(s) ds 

b, +boa-' + fAlp-1(s)ds 
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Proof of Theorem 2.8. Let y be a solution to (2.7) given by Proposition 2.12. 
According to Remark 2.10, we must show that a(t) < y(t) < ,6(t), sI(t, y(t)) < 
p(t)y'(t) < so(t, y(t)) for all t E [0, 1]. 

By assumption and the definition of f2, we have 

(py')'(t) > (p f')'(t) a.e. on {t y(t) > /3(t)} 

and 

(py')'(t) < (pa')'(t) a.e. on {t y(t) > a(t) } 
By boundary conditions and the Maximum Principle, Lemma 1.2, we deduce 
that a(t) < y(t) < /3(t) . 

On the other hand, assume that p(t)y'(t) $ so(t, y(t)). By Definition 2.5 
and boundary conditions, one of the following cases holds: 

(a) there exist tI < t2 E [0, 1] such that y(t) > co(t), p(t)y'(t) > so(t, y(t)) 
a.e. t E (tI, t2), p(ti)y'(tl) > so(tI, y(ti)), p(t2)y'(t2) < sO(t2, y(t2)); 

(b) there exist tI < t2 E [0, 1] such that y(t) < co(t), p(t)y'(t) > so(t, y(t)) 
a.e. t E (tI , t2), p(tl)y'(tl) < s0(tI, y(tl)), p(t2)y'(t2) > s0(t2, y(t2)) - 

Without loss of generality, assume (a) holds. Definition 2.5(i) and the defini- 
tion of f2 imply that (py')'(t) > 0 a.e. t E (t1, t2). Therefore, using the 
monotonicity condition on so (Definition 2.5(iv)), we get 

ot2 

0 > p(t2)y'(t2) - p(tl )y'(tl) = (py')'(t) dt > 0, 

a contradiction. Similarly, we can show that sI(t, y(t)) < p(t)y'(t) . o 

3. INITIAL VALUE PROBLEMS 

In this section, we consider the initial value problem (I). The following the- 
orem gives the existence of a solution to (I) under an assumption which gener- 
alizes the usual notion of upper and lower solutions for a first-order problem; 
see [1, 6, 8]. 

Theorem 3.1. Let f be a Caratheodory function. Assume there exist two func- 
tions so, si such that: 

(i) Si = bi + ci with ci E C[O, T] and bi a function of bounded variation 
on [0, T], i = 0, 1; 

(ii) sI(0+) < r < so(0+), sI(t) < so(t) for all t e [O, T]; 

(iii) ba f to(t)) d t < so(b-)- so(a+), J It (, (t)) d t > sI (b- )- s (a+) 
for all a < b E [0, T]. 

Then problem (I) has a solution such that si (t) < y (t) < so (t) for a. e. t E [0, T] . 
Proof. Define f3 : [0, T] x R -+ IR by 

f (t, so(t)) if y > so(t), 

f3(t, y)= f(t, y) if sI(t) < y < so(t), 

f (t, SI (t)) if y < SI (t); 
and consider the associated problem 

(3.1) y'(t) = f3(t, y(t)) a.e. t E [0, T], (3.1) 
~~~y(O) =r. 
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A solution to (3.1) is a fixed point to the operator N3: Cr[O, T] -+ Cr[O, T] 
defined by 

N3(y) (t) = r + f3(T. y(T)) dT. 

Observe that the operator N3 is well defined since f is Caratheodory and so, Si 

are measurable and bounded, and that there exists a function h E L1 [0, T] such 
that 

(3.2) jf3(t, y(t))l < h(t) a.e. t E [0, T] and all y E Cr[O, T]. 
This inequality and the Arzela-Ascoli Theorem imply that N3 is compact. 
Moreover, the continuity of N3 follows from the inequality (3.2), the Lebesgue 
Dominated Convergence Theorem, and the following relation: 

f3(t, yn(t)) -* f3(t, y(t)) a.e. t E [0, T] 

when Yn ` y in Cr[O, T]. 
Therefore, the Schauder Fixed Point Theorem gives the existence of a fixed 

point to N3; that is, a solution to y to (3.1). 
Now, we want to show that y satisfies Sl (t) < y(t) < so(t) for a.e. t E [O, T], 

and consequently, is a solution to (I). Assume y(t) ~ so(t) a.e. t E [0, T]. 
Since y(O) = r < so(0+), there exist tI < t2 E [0, T] such that y(tj) < so(tl+), 
y(t2) > so(tp-), and y(t) > so(t) a.e. t E (tI, t2). By the definition of f3 and 
assumption (iii), we have 

{t2 

y(t2) - y(t1) = J f (t, so(t)) dt < so(t-) - so(t+). 

This leads to a contradiction. Similarly, we show the other inequality. 5 

We get as a corollary a result concerning upper and lower solutions for a 
first-order problem; see [1, 8]. 

Corllary 3.2. Let f be a Caratheodory function. Assume there exist two abso- 
lutely continuous functions a < ,B such that a (0) < r < ,B(0), f(t, ,B(t)) < 
,B'(t), I '(t) < f(t, a(t)) a.e. t E [O, T]. Then problem (I) has a solution such 
that a (t) < y(t) < ,B(t) for all t E [O, T]. 

Corollary 3.3. Let f be a Caratheodory function. Assume there exist two non- 
decreasing functions -s1, so such that s1 < so, s1 (0+) < r < so(0+), and 
f(t, so(t)) < 0 < f(t, si(t)) a.e. t E [O, T]. Then problem (I) has a solution 
such that s5(t) < y(t) < so(t) for all t E [O, T] . 

The next result generalizes a result of O'Farrell and O'Regan [7]. 

Corollary 3.4. Let Vg, q : [O, T] -+ [O, oc) and g : IR -+ IR be continuous 
functions such that q/ > 0 on (O, T] and q > O on (O, T), q/q, E LI[O, T]. 
Assume there exist two constants s, < r < so such that g(sI) > 0 > g(so). Then 
the problem 

yV(t)y'(t) = 0(t)g(y(t)) a.e. t E [O, T], 

y(O) = r 

has a solution y E C[O, T] n C1 (O, T]. 

In Theorem 3.1, we can reverse the inequalities in assumption (iii) if assump- 
tion (ii) is replaced by a stronger one. 
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Theorem 3.5. Let f be a Caratheodory function. Assume there exist two func- 
tions so, SI such that: 

(i) si = bi + ci with ci E C[O, T] and bi a function of bounded variation 
on [0, T], i = 0, 1; 

(ii) s1 (0)= r = so(0+), s1 (t) < so(t) for all t E [0, T]; 

(iii) ba' f (t, so(t)) dt > so(b-) -so(a+), ba' f (t, sI (t)) dt < sI (b- )- si(a+) 
for all a < b E [0, T]. 

Then problem (I) has a solution such that si (t) < y(t) < so(t) for a.e. t E [0, T]. 

Proof. Let P E [si (J -), so(V -)] . Consider the problem 

(3.3) y'(t) f(t,y(t)) a.e. t e [0, T], 
Y(l)=P. 

By making the change of variable T = 1 - t, problem (3.3) can be written 
as a problem of form (I) on which we can apply Theorem 3.1. Therefore, 
problem (3.3) has a solution such that s1 (t) < y(t) < so(t) for a.e. t E [O, T]. 
By assumption (ii), we deduce that y is a solution to (I). o 
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