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INTRODUCTION 

IN THIS paper we use a variational method for solving some semilinear parabolic equations with 
a discontinuous nonlinearity, possibly on either some convex or nonconvex constraints. The 
approach is based on the fact that the solutions of the above-mentioned problems can be viewed 
as “steepest descent curves”, in a suitable sense to be specified, for some lower semicontinuous 
functionals, possibly restricted to suitable constraints. This abstract framework, which is 
presented in Section 1, seems interesting to us in that it provides a unifying tool for treating 
various kinds of constrained problems, including cases in which the constraint is not convex 
(see Section 4); moreover the existence theorem that we get holds under reasonably weak 
assumptions. All these ideas in great part originated from the paper [lo], where a general 
framework for variational evolution was proposed, and are also related to the theory of 
maximal monotone operators (see [4]) and some of its extensions (see [5,6,9, 11-15, 17, 19-241 
for some applications), the main difference being in the fact that, using compactness, we find 
existence theorems without uniqueness. 

The applications presented can be described, roughly speaking, as follows: given an open set 
Sz C RN and g: Q x R + R, possibly discontinuous, we search for U: [0, T[ -+ t2(sZ) which 
solve 

Wf) E G(Q) 

‘u’(t) = A%(t) 

v t in I and a.e. in I: 

+ g(W)); 

Q(t) E H,(fi), u(t) 2 cp a.e. in Q v t in I and a.e. in I: 

Q’(r) = A%(t) + &U(t)) a.e. in {x ( U(t)(x) > rp(x)f, 

Q’(t) = [Au(t) + gWW)l+ a.e. in (xl U(t)(x) = p(x)], ) 

(P.1) 

(P.2) 

(here the convex constraint K = (U r CJI) is involved); 
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a.e. in Q, 
.i 

U(t)2 dx = p2 V t in I 
n 

‘) 
and there exists A: I -+ R such that a.e. in I: (P.3) 

W’(t) = A%(t) + &U(t)) + A(t)%(t) a.e. in (xl V(t)(x) > p(x)), 

Q’(t) = [A%(t) + g(U(t)) + A(t)%(t)]+ a.e. in lx ( %(t)(x) = p(x)) 

(here the additional nonconvex constraint S,, = (Jo u2 dx = p21 is considered). 
In Sections 2, 3 and 4 the precise meanings of the above problems are given and some exis- 

tence theorems are proved (see theorems 2.13, 3.7 and 4.7) by finding the “curves of maximal 
relaxed slope” (see definition 1.3) associated with the functional 

i i.r 

u(x) 
f(U) = + IDu(x)]2 dx + g(x, s) b 

n a 0 

with no constraints [for (P.l)], subjected to the condition u E K [for (P.Z)] or to the condition 
u E K fl S, [for (P.3)]. 

Problems (P.1) and (P.2) were already treated by Shi Shuzhong in [26], with techniques of 
differential inclusion (see [2, 2.51). We are mainly interested in solving precise equations (so we 
have the assumption (g.2)); moreover the variational approach allows more general growth 
conditions for the nonlinearity (see assumption (g. 1)). The results presented in Section 4, which 
were suggested by [7], are new as far as we know. 

1. THE CURVES OF MAXIMAL RELAXED SLOPE AND 

GENERALIZED EVOLUTION EQUATIONS 

The concepts defined in this section are set in a Hilbert space structure; a lot of them could 
be as well considered just in a metric space, as in [20]. 

Let H be a Hilbert space with inner product (e, *> and norm II* 1) and let f: H -, R U (+oo) 
be a given function. We set D(f) = (U E HIS(u) < +a). 

If U, u E D(f), we consider the “graph distance” between u and u as d*(v, u) = 
[Iv - u/I + If(v) - f(u)1 and denote by D(f)* the metric space B(f) endowed with the metric 
d*. We also frequently use the following notations: if R > 0 we set: 

B(u, R) = {v E HI /Iv - ujj _( RJ for u in H, 

B*(u, R) = B(u, R) n (v E W’-) If(v) 5 f(u)) for 2.4 in B(f). 

We recall the definition of slope (see [20]). 

Definition 1 .l. Let u E B(f). The “slope off at u”, denoted by Ivj”I(u), is defined as: 

IVf/(u) = -1im inf f(v) ( - “f(u) A o 

u-11 IltJ- UII > . 

Definition 1.2. Let u E a>(f). The “relaxed slope offat u”, denoted by lvfl(u>, is defined as: 

I@(u) = suplul(u) I 9: a(f)* --+ R is continuous, a, 5 /Vf/). 

It is clear that Ivfl: d>(f)* --f R U (+a) is a lower semicontinuous function such that 

lvfls IVfl. 
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Definition 1.3. Let I be an interval with nonempty interior and U: I + I-Z be a curve. We say 
that U is a “curve of maximal relaxed slope almost everywhere for f”, if there exists a 
negligible subset E of I such that: 

(a) U is continuous on I; 
(b) fo Q(t) < +oo v t E I\E, fo Q(t) 5 fo U(minI) v t E I\E if I has a minimum; 
(c) ((%(t,) - ?l(t,)ll I j;Ivfl(Yl(t)) dt v t,, t2 E I with t, I t,; 
(d) f 0 %(t,) - f 0 ‘U(t,) s --j: (Ivfl(Y.~(t)))~ dt v t,, t2 E Z\E with t, I t,. 

If E = 0, then we say that ‘u is a curve of maximal relaxed slope for f. 

Remark 1.4. It is straightforward to see, as in [20], that, if ‘u is a curve of maximal relaxed 
slope almost everywhere for f, then 

(a) ‘u is absolutely continuous on any compact subintervals of Z\(inf I) (of I if I has a 
minimum and f 0 ‘U(min I) < +oo) and 

Il~‘(t)ll 5 Ivfl(U(0) a.e. in I; 

(b) there exists a nonincreasing function m: I + R U (+a), which is almost everywhere 
equal to f 0 U, such that: 

m’(t) 5 -(m(U(0))2 a.e. in I. 

Definition 1.5. Let WC H. We say that f is “coercive on W”, if the set (u E Hlf(u) 5 Cl f~ W 
is compact for every C in R. 

Let u E 3(f). We say that f is “coercive at u”, if there exists R > 0 such that f is coercive 
on the set B*(u, R). 

We say that f is locally coercive, if f is coercive at every u in 9(f). 

Definition 1.6. We say that f is V-continuous, if for every u in B(f), for every sequence (uJk 
converging to u such that sup,f(uJ < +m and sup,lVf I&) < +a, one has: 

lim f(z+J = f(u). 
k-m 

Definition 1.7. We say that f is dV-continuous, if for all u in d>(f) and all sequences (u,), con- 
verging to u with sup,f(u,) < +cu and ~mrIvfl(u,)liu, - ~11 = 0, one has: 

lim f(uk) = f(u). 
k-m 

The proof of the following two theorems are essentially contained in [20]. 

THEOREM 1.8. (Existence.) Let u0 E 9,(f) and suppose that: 
(a) f is coercive at u,; 
(b) f is V-continuous. 
Then there exist T > 0 and U: [0, T[ -+ H, a curve of maximal relaxed slope almost every- 

where for f, such that ‘U(0) = uO, f 0 u(t) 5 f(uO) V t and f 0 U is lower semicontinuous. 

Proof. This statement is precisely the first part of [20, theorem 4.101: for the proof simply 
observe that V-continuity implies the assumption (b) of that theorem. 
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THEOREM 1.9. Suppose thatfis dV-continuous and let U: I -+ H be a curve of maximal relaxed 
slope almost everywhere for f. 

Then f 0 ‘U is continuous and nonincreasing. 

Proof. This is a “relaxed version” of [20, lemma (3.10)]. For the proof it suffices to repeat 
all the arguments carried on in the proofs of [20, (3.9) (b) and (3.10)], just replacing the slope 
with the relaxed slope and to remark that dV-continuity provides the relaxed version of the 
condition of [20, (3.1 l)]. 

The following proposition individuates a class of functions to which the previous theorems 

apply. 

PROPOSITION 1.10. Assume that f satisfies the following inequality: 

f(u) rf(u) - @(K u, If049 If(@lv IVfI(~))ll~ - 4 

VU, v E S(f) with IVf I(u) < +oo 
(1.1) 

where <D: a>(f)2 x R3 + R is a function which is bounded on bounded subsets. 
Then f is V-continuous. 
Furthermore, if @(u, u,p, ,p2 ,p) = @,,(u, u, p1 ,p,)(l + p), with C+, bounded on bounded 

subsets, then f is dV-continuous. 
So, if in addition f is coercive, we can apply the previous theorems to get existence and 

regularity of a curve of maximal relaxed slope for f. 

Proof. The fact that (1.1) implies V-continuity off is trivial. For the second part just observe 
that from (1.1) we can deduce: 

f(v) 2 f(u) - wu, u, If(U lf(d)U + TvTI(4)ll~ - 4 

for another suitable 6, bounded on bounded subsets, which implies dV-continuity. 

PROPOSITION 1.11. Suppose that f = f0 + 6, wheref,: N + R U (+oo] is a convex lower semi- 
continuous function and 6: a>(fO) -+ R satisfies the following inequalities: 

IN4 5 K(u) + iulfo(4I v 24 E Wf) 

I%4 - wd 5 L( u9 UT Ifo(41, Ifo(dl)ll~ - 41 v u, u E B(f) = Wf,) 1 
(1.2) 

where K: X)(f) -+ R, L: 9(f)2 x (R’)2 + R are continuous functions and fl E [0, l[. For 
instance 6 could be a locally Lipschitzian function. 

Then f is da-continuous. 

Proof. Fix ,uco in D(f); by (1.2) and the lower semicontinuity of fO, it is easy to prove that 

i 
fo(u) 5 &f(u) + C, - 

vu EB(Uo,R) 

L IVfol(4 5 Iv-I@) + Uh u9 I”fo@)l~ IfoWl) 

for suitable R, C > 0. Since f0 is convex, it verifies (1.1) with Q(u, u, pl, pz, p) = p; it follows, 
from the second inequality in (1.2) and the two previous ones, that f satisfies (1.1) in B(u, , R) 

with W, u, pl, p2, P> = P + 2L(u, u, ~~41 - PU) + C p2/(l + ,4 + C). 
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Now we are going to show that, under suitable assumptions, a curve of maximal relaxed slope 
for f solves an equation of the type: 

U’ = -gradf 0 ‘u. 

To this aim the following lemma is a crucial point. 

LEMMA 1.12. Let U: Z + H be a curve of maximal relaxed slope almost everywhere forfand set 
I’ = (t E II ivfl(%(t)) < +col. Let A: I’ ---t H be an operator which satisfies the following 
properties: 

(a) IIA(t)jl 5 Ivfl(W.(t)) a.e. in I; 
(b) D+(fo ‘U)(t) 2 (A(t), u’(t)) a.e. in Z 

(D, denotes the right-lower derivative). Then for almost every t in Z we have: 

( 

U’(t) = -A(t), 

m’(t) = -/A(# 

where m: Z + R U (+a~) is a nondecreasing function equivalent to f 0 7.l as in (1.4). 

Proof. We recall that meas(Z\Z’) = 0. From (a) and (b) of remark (1.4) we get: 

IlQ’(0ll 5 TVT(Q@)) a.e. in I, 

D+m(t) 5 -(lV/(Vt)))’ a.e. in I. 

Then, for almost every t in Z’, we have: 

-(m(Q(t)))” 2 D’m(t) 2 D+(fo Q)(t) 2 (A(t), ‘h’(t)) 

2 -(IA(t tlQ(t)ll 2 -(lvfl(‘U0))2. 
It follows: 

(Q’(t), A(t)) = -ttA(t)tt llQ(t)tl = -(lvfl(Vt)))‘. 

Then we have I)‘U’(t)ll’ = (19fl(%t(t)))2 = JIA(t)112 = -m’(t) and hence 

Q’(t) = -A(t). 

The remainder of the section is devoted to finding “good candidates” for the operator A. In 
several situations (e.g. in the p-convex context: see [14]) the concept of subgradient is well fitted 
to this aim. We recall the definition (see [lo]). 

Definition 1.13. If u E B(f), we call “subdifferential offat u” the set: 

As well known a-f(u) is a closed and convex subset of H(possibly empty). If 8-f(u) # 0, then 
we can define the “subgradient offat U” as the element grad-f(u) in a-f(u) which has minimal 
norm. 

It is quite simple to check that A(‘U(t)) = grad-f0 U satisfies (b) of lemma 1.12; in general 
(and in the cases that we want to treat) it does not satisfy (a); for this reason we are led to 
introduce a larger set than a-f(u). 
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Definition 1.14. We define the multivalued map a(f): 3(f) -+ 2H by: 

i 

there exist a sequence (u,), in 3(j), such that 

lim uk = U, 

a E @Q-)(u) * 
k-m lim f(G = f(u) 

k-r-c 

and a sequence (Q)~ in H such that 

ak E a-f&k) vk, ffk + a weakly in H. 

We have the following result. 

PROPOSITION 1.15. Letfbe locally coercive. Then for all u in a)(f) with m(u) < +w, one has: 
(a) there exists cr in a(f)(u) such that I(cr(( 5 m(u); 
(b) Ivfl(u) = 1 irnni;f ((grad-f(u)II. 

a -f(u) z 0 

Proof. Let (&)k be a sequence such that uk -+ u, f(uk) --t f(u) and 

h-bk) + I@). 

Fix k integer, then arguing as in the proof of [20, lemma 5.5, part (c)l, we can find u; such that 

It follows that U; + U, f(u;) +f(u) and grad-f(uk) -+ CY E H weakly (passing to a sub- 
sequence). Then CY E a(f)(u) and by the weak lower semicontinuity of the norm, we have: 

~\cY\/ I lirn_i_nf Itgrad-f(uk)jI I m(u). 

But, since I/grad-f(u;)jl 2 [ VfI(u;), we also get (b). 
To state the main theorem we need another definition. 

Definition 1.16. Let a: 9(f) + 2H be a multivalued map. We say that @ is a “subdifferential 
along curves” for f if: 

i 

for all absolute continuous curves ‘U: Z + X such that 

supf 0 U(t) < +a), a(%(t)) # 0 a.e. in Z 
ter 

one has for almost all t in Z 

D, (f 0 Q)(t) 2 (a, Q’(t)) V a in @(u(t)). 

In the next theorem we essentially require that C?.(f) is a subdifferential along curves for f; 
however, since the explicit determination of Q.(f) may be nontrivial, the use of a larger (and 
easier to compute) @. may be useful. 
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THEOREM 1.17. Suppose that f is locally coercive and let a: LO(f) --+ 2H be a multivalued map 
such that: 

i 

@(f)(u) c a(u) v u E D(f); 

Q is a subdifferential along curves for f. 

Then, if Cu: Z + H is a curve of maximal relaxed slope almost everywhere for f, one has for 
almost every t in I: 

(a) WW)) # 0; 
(b) @(Q(r)) has a unique minimal section (namely a unique element of minimal norm), which 

we denote by A(U(t)); moreover @(u(t)) belongs to CL(f)(TL(t)) and is therefore the unique 
minimal section of a( f )(Q(t)); 

(c) the equations 
U’(t) = -A(‘U(t)), 

m’(t) = -1\A(=Nt))l!2 
hold (WI is as in lemma 1.12). 

Proof. Since Ivfl(%(t)) < car, a.e. in I, we have (a). By proposition 1.15 we can define 
A@(t)) almost everywhere in Z as an element with norm less or equal to Ivfl(‘U(t)) (there exists 
at least one of such elements). Since Q. is a subdifferential along curves, then A 0 U satisfies the 
assumptions of lemma 1.12, hence (c) holds. Moreover, this states that, for a.e. t, A(CU(t)) is 
uniquely determined; to see that A(U(t)) E Q.( f )(%(t)) it suffices to replace Q. with a(f) in the 
previous arguments. 

Now we want to study functionals restricted to some constraints. For this we consider a 
smooth surface M defined as 

M = (u E WI y(u) = 0, dy(v) # 01, 

where W c His an open set and y : W + R is a C’ function. For u E M we denote by N(U) the 
normal space to M at u (which has dimension one). Furthermore we consider the function 
ZM: H --t R U (too] defined by 

0 if u E M, 
Z&r(u) = 

+a, if u E H\M. 

It should be as well possible to treat a wider class of constraints, but this is not necessary to our 
present aims. 

The main result in constrained problems is the following lemma. 

LEMMA 1.18. Let f: H + R U (+w) be locally coercive and M, y as above. 
Let u0 E 9(f), R, > 0 and suppose that there exist two constants C,, C, r 0 and a map 

v/: B*(u,, R,) -, a>(f) n M such that: 

f(u) 2 f(w(G) - c,II u/(u) - 419 

()v/(u) - uIJ I C, dist(u, M) 
W.f) 
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Then there exist R 5 R, and constant K (depending on uO, C,, CJ such that, for all u in 
B*(u,, R) n M, for all CY E K(f + I,&(u): 

‘there exist a sequence (z& in ED(f) such that: 

lim uk = 2.4, 
k-m lim f(4) = f(u), k-)m 

a sequence (ol,& in N and v E N(u) such that: 

ol; E Xf(uJ tl k, lim c$ = LY + v* > 
k-m 

moreover we have the inequality: 

/lo;// 5 K(1 + I/a/) vk. 

Proof. Let R 5 R,, u E B*(u,, R) and take p > 0 such that B(u, p) C B(u,, R) and f is 
bounded below in B*(u, p) (f is coercive at u). Let CY E iI_(f + I,&(u), it is easy to see that, 
possibly reducing p, there exists a function o: [0,2p] -+ [0,2p] of class C’ such that 
o(0) = o’(O) = 0, w is 1-Lipschitz continuous and the function h defined by 

h(u) =f(u) - (CY, U - u> + W(l!V - ull) 

restricted on A4 fl B(u, p) has a unique strict minimum at v = u. 
Let 1 2 0, sincefis locally coercive, then there exists u,, a minimizer in B(u, p) for the func- 

tion u u h(u) + AY’(u). Then: 

W4) + JQ2(ux) -( h(u) v u E M n B(U, p). (1.3) 

It can be easiIy deduced, by coerciveness, that there exists u’ = lim uA, and going to the limit 
x-+co 

in (1.3), we get I = 0 e u’ E M. From (1.3) again we get that u’ = u (because u is the 
unique strict minimum in A4 fl B(u, p)) and xlim f(ux) = f(u). 

Then, for 1 large, ux E int(B(u, p)), which Tmilies: 

CW; = 01 - A grad y2(ux) + w’((Iux - ~11) ,,zr 1 z,, E a-j&), 

Now we want to estimate /(A grad &uJ((: we have from (1.3) and (M.f) 

JY2(U,) 5 “G(w(ux)) - f(4) - (a9 w(nx) - u,> + c4w(uJ) - O(Uh) 

I (Cf + l/01)) + l)C+dist(u,,M). 

Since y is C’ and dy(u,) # 0, we get that, if R is taken small enough, then there exist E > 0, 
C’ 1 0 such that 

y(u) 1 E dist(u, M), /Igrad y(u>II I C’ =) /(grad y(v)// 5 c 
Y(U) 

E dist(v, M) 

for all u in B(u,, R). It follows: 

Ibid ~~(41 = ~~IYWI brad YWII 5 Fc,(c, + II4 + I). 
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Then, we conclude that, for a sequence (AJk going to +co: 

Ak grad y2(ux,) + v E N(u) 

and the remaining part is trivial, since a; + cx + v. 

COROLLARY 1.19. If f, A4 and u0 are as in the assumptions of lemma 1.18, then there exists 
R > 0 such that 

@(f + h4)(4 c @(f)(u) + Mu) v u E B*(q,, R). 

Proof. Use the definition of CT(f + I,)(u) and apply a standard diagonalization technique to 
the result of lemma 1.18. 

THEOREM 1.20. Let M be a Cl-surface (namely a manifold of codimension l), f. : H + R U 
{+co] be a convex lower semicontinuous function and 6: a>(fo) + R a function satisfying (1.2). 
Set f = f. + S and suppose that f is locally coercive. 

Let u,, E LO(f) n A4 be a point such that 

9(f) and M are not tangent at u0 

in the sense that the tangent plane to A4 at u0 is not tangent to a>(f) (which is a convex set). 
Then: 

(a) there exists R > 0 such that, for all u in B*(uO, R) 

W + I,)@) c Wf )(u) + N(u); 

(b) if Q is a multivalued map satisfying the assumptions of theorem 1.17 with respect to f, 
then the multivalued map (3 + N satisfies the same assumptions with respect to f + I,,,, in 
B*(u,, R), for a suitable R > 0. 

Proof. The proof of (b) is an immediate consequence of (a): just observe that sub- 
differentiability along curves behaves well with respect to the restriction to a constraint, since, 
if U lies in M, then ‘u’ is tangent to M. 

Let us prove (a). Take u0 E D(f), arguing as in proposition 1 .ll we can find R, L > 0 such 
that 6 is L-Lipschitzian in B*(u,, R). We define y: B*(u~, R) + LO(f) n A4 satisfying (M.f) of 
lemma 1.18. Since h4 and 33(f) are not tangent at u0 (hence at any u of B(u,, R), if R is small), 
then we can find u+ and z.- in a>(f) such that, possibly reducing R 

Y@‘) > 0, Y(U7 < 0, 

dy(u)(u+ - u) 2 E, dy(u)(u- - u) 5 --E v u E B*(uO, R) 

for a suitable E > 0 (y is as in lemma 1.12). 
If u E B*(u,, R), we define A(u) by 

i 

y(v + A(u)@’ - u)) = 0 if v(u) 5 0, 

y(u + a(u)(u- - u)) = 0 if y(u) 2 0. 

It is not difficult to see, by computations, that A is well defined, and 

IA(u)\ s Cdist(u, M) v u E B*(u,, R) 
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for a suitable constant C. Then, setting 

Y(V) = 
i 

u + A(u)@’ - v) if y(v) 5 0, 

v + A(v)@_ - v) if y(u) 2 0, 

it follows that the second condition in (M.f) is satisfied with C, = C. For the second one 
observe that, if for instance y(v) 5 0, we have, for a suitable C1 > 0: 

A,(u) - fo(v/(v)) 2 ~(v)(fo(v) - .A,@+)) 1 Ct dist(v, M); 

the first inequality holds by the convexity offo, the second one is true, taking R small, sincef, 
is lower semicontinuous. 

Since $j is L-Lipschitzian in B*(uO, R), then the first inequality in (M.f) follows with 
c,= c, + L. 

Now (a) follows immediately from lemma 1.18. 

2. THE UNCONSTRAINED CASE 

In this section we study a semilinear parabolic equation with a discontinuous nonlinearity. 
The existence theorem (see theorem 2.13) that we prove provides a generalization to the one of 
1261 in the superlinear case. The analysis carried out in this section will be also used in the con- 
strained cases. 

Let N 1 2, Q be a bounded open subset of RNand g: Q x R + R a measurable function. We 
introduce the functions g, 8: M x R + R defined by: 

g(x, s) = inf(p(s) 19: R --) R is continuous, &a) 2 g(x, a) for a.e. 0 in R), 

g(x, s) = supI&) 1 V: R -+ R is continuous, &a) I g(x, a) for a.e. (T in R). 

We shall denote by 2* the number (2N)/N - 2, if N r 3 and +a if N = 2. 
In the following we denote by )) * /I4 the standard norm in the space Lq(Q) and by B,(u, R) the 

ball (v ( l/v - u& s Rj. We also consider in the Hilbert space L’(i2) the standard inner product 
(24, V> = jn UV dx: 

We introduce the following assumptions on g. 

thereexistotL’(Q),bER,P.[l,T[ “[l,l +i[ suchthaj (g.l) 

I&, 41 5 4x) + blslP VXEQ, VSER; 

for every measurable function U: Q -+ R, the functions: 

x u g(x9 u(x)), x H &x, u(x)) 

are measurable; 1 

(g.2) 

there exists E C R such that meas = 0 and for all x in Q the function: 

s I-+ g(x, 4 

is continuous on R/E. 

(g-3) 

If (g. 1) holds, we can define G: Sz x R -+ R, by G(x, s) = ji g(x, a) da. 
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Really assumption (g. 1) could be weakened to allow the “natural” growth conditionp < 2*, 
using the techniques of [24]; we do not do this for sake of simplicity. 

The proofs of the following two remarks are quite standard, so we have omitted them. 

Remark 2.1. Under the assumption (g.l), G is a Caratheodory function and there exist 
a, E L’(Q), b, E R such that: 

jG(x,s)( -c al(x) + bI(~(P+l VXESJ,VSER, (2.1) 

IG(x, s2) - G(x, sl)l 5 (a(x) + WIszIp + ~sllp))/% - ~11 VXE L-J, VS,,S, E R. (2.2) 

Remark 2.2. The following facts hold: 
(a) if g does not depend on x, then (g.2) is automatically fulfilled; 
(b) the function s H g(x, s) (s u g(x, s)) is upper (lower) semicontinuous, V x E Q; 

- (c) for every x in Q we have: 

g(x, s) 5 2(x, s) VSER; 

if s H g(x, S) is continuous at sO, then g(x, sO) = g(x, sO) = g(x, s,); 
(d) under the assumption (g.l), we have: 

g(x, s) 5 D- G(x, s), g(x, S) 2 D+G(x, S) VSER; 

IE(x, @I, I&x, s)l 5 a(x) + blslP VXEQVSER; 

(e) if (g.1) and (g.2) hold, then for all u E Hd(~Az)g(*, u), g(., u) E L’(Q). 

Definifion 2.3. If (g.1) holds, we definef,: L’(Q) -+ R U (+m), by 

3 IDu12 dx + G(x, u)dx 
f,(u) = 

if u E H,‘(Q), 
a s R 

+m otherwise. 

PROPOSITION 2.4. Under the assumption (g.l), the following facts hold: 
(a) fi satisfies the assumptions of proposition 1.11, with so(u) = 4 jn (Du12 d_x and g(u) = 

jn G(x, u) dx; then, by proposition 1.11 fi is dv-continuous; 
(b) for every C,, C, in R, there exists A4 > 0 such that: 

(c) if (u& is a sequence in H,‘(Q), u E L2(Q), and 

uk -+ u in L2(a), SUPf,bk) < +=J, 
k 

then u E H,‘(Q), uk + u weakly in H,‘(Q) and uk + u in Lq(sZ) for all q < 2*; 
(d) f, is lower semicontinuous; 
(e) for every u0 in H,‘(Q), C in R, fi is coercive on B,(u,, R). 
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Proof. We prove (a). By (2.1) we get: 

By interpolation, since p < 1 + 4/N, there exist q E lp + 1,2*[, 0 < 2 and C, Ct > 0 such 
that, for all u in Hi(Q): 

Ilull;;: 5 ~\z&+l-@\~.~~~ I Cllul($+‘-OllDull; 5 c,((ul(~~+1-8)‘(2-0) + $IlD# 

(C is related to the imbedding of H,‘(Q) in L2*(s2)), which implies the first inequality in (1.2). 
Notice that we have proved: 

ft(u) 1 $llr>ull: - crJ(u~~$p+1-0)‘(2-0) - /(a,([, vu E H&I). (2.3) 

To prove the second inequality in (1.2) we use (2.2), estimating Ilull;, Ilu[[; in terms of 
fr (@Jr (u), as above. 

The proof of (b) is a direct consequence of (2.3). 
To prove (c), (d) and (e), just use (b) and the compact imbedding of H,‘(Q) in Lq(Q), 

for q < 2*. 

PROPOSITION 2.5. Under the assumptions (g.1) and (g.2), we have: 

-IVfiI(u)JJv - z4JJ2 5 
I’ 

DuD(v - 2.4) dx + 
!: 

g(x, u)(v - u)+ dY. 
n n 

(a) 
- 1 g(x,u)(v- 24)-d-x v 24, v E H;(n); 

.Q 

(b) u E H,‘(Q), )Vfi/(u) < +co * Au E L’(a) and IlAul12 5 IVfiI(u) + llal12 + ~ll.4$,; 

(c) if u E Hi(Q), o E a-f,(u), then: 

i 
a(v - u) d_X I DuD(v - u) dX + 2(x, u)(v - u>+ dX - g(x, u)(v - u)- dx 

D (i R i D i’ a- 

vu, v E H&S). 

Proof. Let u, u E Hi(Q) = ZD(ft) and (tk)k be a sequence such that tk -+ O+; then 
u + tk(u - u) E Hi(L2) and we have 

-IVfil(u)IIv - z41J2 5 lirnJ:f ‘(’ + ti(V1i ‘)) -‘l(‘) 

5 
.i 

DuD(v - u) dx + lim sup 
G(x, u + t,(v - u)) - G(x, u) dr 

n k-m i D tk 

By (2.2), we get, for k large: 

9&E+ fk(V !, u)) - G(*, u, I a + @(2P + l)JuIP + 2PIv - @)(v - 241 EL’@). 
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Applying Fatou’s lemma and remark 2.2, we obtain the conclusion, since, in an a.e. sense: 

lim sup 
G(., u + t,(v - u)) - G(*, u) 

5 D+G(., u)(u - u)+ - II_ G( *, u)(u - u)- 
k-rm tk 

I g(*, u)(v - u)+ - g(*, u)(u - u>-. 

We prove (b). Let w E C,“(Q); applying (a) with u = u + w, we get: 

- D.Dwdx 5 Ivf,l@)llwllz + Ig(x, u)lwC dx + 
R a i 

n Ig(x, u)lw- dx 

5 Ivf,l(a4l2 + s (a + ~l~lP)lWl dx 
n 

which implies (b). 
To prove (c) proceed as in the proof of (a), noting that, if cx E K&(U), then 

CY(U - u) dx 5 lim inf 
fr (u + fk(U - u)) - fi (u) 

R k-m tk 

Remark 2.6. Let 1.4 E H&Q), Au E L’(Q). Then IVfiI(u) < +a. 

Proof. It can be deduced by (a) of proposition 2.4 and by the inequality: 

fi(v) - fi(n) 2 -(tlAullz + Ilatlz + H//u&, + Il&J)llu - ~11~. 

Definition 2.7. Assume (g.1) and (g.2). We define the multivalued map a, : Hi --f 2L2(n) by: 

i 
(Y(u - u) dx 5 

i 
DuD(v - u) dx + 

i 
g(x, u)(u - u)+ dx 

a E Q,(u) e 
.n ,fl .a 

- g(x, u)(u - u)- dx v u E H,1(cJ). 

PROPOSITION 2.8. Under the assumptions (g.1) and (g.2), we have: 
(a) Q.,(u) is closed and convex for every u in H,(Q); 
(b) @(Jr)(u) c a,(u) for every u in H,‘(Q); 
(c) there exists a continuous function Yr : (R’)4 + Rf, increasing in all its arguments, such 

that: 

i 

fi(U) 2fi(U) - ~I(ll42~ II~IIZ~ IfiWl7 lfi(~M~ + ll&ll~ - 42 
Vu,uEH,(Q)VcxEa,(u); 

(2.4) 

(d) if @r(u) # 0, then IVfil(u) < +co (*Au E L2(sZ)), moreover for every (Y in a,(u) there 
exists ,8 in L2(Q) such that: 

QL = -Au + /I, g(x, u(x)) I p(x) I g(x, u(x)) a.e. in a: 

if A,(u) denotes the minimal section of a,(u), then: 

A,(u) = (-Au +g(.,u))vO + (-Au + g(.,u))r\O. 
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Proof. Part (a) is obvious. To prove (b) first observe that, by (c) of proposition 2.5, it follows 

0-i (u) c a, (u) v U E H&Q). 

Now let (~4~)~) u be in &(a), ((Y~)~, CY be in L2(a), such that uk --f u in L2(Q), f, (uk) -+ fi (u), 

ak E a, (uk) V k and (Ye + a! weakly in L2(M). By (c) of proposition 2.4 we obtain that 
Du, + Du weakly in L2(Q) and uk + u in L2p(n) (2~ < 2*); we can also suppose that uk -+ u 
almost everywhere in CJ. From the lower semicontinuity of 1) * II2 with respect to weak 
convergence, we get: 

lim sup - Ij~uk\l~ 5 -IjDu\lt. 
k-tm 

If v E H;(Q), then 

i 
(Yk(u - u,)ti % Du,D(v - uk) du + g(x, uk)(u - uk)+ k - 

.i 
g(& u&v - u/c)- h. 

Q D n o- 

Passing to the limit, applying Fatou’s lemma and the semicontinuity of g, 8, we obtain 
(Y E @i(u). So a, turns out to be closed with respect to this sort of “weak-strong convergence”: 
in particular, since it contains a-fi, then it contains a(Jt). 

We prove (c). Let U, v E Hi(Q), CY E a,(u), then 

f(v) -f(u) 1 
i 

DuD(v - 2.4) d_x + G(x, u) dx - 
s 

G(x, 4 d-x 
a n cl 

2 cY(v - u) dx + 
.i 

G(x, v) dx - ‘TX, u) dx 
0 R a 

- 
i 

gx, u)(v - 24)’ dx + 1 g(x, Mu - N- dx 
n D- 

where K, y are suitable constants, which can be obtained by (2.3). 
We prove (d). It is easy to deduce from (c) and from (a) of proposition 2.5 that a, (u) # 0 * 

IVfi[(u) < +m =) Au E L2(Q). Then, if 01 E C?,(u) 
1 

I CiWdXI- Auwdx + 
n a 

i 
CYWdXZ- 

r 
Auwdx + 

.c a 

which is the weak formulation of (d). 

ax, UN dx v w E Hi with w 2 0, 
D 

s 
g(x, u)w dx v w E Hd(Cl) with w L 0, 

R- 

PROPOSITION 2.9. Assume that (g.l), (g.2) and (g.3) hold. Then tit is a subdifferential along 
curves (see definition 1.16). 

For the proof of proposition 2.9 we need some lemmas. 
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LEMMA 2.10. Let Z be an interval, U E L’(Z, L’(Q)) be absolutely continuous and such that 
‘u’ E L’(Z, L’(Q). Let N c R be such that meas = 0. Then for almost every t in Z one has: 

meas((x E Q 1 Q.(t)(x) 6 N, %‘(t)(x) # 0)) = 0. 

The proof is contained in the Appendix. 

Remark 2.11. The assumption (g.3) implies that for every x in $2 and s in R\E G’(x, s) (the 
derivative with respect to S) exists and G’(x, s) = g(x, s) = g(x, s). 

LEMMA 2.12. Assume that (g. 1) and (g.2) hold. Let U E L2(Z, L2(sZ)) be an absolutely con- 
tinuous curve such that sup(f, 0 U(t) 1 t E I) < foe. Then the function t ++ 6(%(t)) = 
In G(x, U(t)) dx is absolutely continuous and for a.e. t in I: 

(6 o Q)‘(r) = 
i 

g(x, Q(r))%‘(t) dx 
a 

Q’(t) = 0 a.e. in {x E D ( %(t)(x) E El 

(2.5) 

[we recall that E was defined in (g.3)]. 

Proof. By (a) of proposition 2.4 6 is locally Lipschitzian in the sublevels off, , so it is clear 
that 6 0 ‘It is absolutely continuous. Let t E Z be such that %‘(t) and (6 0 u)‘(t) exist and 
meas((x E D 1 U(f)(x) E E, ‘U’(t)(x) # 0)) = 0. Then we can find (h& converging to O’, such 
that (%(t + hk) - U(t))/(hJ -+ U’(t) almost everywhere in 0. We claim that, for a.e. x in Q: 

lim ‘3x, =Uf + W(X)) - G(x, WN-9) = g(x, ‘Wt)W)Q’(W) if W)(x) $ E, 
k-cc hk 

(2.6) 
0 if ‘%(t)(x) E E, 

which can be expressed as g(x, U(t)(x))%‘(t)(x), with the obvious convention. To prove this we 
first note that: 

G(*, V(t + M) - G(*, u(r)) < a 

hk 
- 

IC 

+ b((%(t + h# + (%(t)lp) CU(f + h;) - u(t) 
k 

%(t + hk) - U(t) 

hk ’ (2.7) 

where c E L2(CI), by (a) of proposition 2.4. Then, for almost every x in Q such that 
U’(t)(x) = 0, the right-hand side of (2.6) is zero, namely (2.6) holds. In the other case 
%(t)(x) $ E for a.e. x and 

fim G(x, u(t + hk)(X)) - ‘3~ u(t)(X)) 

k-+m hk 

= l im Gk Q(f + h/c)(X)) - G(x, U(f)(x)) Q(t + hk)(X) - u(t)(x) 
k-r- u(t + h/c)(X) - u(f)(X) h/c 

= G’(x, W)(x)P’(t)(x) = g(x, W)(x)P’(t)(x). 

From (2.6) and (2.7), applying Lebesgue’s theorem, we get the conclusion. 
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Proof of proposition 2.9. Let t be such that a, (u(t)) # 0, Q’(t), ($j 0 U)‘(t) exist and (2.5) 
holds. If t’ > t, CY E a, (Q(t)), we have: 

f, (Wt’)) - fi W(t)) 
t’ - t 

> 
.i 

a! 
‘U(t/) - Q(t) dx + ‘3x9 Wt’)) - (3x2 Q(t)) dx 

n t’ - t n t’ - t 

- 
\’ 

g(x 
, 

u(t)) cut’) - Q(t))+ dx 

D t’ - t 

g(x ‘Il(t)) Wf’) - ww dx 
+ 3 

i D- t’ - t 

Going to the limit, as t’ + t+, we get: 

D+(f o ‘U)(f) 2 (a, u’(t)> + 
.i 

g(x, u(t))%‘(t) dx - 
i 

ax, Wt))(u’(t))+ dx 
cl D 

+ 
i 

Sk wt)w’(t))- dx. 
n- 

Using lemma 2.10 and remark 2.11 we get the conclusion. 

We can prove now the main theorem of this section. 

THEOREM 2.13. Let g: Q x R -+ R be a measurable function satisfying (g.l), (g.2) and (g.3). 
Then for every u0 in Hi(Q) there exist T > 0 and U: IO, T[ .+ L2(Q), an absolutely continuous 
curve, such that U(0) = u,, Q.(t) E Hd(i2) for every t in [O, T[ and for almost aI1 t in [0, T[: 
[we recall that E was introduced in (g-3)1 

AU(t) E L.‘(Q); 

A‘U(t) - g(., u(t)) a.e. in Ix E M ) Q(t)(x) $ E), 
u’(t) = 

[ 0 a.e. in (x E Q I W.(t)(x) E E}; 

A%(t) = 0 E @(a, Vt)), EC* 3 Q(t))1 a.e. in (x E Q ) u(t)(x) E E). 

Moreover the function: 

’ t - m(t) = f 
I 

pu(tpdx + 
s 

G(x, Q(t)) dx 
n R 

is continuous, nonincreasing and m’(t) = /%‘(t)/(: a.e. in [O, T[. 

Proof. By propositions 2.4 (a) and 1.11 we can apply theorem 1.8 and prove the existence of 
U a curve of maximal relaxed slope almost everywhere for f, , such that U(0) = uO. Such a 
curve has the property that f, 0 ‘u is continuous, by theorem 1.9 and proposition 2.4 (a). More- 
over @, satisfies the assumptions of theorem 1.17, as was proved in propositions 2.8 (b) and 
2.9. Then, applying theorem 1.17, we obtain the conclusion by the characterization of the 
minimal section of a, given in proposition 2.8 (d). 
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3. THE PROBLEM WITH AN OBSTACLE 

In this section we study the evolution of the functionalf, on the convex constraint produced 
by the presence of an obstacle. The result is an existence theorem (see theorem 3.7) for a 
problem of parabolic variational inequalities (see also [26]). 

Let a, g be as in Section 2 and let cp: Q -+ R be a measurable function (the obstacle). We 
denote by K the closed and convex set: 

K = (U E L’(Q) 1 U(X) L V(X) a.e. in SJ] 

and for u in K we introduce the “contact set” 

C(u) = (x E Q 1 u(x) = qqx)]. 

We define fi: L’(sZ) -+ R U (+m) by f2 = fi + ZK, where, for a generic subset I/ of L2(Q), 

i 

0 ifuE V, 
Z”(U) = 

+a if u $ V. 

PROPOSITION 3.1. Suppose that (g.1) holds. Then: 
(a) 9(f2) = ZZ,j((sz) n K; if q E WiP2(Q), then 9(f2) # 0 e V+ E Hi(Q); 
(b) fi = & + 6, where & = f, + Z, is a convex lower semicontinuous function and $j 

satisfies the inequalities (1.2); therefore f2 is dP-continuous, by proposition (1.11); 
(c) for every uO E H,‘(Q) n K, R > 0, f2 is coercive on B,(u,, R); 
(d) f2 is lower semicontinuous. 

The proof is straightforward. 

PROPOSITION 3.2. Suppose that (g.1) holds and that q E W1s2(Cl), Ap E L2(i2). Then for every 
uO in Hi(Q) n K, R > 0 there exists a constant C, such that: 

IVfiI(U) 5 IVfiI(4 5 c + IVfil(U) v u E B,(u, R) with f2(u) 5 f2(uo). 

In particular (Vf2((u) c +a, 9 IVfi((u) < +oo(#Au E L2(sZ)). 

Proof. Let uO E H&O) fl K, R > 0: we construct a map rr: B,(u,, R) n { fi (0) 5 fi(u)) + 

Hi(Q) fl K such that for all u E B,(u,, R) with fi(u) I fi(uo): 

V u E B2 (uo, R) with fi (4 s fi (u,) 

for a suitable C. If this can be done, the conclusion follows from [7, lemma 3.41, applied in the 
metric space X = B, (uO, R) n { fi (u) 5 fi (u)). The function n is simply defined by: 

n(u) = u v ql 
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fr(y ~lfl:(C$ because V+ E H&J) by (3.1) (a) and ZJ E H,‘(Q)). It is clear that /II(V) - ~11~ I 
V u 2. oreover 

fi(V) - fiM.0) 1 IMW(v - n(n)) dx + G(x, v) - G(x, n(v)) du 
a n 

n 

= DqJD(v - n(v)) dx + I ‘3x, v) - G(x, n(u)) dx 
._a 

2- 
.i 

AP(V - n(v)) d.~ - 
.i 

a + b(jvlP + I?7(v)JP)Iv - n(v)/ d.X 

2 -(,;A,,,, + /k$ + b(&, + ~~rW~&J)~~v - 77(V)112 

2 -CIlV - e4ll* 

(since j(v(Iz andf, (0) are bounded, then ((vI(~~ and (Iv((~~ are bounded, by (a) of proposition 2.4). 
This concludes the proof. 

PROPOSITION 3.3. Suppose that (g.1) and (g.2) hold. Then: 
(a) the following inequality holds: 

-IVfil(u)JJv - u/j2 I j DuD(u - u)dX + 
n 

j 
n 

g(x, u)(v - u)+ dx - i g(x, u)(u - u)- dX 
n- 

vvdf;(a)nK; 

(b) if u E H;(Q) fl K, CY E ~?-f~(u), then: 

cY(v - 24) dx I DuD(v - 24) dx + g(x, u)(v - u)+ dx - 
1’ 

g(x, u)(v - u)- d.x 
R n Q- 

v v E H&2) n K. 

Proof. The proofs are similar to those of (a) and (c) of proposition 2.5. 

Definition 3.4. Under the assumptions (g.1) and (g.2), we introduce the multivalued map 
a,:H,‘(Q)nK-,2 L*(a) by 

a E c?,(u) @ 
s 

cY(v - u) dx 5 
n i 

DuD(u - u) du + g(x, u)(v - u>+ dx 
n i ,Q 

- 
.i 

g(x, u)(v - u)- d.x vuEH;(S2)nK. 
n 

PROPOSITION 3.5. If (g.1) and (g.2) hold, then the following facts are true: 
(a) a,(u) is closed and convex for all u in H,‘(Q) fl K; 
(b) C%(fJ(u) c Cf..,(u) for all u in H,‘(Q) tl K; 
(c) there exists a continuous function Y2: (R’)4 -+ R + increasing in all its arguments, such 

that: 

L?(u) r.&(U) - ~2yz(ll42~ ll~Il2~ lm4)l~ I.fi(ml + Il~ll2)II~ - 42 

Vu,vEH,‘(S2)nKvLYEa2(U); 
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(d) let 9 E W’*‘(Q), A9 E L’(Q); we have that, if a,(u) # 0 then IVf2)(11) < +UJ and for 
every u in H:(Q) II K, a! in a,(u) there exists p in L2(52) such that CY = -Au + /3 and 

g(x, u(x)) 5 B(x) 5 Bk u(x)) for a.e. x in Q\C(u), 

P(x) 5 E(X, u(x)) for a.e. x in C(U); 

furthermore, if A,(u) denotes the minimal section of a,(u), then: 

A,(u) = 

(-Au + g(., u)) v 0 + (-AU + g(., u)) A 0 a.e. in Q\C(u), 

(-Au + g(., u)) ~0 a.e. in C(u). 

Proof. The proofs of (a), (b) and (c) are quite similar to the corresponding in proposition 2.8. 
We prove (d). If a,(u) # 0, then, by (c), IVf21(u) < +w and by proposition 3.2 we get 
IVfi\(u) < CCO, namely Au E L2(sZ). Let (Y E a,(u), we claim that: 

V w E H,‘(Q) with w L 0 a.e. in C(U). 

Let t > 0 and w E H,‘(Q) such that w L 0 a.e. in C(U). We set: 

u, = u + tw, w, = u, v 90, 

then w, E Hi(Q) n K. Moreover I(w, - u)/tl 5 Iw( a.e., because 

wtc-4 - u(x) = 
t I 

w(x) if u,(x) 2 9(x), 

9(x) - u(x) 
t 

E tw(x), 01 if u,(x) < 9(x). 

Moreover (w, - u)/t --t w a.e. in Sz, since w 2 0 in C(U). From the relation 

1 
cY(w, - 24) dx 5 7 Au(w, - U) dx + 

1 
g(x, U)(W, - u)+ dx - g(x, U)(WI -- u)- dx 

D n sr- > 

going to the limit as t --, O+, we get (3. l), by means of Lebesgue’s theorem. This inequality can 
be extended to all w in L’(Q) such that w 2 0 in C(U); so it follows: 

awdxr- 
i 

Auwdx + g(x, u)w dx v w E P(n\C(u)), w L 0, 
R\ C(U) Q\C(u) n\ C(U) 

n 

! crwdx4 - Auwdx + Hx, u)w dx v w E P(sz), w 1 0, 
n 0 

which gives the conclusion. 
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PROPOSITION 3.6. Suppose that (g.l), (g.2) and (g.3) hold. Then a, is a subdifferential along 
curves for fz . 

The proof goes in the same way as the corresponding proof of proposition 2.9. 

Arguing as in the proof of theorem 2.13, we can prove the following theorem. Note that, 
even if we did not assume that p E W1~2(sZ), A9 E L2(sZ), an existence theorem would still hold, 
in terms of variational inequalities; this can be easily seen looking at the proofs and at the defi- 
nition of a, (the regularity of v, is used only for the “regularization result” stated in 
proposition 3.5 (d). 

THEOREM 3.7. Assume that g: &2 x R -+ R is a measurable function satisfying (g.l), (g.2) and 
(g.3), v, E w’,2(n) with Ay, E L’(Q). 

Then for every u0 in H&a) r) K there exist T > 0 and U: [0, T[ -+ L2(!2), an absolutely con- 
tinuous curve, such that U(0) = uO, U(t) E Hi(Cl) fl K for every t in [0, T[ and for almost all 
t in [0, T[ [we recall that E was introduced in (g.3)]: 

A%(t) E L’(Q); 

Au(t) - g(.> u(t)) a.e. in (x E 52 ( %(t)(x) > p(x), ‘IL(t)(x) $ El, 

U’(t) = [AU(t) - g(*, Q(t))] V 0 a.e. in (x E Q ( U(t)(x) = q(x), U(t)(x) $ Ej, 

0 a.e. in (x E Q 1 U(t)(x) E E); 

A%(t) = 0 E 
I&d* 3 ‘U(t)), EC* 9 wt))I a.e. in (x E Q 1 Q(t)(x) > p(x), %(t)(x) E E), 

1 -a, EC* * ‘U(t))1 a.e. in (x E &2 1 U(t)(x) = q(x), Q(t)(x) E E); 

moreover the function: 

t ++ m(t) = + 
.i 

jDU(t)(2 dx + 
i 

G(x, U(t)) dx 
cl D 

is continuous, nonincreasing and m’(t) = l/%‘(t)/~ a.e. in IO, T[. 

4. THE PROBLEM WITH A NONCONVEX CONSTRAINT 

Let 0, g, p, K be as in the previous sections and let p > 0. We set: 

If u0 E K II S,, we consider the following assumption: 

1 (N.T.u,) 

meas((x E a I p(x) < uo(x) < O] U (x E a IO < uo(x)]) > 0. 

In [7, (3.12)] the following result is proved. 
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PROPOSITION 4.1. Let uO E K fl S,, then (N.T.u,) holds if and only if K and S, are not tangent 
at uO. 

Definition 4.2. If (g.1) holds, we definef,: L2(sZ) + R U (+m) byf, = Jr + IKosP = f2 + IS,. 

The following proposition is straightforward. 

PROPOSITION 4.3. We have: 
(a) ZO(,(fj) = Hi(Q) n K n So; 
(b) for every u E H;(Q) rl K II Spf3 is coercive at U; 
(c) f3 is lower semicontinuous. 

PROPOSITION 4.4. Assume that (g.1) holds and let uO E H,‘(Q) n K n S, satisfy (N.T.u,). Then 
there exist R, C,, C, > 0 such that: 

lVhI(4 5 IVfil(u) 5 C, + C,IVf3l(4 v u E B2(u0, R) withf,(u) 5 f3(u0). 

In particular, for every u in B2(4, R) IVfil(u) < +a, 9 /Vf3\(u) < +co. 

Proof. As in the proof of proposition 3.2 we construct a map rr’: B,(u,, R) tl 
(f2(u) 5 f2(u0)) --f H,‘(Q) fl K fl S, such that for all u in B2(u0, R) with f2(u) 5 f2(u0): 

llc4 - ulI2 5 C,llu - 42, 

fi(Q 2 fiW(U)) - Gll~ - 42, 

V u E B2 tug, RI with f2 (u) I f2 Cud, 

for suitable R, C, , C,. This can be done observing that f2 = & + 6, where JO = f,, + ZK is a 
convex lower semicontinuous function and 6 satisfies the inequality (1.2): then we can define 
n’ as the function v of theorem (1.20), with h4 = S,. It is trivial to see that the required 
inequalities are verified, so the proof is over. 

Definition 4.5. Under the assumptions (g.1) and (g.2), we define the multivalued map 
a,: H,‘(Q) n K n s, -+ 2L2(R) by: 

Q.,(u) = a,(u) + {Au 11 E RJ. 

Notice that (Au 1 A E Rl is the set of normal vectors to S, at U. 

PROPOSITION 4.6. If (g.l), (g.2) hold and u,, in Hd((sz) (7 K fl S,, satisfies (N.T,u,), then there 
exists R > 0 such that: 

(a) @(f3)(u) C a,(u) for all u in B2(zq,, R) with f3(u) 5 f3(u0); 
(b) if, in addition, (o E Wif2(Q), Ay, E t2(Q), then a,(u) # 0 = Au E t2(sZ) and, if a,(u) 

has a minimal section cy, then there exist J, E R and fl in L2(a) such that Q! = -Au + /3 + Au 
and: 

g(x, 0)) 5 P(x) 5 g(x9 u(x)) for a.e. x in Q\C(u), 

P(x) 5 2(x, u(x)) for a.e. x in C(u); 

(one could prove that a,(u) actually has a minimal section for all U, but this is not really 
necessary, since it turns out to be true at least almost everywhere on a curve of maximal relaxed 
slope for fj, as was proved in theorem 1.17; 

(c) if, in addition, (g.3) holds, then Q, is a subdifferential along curves for f3. 
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Proof. Parts (a) and (c) follow from theorem 1.20. (b) follows from the definition of (X3 and 
the characterization of the minimal section of &. 

We can finally state the following theorem. 

THEOREM 4.7. Assume that g: Q x R --t R is a measurable function satisfying (g.l), (g.2) and 
(g.3), v, E Wls2(Q) with Av, E L2(Q). 

Then for every q, in Hi(Q) fl K fl S, such that (N.T.u,J holds at q, there exist T > 0, 
U: [0, T[ + L2(CJ), an absolutely continuous curve and A: [0, T[ --* R such that cU(0) = uO, 
V(t) E H,‘(Q) fl K fl S, for every tin [0, T[ and for almost all t in [0, T[ [E was introduced in 

k-3)1: 

‘Ill(t) 

AU(t) E L2(sZ); 

A%(t) - g(*, WI) + Nt)W) 

a.e. in (x E Q ( V(t)(x) > q(x), Q(t)(x) $ El, 

[Au(t) - g(. , W)) + Nt)‘W)l v 0 

a.e. in (X E M 1 %(t)(x) = v(x), %(t)(x) c# El, 

a.e. in (x E Sz 1 %(t)(x) E El, 

[g(* 3 QU(t)) + NtP(t)> i3* 3 Q(t)) + WMOI 

a.e. in (x E Q ) U(t)(x) > p(x), Q(t)(x) E Ej, 
A%(t) = u t 

1 - 00, Et.9 Q(t)) + Nt)W)l 

a.e. in {x E Q 1 %(t)(x) = p(x), ‘U(t)(x) E El; 
moreover the function: 

, 

t -m(t) = + 
1 

(DU(t)(2 dx + 
! 

G(x, U(t)) dx 
a D 

is continuous, nonincreasing and m’(t) = l]%‘(t)/; a.e. in IO, T[. 

Proof. From proposition 4.4 and from the fact that f2 is dV-continuous, we deduce that f3 
is dV-continuous, so there exists U, a curve of maximal relaxed slope for f3 such that 
U(0) = u0 , f3 0 U is continuous. The remainder of the proof consists in applying theorem 1.20, 
using proposition 4.6. 
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APPENDIX 

We want to prove lemma 2.10. We can prove it in a more general form. 

LEMMA A. 1. Let I be an interval, ‘11 E L’(I, l;‘(Q)), U be absolutely continuous and U’ E L’(I, L’(Q). Suppose that N 

is a negligible subset of R. 

Then for a.e. c in I: 

meas((x E n ( %(t)(x) E N, %‘(C)(x) # 0)) = 0. 

For the proof we need some preliminary results. 

LEMMA A.2. Let u E L:,,(Q) and suppose that the ith distributional derivative of u, denoted by au/axi, is an element 

of L:,,(O). Then there exists a function ic, which is almost everywhere equal to u, such that, for a.e. (n - I)-tuple 

(x,, . . . . x,_, , xi+, , . . . . x,,). the function r - ii . . . . x,_, , C,X,+~, . . . . x,) is absolutely continuous and 

[ 

aiqx 1, . . . . xi_, 9 r, x. 1 ,+ , . . . . X”) ato,, . . ..~._],T,x,+~,...,x,) = 
axi I I ax, I for a.e. < 

where [&Yax,] denotes the classical pointwise derivative. 

Proof The proof is given in [18, (5.6.3)]. 
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LEMMA A.3. If 4 Z 1, ‘u E L4(Z, L’(a)), then there exists % E Lq(Z x Q) such that, for a.e. t in I: 

Qt, X) = U(i)(X) a.e. in 0. 

Proof. See [18, (2.20.9)]. 

LEMMA A.4. Let h: R + R be an absolutely continuous function and N be a negligible subset of R. Then: 

meas(]t E R 1 h(t) E N, h’(t) exists and h’(r) # 01) = 0. 

Proof. See 116, (4.14)]. 

Proof of lemma A.l. By lemma A.3 we can find % and 6 in L’(Z x Q) such that, for a.e. t in I: 

Q(t,x) = V)(x), 0 = u’(r)(x) a.e. in s2. 

We claim that 3 is the distributional t-derivative of %. To see this, take @ in C,“(Z x Q); applying Fubini’s theorem we 

get: 

%(I, x) $ @(t, x) du dr = 

= 
i (‘ll(t), v’(t)) dt = - (X’(t), y(t)) dt 
<1 I I .I - a 

=- dt I I O(f, x)@(t, X) d.x = - 
i 

O(r, x)@(r, x) du dt, 
%I ,e I rxn 

where we denote by 9 the map er E C,“(Z, L’(a)) defined by &t)(x) = @(t, x). 

Now let F = I(t, x) E Z x Q 1 %(t, X) E N, %‘(t, x) # 0). To prove lemma A.1 it suffices to prove that Fis measurable 
and that its measure is zero. For this we take a Bore1 set N, such that NC N, and N, is still negligible and we set: 

F, = ((t, x) E Z x .Q 1 ‘%(t, x) E N, , ?‘(t, x) # 0). Clearly F, is measurable and contains F. By Fubini’s theorem: 

meas = 
i 

meas,(]Z B 1) ‘%(t, x) E N, , Q(r, x) # 01) dx. 
.R 

By lemma A.2, we can suppose that, for a.e. x in Q, the function t - %i(t, x) is absolutely continuous and its pointwise 

derivative is equal to q(f, x) for a.e. f in I. By lemma A.4 we get: 

meas,((r E I) %(t, x) E N,, Q(r, x) # 0)) = 0 a.e. in R. 

So meas = 0 q meas = 0, and the lemma is proved. 

Remark A.5. Finally we wish to point out a finite dimensional result which follows easily by the previous arguments. 

Let n C RN be open and G: R -+ R be Lipschitz continuous. It is not difficult to see that, if G has almost everywhere 

continuous partial derivatives [compare with (g.3)], then @(G) is a subdifferential along curves for G (see definitions 

1.14 and 1.16). Then, using the results of Section 1, it can be proved that the problem 

i 

-‘It’ E B(G)(%) 

U(0) = U0 

has a solution. This seems interesting to us, since, in general, the map C?(G) does not have convex values. 


