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Abstract. In this paper, we establish some existence results for bound-
ary and periodic value problems for systems of nonlinear differential
equations with right-hand side satisfying a Berntein-Nagumo growth
condition. Hartman’s condition (|f | ≤ 2k(⟨x, f⟩ + |x′|2) + K) is not
assumed. This assumption is replaced by one which is automatically
satisfied in the scalar case.

1. Introduction

In this paper, we consider the boundary and periodic value problem for systems
of nonlinear differential equations

(⋆)

{
x′′(t) = f(t, x(t), x′(t)) a.e. t ∈ [0, 1]

x ∈ BC

where f : [0, 1] × R2n → Rn is a Carathéodory function and BC denotes a boun-
dary condition such as non-homogeneous Dirichlet, Neumann, Sturm-Liouville con-
ditions, or the periodic condition that we write

(SL)

{
A0x(0)− β0x

′(0) = r0,

A1x(1) + β1x
′(1) = r1;

(P )

{
x(0) = x(1),

x′(0) = x′(1);

where Ai is a n× n matrix (possibly nonsymmetric) for which there exists αi ≥ 0
such that ⟨x,Aix⟩ ≥ αi∥x∥2 for all x in Rn; βi = 0, 1; αi + βi > 0; i = 0, 1.

The literature on this problem is voluminous, and we refer to [1,2,4–6,9–14] and
the references therein. Among those results, let us mention the following well known
result of Hartman [11], and a result in the scalar case (n = 1).
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Theorem 1.1. Let f : [0, 1]× R2n → Rn be a continuous function. Assume

(1.1) there exists a constant M > 0 such that ⟨x, f(t, x, p)⟩ + ∥p∥2 ≥ 0 for
∥x∥ =M and ⟨x, p⟩ = 0;

(1.2) there exist k, K ≥ 0 such that ∥f(t, x, p)∥ ≤ 2k(⟨x, f(t, x, p)⟩+ ∥p∥2) +K
for ∥x∥ ≤M ;

(1.3) there exists a continuous function ψ : [0,∞) → (0,∞) such that
∥f(t, x, p)∥ ≤ ψ(∥p∥) for ∥x∥ ≤M , and

∫∞
s ds/ψ(s) = ∞.

Let ∥r0∥, ∥r1∥ ≤M , then the problem

x′′(t) = f(t, x(t), x′(t)) a.e. t ∈ [0, 1]

x(0) = r0, x(1) = r1
(1.4)

has a solution.

Theorem 1.2. Let f : [0, 1]× R2 → R be a continuous function. Assume

(1.5) there exist α ≤ β ∈ C2([0, 1],R) respectively lower and upper solutions
of (⋆);

(1.6) there exists a continuous function ψ : [0,∞) → (0,∞) such that
|f(t, x, p)| ≤ ψ(|p|) for α(t) ≤ x ≤ β(t), and

∫∞
s ds/ψ(s) = ∞.

Then the problem (⋆) has a solution.

Observe that in the scalar case, if (1.1) and (1.3) are satisfied and |r0|, |r1| ≤M ,
Theorem 1.2 gives the existence of a solution to (1.4) while Theorem 1.1 could not
be applied since conditon (1.2) is not necessarily satisfied.

Also, Theorem 1.1 does not give the existence of a solution to very simple prob-
lems such as

x′′(t) = ∥x′(t)∥x′(t)− c

x(0) = x(1) = (0, · · · , 0)
(1.7)

where c ∈ Rn with ∥c∥ = 1.
In this paper, we give theorems of existence of solution to (⋆) containing, as

a particular case, Theorem 1.2 (see Theorem 4.1), and which could be applied to
problems such as (1.7). Our existence results are obtained under an assumption of
existence of solution-tube. This notion generalizes in a natural way conditions (1.1)
and (1.5) and is slightly more general than the notion of Nagumo pair (see [6,9]).
Also, condition (1.2) is not assumed. This condition is replaced by one ((H3) or
(H5)) which is automatically satisfied in the scalar case. Let us mention that our
condition (H3) generalizes a condition of Gaprindashvili [9, condition (1.4)] while
his Nagumo growth condition is weaker than ours.

This paper is divided in five sections. Section 2 contains notations, definitions
and results which will be used throughout this paper. In section 3, theorems of
existence are established under a Bernstein-type growth condition, while in section
4, results are obtained under a Nagumo-type growth condition. In section 5, very
simple examples of the previous results are given. Proofs are obtained via the
theory of topological transversality for continuous, compact operators in §3, and
for upper semi-continuous, compact, multivalued operators in §4.

2. Preliminaries

In this section, we establish notations, definitions, and results which are used
throughout this paper. We denote ⟨ , ⟩ the scalar product, and ∥ · ∥ the Euclidian
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norm in Rn. The Banach space of k-times continuously differentiable functions x
is denoted by Ck([0, 1],Rn) with the norm: ∥x∥k = max{∥x∥0, ∥x′∥0, . . . , ∥x(k)∥0},
where ∥x∥0 = max{∥x(t)∥ : t ∈ [0, 1]}. The Sobolev space of functions in C1([0, 1],Rn)
with the derivative being absolutely continuous is denoted by W 2,1([0, 1],Rn). We
define C0([0, 1],Rn) = {x ∈ C([0, 1],Rn) : x(0) = 0}, and Ck

B([0, 1],Rn), (resp.

W 2,1
B ([0, 1],Rn)) the set of functions x ∈ Ck([0, 1],Rn) (resp. W 2,1([0, 1],Rn)) sat-

isfying the boundary condition x ∈ BC. Let L1([0, 1],Rn) denote the space of
integrable functions, with the usual norm ∥ · ∥L1 .

We say that a function f : [0, 1]×R2n → Rn (resp. G : [0, 1]×R2n → 2R
n

a mul-
tivalued function with non-empty, closed, convex values) is a Carathéodory function
if, (i) for every (x, p) in R2n, the function t 7→ f(t, x, p) (resp. t 7→ G(t, x, p)) is
measurable; (ii) the function (x, p) 7→ f(t, x, p) (resp. (x, p) 7→ G(t, x, p)) is con-
tinuous (resp. upper semi-continuous) for almost every t in [0, 1]; (iii) for every
k > 0, there exists a function hk in L1([0, 1], [0,∞)) such that ∥f(t, x, p)∥ ≤ hk(t)
(resp. ∥G(t, x, p)∥ ≤ hk(t) i.e. ∥v∥ ≤ hk(t) for all v ∈ G(t, x, p)) a.e. t ∈ [0, 1],
and for all ∥x∥ ≤ k and ∥p∥ ≤ k. Observe that if G(t, x, p) = {f(t, x, p)} then G
is Carathéodory if and only if f is Carathéodory. A function F : C1([0, 1],Rn) →
L1([0, 1],Rn) (resp. G : C1([0, 1],Rn) → 2L

1([0,1],Rn)) is said integrably bounded
on bounded if for every bounded set B ⊂ C1([0, 1],Rn), there exists an integrable
function hB in L1([0, 1], [0,∞)) such that for every x ∈ B, ∥F (x)(t)∥ ≤ hB(t)
a.e. t ∈ [0, 1] (resp. ∥u(t)∥ ≤ hB(t) a.e. t ∈ [0, 1] and for all u ∈ G(x)). We
associate to F (resp. G) an operator NF : C1([0, 1],Rn) → C0([0, 1],Rn) (resp.
NG : C1([0, 1],Rn) → 2C0([0,1],Rn)) defined by

NF (x)(t) =

∫ t

0

F (x)(s)ds

(resp. NG(x) = {w(t) =
∫ t

0

u(s)ds : u ∈ G(x) } ).

We recall the following result (see for example [7,10]).

Lemma 2.1.

(i) Let G : [0, 1] × R2n → 2R
n

be a Carathéodory multivalued function with
non-empty, closed, convex values then the operator G : C1([0, 1],Rn) →
2L

1([0,1],Rn) defined by G(x) = {u : u(t) ∈ G(t, x(t), x′(t)) a.e. t ∈ [0, 1]}
is upper semi-continuous, integrably bounded on bounded, with non-empty,
closed, convex values.

(ii) Let F : C1([0, 1],Rn) → 2L
1([0,1],Rn) be an upper semi-continuous multi-

valued function, integrably bounded on bounded, with non-empty, closed,
convex values, then the associated operator NF is upper semi-continuous
and completely continuous, with non-empty, compact, convex values.

Let us give some notions of the theory of topological transversality; for more
details and generality, see [3].

Let U be a bounded open set in C1
B([0, 1],Rn). By K∂U (U, 2

C1
B([0,1],Rn)), we

denote the set of upper semi-continuous and compact operators with non-empty,

compact, convex values T : U → 2C
1
B([0,1],Rn) fixed point free on ∂U . We say

that T ∈ K∂U (U, 2
C1

B([0,1],Rn)) is essential if for every R ∈ K∂U (U, 2
C1

B([0,1],Rn))
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such that T
∣∣
∂U

= R
∣∣
∂U

, R has a fixed point. Let T , R ∈ K∂U (U, 2
C1

B([0,1],Rn)),

T is homotopic to R (T ≈ R) if there exists H : [0, 1] × U → 2C
1
B([0,1],Rn) upper

semi-continuous and compact with non-empty, compact, convex values such that

H(λ, ·) ∈ K∂U (U, 2
C1

B([0,1],Rn)) for every λ ∈ [0, 1]; T = H(1, ·) and R = H(0, ·).
We have similar definitions for K∂U (U,C

1
B([0, 1],Rn)), the set of continuous, com-

pact operators fixed point free on ∂U .

Theorem 2.2. (Topological Transversality). Let T and R be homotopic operators

in K∂U (U,C
1
B([0, 1],Rn) (resp. K∂U (U, 2

C1
B([0,1],Rn))), then T is essential if and

only if R is essential.

Let us consider the problem (⋆) where BC denotes (P ) or (SL). A solution to

(⋆) is a function x ∈W 2,1
B ([0, 1],Rn) satisfying (⋆).

Now, we give the definition of solution-tube to the problem (⋆) which was intro-
duced in [6] and which is slightly more general than the definition of Nagumo pair
given by Gaprindashvili [9]. This notion will play an essential role in our existence
results.

Definition 2.3. A solution-tube to the problem (⋆) is a couple (v,M) where M is
a non-negative function in W 2,1([0, 1],R), and v ∈W 2,1([0, 1],Rn) such that

(i) ⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2 ≥M(t)M ′′(t) + (M ′(t))2

a.e. t ∈ [0, 1] and for all (x, p) ∈ R2n such that ∥x− v(t)∥ =M(t), and
⟨x− v(t), p − v′(t)⟩ =M(t)M ′(t);
and v′′(t) = f(t, v(t), v′(t)) a.e. on {t ∈ [0, 1] :M(t) = 0};

(ii) if BC denotes (SL), ∥r0 − (A0v(0)− β0v
′(0))∥ ≤ α0M(0)− β0M

′(0),
∥r1 − (A1v(1) + β1v

′(1))∥ ≤ α1M(1) + β1M
′(1);

and if BC denotes (P ), v(0) = v(1), ∥v′(1) − v′(0)∥ ≤ M ′(1) −M ′(0),
and M(0) =M(1).

Observe that it is assumed in Theorem 1.1 that (0,M) is a solution-tube to
(1.4). In fact, many results were obtained under an assumption of existence of a
solution-tube of the form (0,M) with M being a positive constant, see for example
[1,4,11,14].

Remark also that in the scalar case, the notion of upper and lower solutions is
equivalent to the notion of solution-tube.

For sake of completeness, we state the following results which will be used later
in this paper.

Lemma 2.4. Let u : [0, 1] → Rn be an absolutely continuous function and let E be
a negligeable set in Rn, then meas{t ∈ [0, 1] : u(t) ∈ E and u′(t) ̸= 0} = 0.

Lemma 2.5. Let u ∈ W 2,1([0, 1],R) and ε ≥ 0. Assume one of the following
properties is satisfied:

(i) u′′(t)−εu(t) ≥ 0 a.e. t ∈ [0, 1]; a0u(0)−b0u′(0) ≤ 0, a1u(1)+b1u
′(1) ≤ 0,

where ai, bi ≥ 0, max{ai, bi} > 0, max{a0, a1, ε} > 0;
(ii) u′′(t)− εu(t) ≥ 0 a.e. t ∈ [0, 1]; ε > 0, u(0) = u(1), u′(1)− u′(0) ≤ 0;
(iii) u′′(t)−εu(t) ≥ 0 a.e. t ∈ [0, t1]∪[t2, 1]; ε > 0, u(0) = u(1), u′(1)−u′(0) ≤

0, and u(t) ≤ 0 for t ∈ [t1, t2].

Then u(t) ≤ 0 for all t ∈ [0, 1].
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3. Bernstein-type growth condition

The following theorem gives the existence of solution when the function f satisfies
a Bernstein-type growth condition.

Theorem 3.1. Let f : [0, 1]× R2n → Rn be a Carathéodory function. Assume

(H1) there exists (v,M) a solution-tube to (⋆);
(H2) there exist C,D > 0 and a function h ∈ L1([0, 1]) such that

|⟨p, f(t, x, p)⟩| ≤ (C∥p∥2+D)(h(t)+∥p∥) a.e. t ∈ [0, 1] and for all (x, p) ∈
R2n with ∥x− v(t)∥ ≤M(t);

(H3) there exist k, θ, γ > 0, m ≥ 0, h1, h2 ∈ L1([0, 1]) such that for a.e. t ∈ [0, 1]
and for all (x, p) ∈ R2n with ∥x− v(t)∥ ≤M(t) and ∥p∥ ≥ k,

(i)
⟨x, f(t, x, p)⟩+ ∥p∥2

∥p∥
− ⟨p, f(t, x, p)⟩⟨x, p⟩

∥p∥3
≥ θ∥p∥ −m|⟨x, p⟩| − h1(t);

(ii) ∥x∥
(
⟨x, f(t, x, p)⟩+ ∥p∥2

∥p∥
− ⟨p, f(t, x, p)⟩⟨x, p⟩

∥p∥3

)
+

⟨x, p⟩2

∥x∥ ∥p∥
≥ γ|⟨x, p⟩| − h2(t).

Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤M(t) for all t ∈ [0, 1].

To prove this theorem, we need the following three lemmas.
Fix ε ≥ 0 such that the operator Lε : C

1
B([0, 1],Rn) → C0([0, 1],Rn) defined by

Lε(x)(t) = x′(t)− x′(0)− ε

∫ t

0

x(s)ds.

is invertible. In particular, if BC denotes (SL) with max{α0, α1} > 0, we can take
ε = 0 (see [8]).

Lemma 3.2. Let (v,M) be a solution-tube to (⋆). If x ∈W 2,1
B ([0, 1],Rn) satisfies

⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3

− ε∥x(t)− v(t)∥ ≥M ′′(t)− εM(t)

a.e. on {t ∈ [0, 1] : ∥x(t) − v(t)∥ > M(t)}. Then ∥x(t) − v(t)∥ ≤ M(t) for every
t ∈ [0, 1].

Proof. Let Eδ = {t ∈ [0, 1] : ∥x(t) − v(t)∥ > M(t) + δ} with δ > 0. If, Eδ ̸= ∅
for some δ > 0, then, for every interval (t0, t1) ⊂ Eδ such that ∥x(t0) − v(t0)∥ =
M(t0) + δ or t0 = 0, and ∥x(t1) − v(t1)∥ = M(t1) + δ or t1 = 1, the function
∥x(t)− v(t)∥ belongs to the space W 2,1([t0, t1],R) and we have

∥x(t)− v(t)∥′ = ⟨x(t)− v(t), x′(t)− v′(t)⟩
∥x(t)− v(t)∥

which exists for all t ∈ [t0, t1], and

∥x(t)− v(t)∥′′ = ⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥

− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
5



a.e. t ∈ [t0, t1].
Denote w(t) = ∥x(t)−v(t)∥−(M(t)+δ). By assumption, we have a.e. on [t0, t1],

w′′(t)− εw(t) = ∥x(t)− v(t)∥′′ − ε∥x(t)− v(t)∥ −M ′′(t) + ε(M(t) + δ)

≥ 0.

In order to apply the maximum principle (Lemma 2.5), we need to verify some
boundary conditions. If BC denotes (SL) then, either

w(t0) ≤ 0, or t0 = 0 and α0w(0)− β0w
′(0) ≤ 0.

Indeed,

∥x(0)− v(0)∥ (α0∥x(0)− v(0)∥ − β0∥x(0)− v(0)∥′)
≤ ⟨x(0)− v(0), A0(x(0)− v(0))− β0(x

′(0)− v′(0))⟩
≤ ∥x(0)− v(0)∥ ∥r0 − (A0v(0)− β0v

′(0))∥
≤ ∥x(0)− v(0)∥(α0M(0)− β0M

′(0))

≤ ∥x(0)− v(0)∥(α0(M(0) + δ)− β0(M + δ)′(0)).

Similarly, either

w(t1) ≤ 0, or t1 = 1 and α1w(1) + β1w
′(1) ≤ 0.

On the other hand, when BC denotes the periodic boundary condition (P ), if
w(t0) ≤ 0 and w(t1) ≤ 0, we argue as in the previous case. Otherwise, [t0, t1] =
[0, 1], or (t0, t1) ⊂ (0, t2) ∪ (t3, 1) ⊂ Eδ and w(t2) = w(t3) = 0, and we have

∥x(0)− v(0)∥ = ∥x(1)− v(1)∥, M(0) =M(1), and w′(1)− w′(0) ≤ 0.

Indeed,

∥x(1)− v(1)∥′ − ∥x(0)− v(0)∥′ = ⟨x(0)− v(0), v′(0)− v′(1)⟩
∥x(0)− v(0)∥
≤ ∥v′(1)− v′(0)∥ ≤M ′(1)−M ′(0).

By Lemma 2.5 applied to w, we deduce that ∥x(t) − v(t)∥ ≤ M(t) + δ. But this
inequality holds for every δ > 0; therefore, ∥x(t) − v(t)∥ ≤ M(t) for all t ∈ [0, 1].
This completes the proof. �
Lemma 3.3. Let u ∈ W 2,1([0, 1],Rn), l1, l2 ∈ L1([0, 1]), θ1, γ1, k1 > 0, m1 ≥ 0. If
x ∈W 2,1([0, 1],Rn) satisfies a.e. on {t ∈ [0, 1] : ∥x′(t)− u′(t)∥ ≥ k1},

(i)
⟨x(t)− u(t), x′′(t)− u′′(t)⟩+ ∥x′(t)− u′(t)∥2

∥x′(t)− u′(t)∥

−⟨x′(t)− u′(t), x′′(t)− u′′(t)⟩⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥3

≥ θ1∥x′(t)− u′(t)∥ −m1|⟨x(t)− u(t), x′(t)− u′(t)⟩| − l1(t);

(ii) ∥x(t)− u(t)∥
(
⟨x(t)− u(t), x′′(t)− u′′(t)⟩+ ∥x′(t)− u′(t)∥2

∥x′(t)− u′(t)∥

)
−∥x(t)−u(t)∥

(
⟨x′(t)− u′(t), x′′(t)− u′′(t)⟩⟨x(t)− u(t), x′(t)− u′(t)⟩

∥x′(t)− u′(t)∥3

)
+

⟨x(t)− u(t), x′(t)− u′(t)⟩2

∥x(t)− u(t)∥ ∥x′(t)− u′(t)∥
≥ γ1|⟨x(t)− u(t), x′(t)− u′(t)⟩| − l2(t).
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Then there exists K1(∥x − u∥0) such that for any interval [a, b] on which ∥x′(t) −
u′(t)∥ ≥ k1 we have ∥x′−u′∥L1[a,b] ≤ K1(∥x−u∥0). Moreover, there exists t ∈ [0, 1]
such that ∥x′(t)− u′(t)∥ ≤ max{k1,K1(∥x− u∥0)}.

Proof. Assume ∥x′(t)− u′(t)∥ ≥ k1 on [a, b]. Then, by (ii),∫ b

a

|⟨x(t)− u(t), x′(t)− u′(t)⟩| dt

≤ 1

γ1

∫ b

a

l2(t) +
d

dt

∥x(t)− u(t)∥ ⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥

dt

≤ 1

γ1

(
∥l2∥L1[0,1] + 2(∥x− u∥0)2

)
= K2(∥x− u∥0).

Now, (i) gives∫ b

a

∥x′(t)− u′(t)∥ dt

≤ 1

θ1

∫ b

a

l1(t) +m1|⟨x(t)− u(t), x′(t)− u′(t)⟩|+ d

dt

⟨x(t)− u(t), x′(t)− u′(t)⟩
∥x′(t)− u′(t)∥

dt

≤ 1

θ1

(
∥l1∥L1[0,1] +m1K2(∥x− u∥0) + 2∥x− u∥0

)
= K1(∥x− u∥0).

Moreover, there exists t ∈ [0, 1] such that ∥x′(t)− u′(t)∥ ≤ max{k1,K1(∥x− u∥0)}
since, either ∥x′(t)−u′(t)∥ ≤ k1 for some t ∈ [0, 1], or ∥x′−u′∥L1[0,1] ≤ K1(∥x−u∥0).
�
Lemma 3.4. Let k0,K0 ≥ 0, l ∈ L1([0, 1]) and ψ : [0,∞) → (0,∞) be a Borel
measurable function such that∫ ∞

k0

sds

ψ(s)
> ∥l∥L1 +K0.

If x ∈W 2,1([0, 1],Rn) satisfies

(i) there exists t ∈ [0, 1] such that ∥x′(t)∥ ≤ k0;
(ii) ∥x′∥L1[a,b] ≤ K0 if ∥x′(t)∥ ≥ k0 on [a, b];
(iii) |⟨x′(t), x′′(t)⟩| ≤ ψ(∥x′(t)∥)(l(t) + ∥x′(t)∥) a.e. on {t : ∥x′(t)∥ ≥ k0}.

Then there exists K = K(ψ, l, k0,K0) such that ∥x′∥0 < K.

Proof. Fix K > k0 such that∫ K

k0

sds

ψ(s)
> ∥l∥L1 +K0. (3.1)

We claim that ∥x′(t)∥ < K for all t ∈ [0, 1]. If not, there exist a, b ∈ [0, 1] such
that ∥x′(a)∥ = k0, ∥x′(b)∥ = K, and k0 < ∥x′(t)∥ ≤ K for all t between a and b.
Without loss of generality, assume that a < b, then

∥x′(t)∥′ = ⟨x′(t), x′′(t)⟩
∥x′(t)∥
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exists for all t ∈ (a, b]. Thus,

∥x′(t)∥ ∥x′(t)∥′ ≤ ψ(∥x′(t)∥)(l(t) + ∥x′(t)∥)

a.e. t ∈ (a, b). Dividing by ψ(∥x′(t)∥), integrating from a to b, we obtain∫ b

a

∥x′(t)∥ ∥x′(t)∥′

ψ(∥x′(t)∥)
dt ≤ ∥l∥L1 +K0.

By the inequality (3.1) and the change of variables formula (see [7]), we get a
contradiction. �

To prove Theorem 3.1, we will modify the function f . To this modified function,
we will associate a problem for which we will deduce the existence of a solution.
Finally, we will observe that this solution is in fact a solution to our original prob-
lem (⋆).

Let λ ∈ [0, 1] and ε ≥ 0 be as before. We define the function fελ : [0, 1]×R2n → Rn

by

fελ(t, x, p)

=



λ
(

M(t)
∥x−v(t)∥f(t, x̃, p̂)− εx̃

)
− ε(1− λ)v(t)+(

1− λM(t)
∥x−v(t)∥

)(
v′′(t) + M ′′(t)

∥x−v(t)∥ (x− v(t))
)
, if ∥x− v(t)∥ > M(t),

λ (f(t, x, p)− εx)− ε(1− λ)v(t)+

(1− λ)
(
v′′(t) + M ′′(t)

M(t) (x− v(t))
)
, otherwise;

where (v,M) is the solution-tube to (⋆) given in (H1), x̃ = M(t)
∥x−v(t)∥ (x−v(t))+v(t),

p̂ = p+
(
M ′(t)− ⟨x−v(t),p−v′(t)⟩

∥x−v(t)∥

)(
x−v(t)

∥x−v(t)∥

)
, and where we mean M ′′(t)

M(t) (x−v(t)) =
0 on {t ∈ [0, 1] :M(t) = 0}.

To the function fελ, we associate the operator F
ε
λ : C1([0, 1],Rn) → L1([0, 1],Rn)

defined by
F ε
λ(x)(t) = fελ(t, x(t), x

′(t)).

The function fελ is not necessarily a Carathéodory function, but we have the fol-
lowing result.

Proposition 3.5. Let f : [0, 1] × R2n → Rn be a Carathéodory function and
let (v,M) be a solution-tube to (⋆). Then the previously defined operator F ε

λ is
continuous and integrably bounded on bounded.

Proof. Obviously, F ε
λ is integrably bounded on bounded independently of λ ∈ [0, 1].

Therefore, it is sufficient to show that if xn → x in C1([0, 1],Rn), then

fελ(t, xn(t), x
′
n(t)) → fελ(t, x(t), x

′(t)) a.e. t ∈ [0, 1]. (3.2)

The conclusion follows from the Lebesgue Dominated Convergence Theorem.
Since f is a Carathéodory function, it is clear from the definition of fελ that the

relation (3.2) holds almost everywhere on {t ∈ [0, 1] : ∥x(t)−v(t)∥ ̸=M(t)}. On the
other hand, it follows from Lemma 2.4 that ⟨x(t)− v(t), x′(t)− v′(t)⟩ =M(t)M ′(t)
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a.e. on {t ∈ [0, 1] : ∥x(t)− v(t)∥ = M(t) > 0}. Therefore, it is easy to verify that
almost everywhere on that set,

x̂′n(t) → x̂′(t);

hence, the relation (3.2) is satisfied.
Finally, on {t ∈ [0, 1] : ∥x(t) − v(t)∥ = 0 = M(t)}, x(t) = v(t), x′(t) = v′(t),

M ′(t) = 0, M ′′(t) = 0 a.e. So,

fελ(t, x(t), x
′(t)) = λ(f(t, x(t), x′(t))− εx(t)) + (1− λ)(v′′(t)− εv(t))

= λ(f(t, v(t), v′(t))− εx(t)) + (1− λ)(v′′(t)− εv(t))

= λ(v′′(t)− εx(t)) + (1− λ)(v′′(t)− εv(t))

= v′′(t)− λεx(t)− (1− λ)εv(t)

a.e. on that set. This completes the proof. �
Let us consider the associated problems

(⋆)ελ

{
x′′(t)− ε x(t) = fελ(t, x(t), x

′(t)) a.e. t ∈ [0, 1]

x ∈ BC

Now, we can prove Theorem 3.1.

Proof of Theorem 3.1. We will show that the problem (⋆)ε1 has a solution satisfying
∥x(t)−v(t)∥ ≤M(t). By the definition of fε1 , this solution will be a solution to our
original problem (⋆).

Let x be a solution to (⋆)ελ. On {t ∈ [0, 1] : ∥x − v(t)∥ > M(t)}, we have

∥x̃(t)−v(t)∥ =M(t), ⟨x̃(t)−v(t), x̂′(t)−v′(t)⟩ =M(t)M ′(t), and ∥x̂′(t)−v′(t)∥2 =

∥x′(t)− v′(t)∥2 + (M ′(t))2 − ⟨x(t)−v(t),x′(t)−v′(t)⟩2
∥x(t)−v(t)∥2 . Thus, by using (H1), we obtain

⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
− ε∥x(t)− v(t)∥

=
λ(⟨x̃− v(t), f(t, x̃(t), x̂′(t))− v′′(t)⟩+ ∥x̂′(t)− v′(t)∥2)−M ′(t)2

∥x(t)− v(t)∥

+
(1− λ)∥x̂′(t)− v′(t)∥2

∥x(t)− v(t)∥
+

(
1− λM(t)

∥x(t)− v(t)∥

)
M ′′(t)− λεM(t)

≥M ′′(t)− εM(t) +
(1− λ)(∥x̂′(t)− v′(t)∥2 −M ′(t)2)

∥x(t)− v(t)∥
≥M ′′(t)− εM(t)

a.e. on {t ∈ [0, 1] : ∥x − v(t)∥ > M(t)}. It follows from Lemma 3.2 that every
solution to (⋆)ελ satisfies ∥x(t)− v(t)∥ ≤M(t) for all t ∈ [0, 1].

On the other hand, (H3) implies the existence of θ1, γ1 > 0, l1, l2 ∈ L1([0, 1])
such that for every solution x of (⋆)ελ we have a.e. on {t ∈ [0, 1] : ∥x′(t)∥ ≥ k},

⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), x′′(t)⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

≥ θ1∥x′(t)∥ −m|⟨x(t), x′(t)⟩| − l1(t);
9



and

∥x(t)∥
(
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), x′′(t)⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

)
+

⟨x(t), x′(t)⟩2

∥x(t)∥ ∥x′(t)∥
≥ γ1|⟨x(t), x′(t)⟩| − l2(t).

Indeed,

⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), x′′(t)⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

= λ

(
⟨x(t), f(t, x(t), x′(t))⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), f(t, x(t), x′(t))⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

)
+ (1− λ)∥x′(t)∥+ (1− λ)⟨x(t), v′′(t) + (ε+M ′′(t)/M(t))(x(t)− v(t))⟩

∥x′(t)∥

− (1− λ)⟨x′(t), v′′(t) + (ε+M ′′(t)/M(t))(x(t)− v(t))⟩⟨x(t), x′(t)⟩
∥x′(t)∥3

≥ λθ∥x′(t)∥ −m|⟨x(t), x′(t)⟩|+ (1− λ)∥x′(t)∥ − l1(t)

≥ θ1∥x′(t)∥ −m|⟨x(t), x′(t)⟩| − l1(t);

and

∥x(t)∥
(
⟨x(t), x′′(t)⟩+ ∥x′(t)∥2

∥x′(t)∥
− ⟨x′(t), x′′(t)⟩⟨x(t), x′(t)⟩

∥x′(t)∥3

)
+

⟨x(t), x′(t)⟩2

∥x(t)∥ ∥x′(t)∥
≥ (1− λ)∥x(t)∥ ∥x′(t)∥+ λγ|⟨x(t), x′(t)⟩| − l2(t)

≥ γ1|⟨x(t), x′(t)⟩| − l2(t).

Lemma 3.3 applied with u = 0 gives the existence of K1 = K1(∥M∥0+∥v∥0) > 0
such that ∥x′∥L1[a,b] ≤ K1 for any interval [a, b] on which ∥x′(t)∥ ≥ k; and ∥x′(t)∥ ≤
max{k,K1} for some t ∈ [0, 1].

By (H2) and the definition of fελ, there exist C1, D1 > 0 such that

|⟨x′(t), x′′(t)⟩| ≤ (1− λ)∥x′(t)∥ ∥v′′(t) + (ε+M ′′(t)/M(t))(x(t)− v(t))∥
+ λ(C∥x′(t)∥2 +D)(h(t) + ∥x′(t)∥)

≤
(
C1∥x′(t)∥2 +D1

)
(h(t) + ∥x′(t)∥+ ∥εM(t) +M ′′(t)∥+ ∥v′′(t)∥)

a.e. t ∈ [0, 1]. It follows from Lemma 3.4 that there exists K such that ∥x′∥0 < K.
A solution to (⋆)ελ is a fixed point of the operator L−1

ε ◦NF ε
λ
: U → C1

B([0, 1],Rn),

where U = {x ∈ C1
B([0, 1],Rn) : ∥x∥0 < ∥v∥0 + ∥M∥0 + 1, ∥x′∥0 < K }, and Lε

and NF ε
λ
are previously defined. From Lemma 2.1 and Proposition 3.5, we deduce

the continuity and the compactness of this operator. We showed that L−1
ε ◦ NF ε

λ

has no fixed point on ∂U . Also, it is easy to show that L−1
ε ◦NF ε

0
is essential. The

topological transversality Theorem (Theorem 2.2) gives the existence of a fixed
point to L−1

ε ◦ NF ε
1
, and then a solution to (⋆)ε1 satisfying ∥x(t) − v(t)∥ ≤ M(t).

The conclusion follows from the definition of fε1 . �
Remark. The assumption (H2) can we weaken. In fact, we need:
there exist a Borel measurable function ψ : [0,∞) → (0,∞) and a function h ∈
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L1([0, 1]) such that |⟨p, λf(t, x, p)+ (1−λ)(v′′+(ε+(M ′′(t))+/M(t))(x− v(t))⟩| ≤
ψ(∥p∥)(h(t) + ∥p∥) a.e. t and for all λ ∈ [0, 1], p ∈ Rn and x with ∥x− v(t)∥ ≤
M(t);

and

∫ ∞

max{k,K1}

sds

ψ(s)
> ∥h∥L1 +K1,

where K1 is the constant given in the proof of Theorem 3.1.

Gaprindashvili [9] obtained a similar result to the next one for the problem with
Dirichlet boundary condition. Here, assumption (H2) is stronger while (H1) is
weaker than his assumptions.

Corollary 3.6. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
(H1), (H2) and

(H4) there exist k, θ > 0, h1 ∈ L1([0, 1]) such that for a.e. t and for all (x, p)
with ∥x− v(t)∥ ≤M(t) and ∥p∥ ≥ k,

⟨x, f(t, x, p)⟩+ ∥p∥2

∥p∥
− ⟨p, f(t, x, p)⟩⟨x, p⟩

∥p∥3
≥ θ∥p∥ − h1(t).

Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤M(t) for all t ∈ [0, 1].

Remark. In the scalar case, (H4) is satisfied with θ = 1, h1 ≡ 0 and any k > 0.
The following theorem is similar to Theorem 3.1.

Theorem 3.7. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
(H1), (H2) and

(H5) there exist k, θ, γ > 0, m ≥ 0, h1, h2 ∈ L1([0, 1]) such that for a.e. t and
for all (x, p) with ∥x− v(t)∥ ≤M(t) and ∥p− v′(t)∥ ≥ k,

(i)
⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2

∥p− v′(t)∥

−⟨p− v′(t), f(t, x, p)− v′′(t)⟩⟨x− v(t), p− v′(t)⟩
∥p− v′(t)∥3

≥ θ∥p− v′(t)∥ −m|⟨x− v(t), p− v′(t)⟩| − h1(t);

(ii) ∥x− v(t)∥
(
⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2

∥p− v′(t)∥

)
−∥x−v(t)∥

(
⟨p− v′(t), f(t, x, p)− v′′(t)⟩⟨x− v(t), p− v′(t)⟩

∥p− v′(t)∥3

)
+

⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥ ∥p− v′(t)∥
≥ γ|⟨x− v(t), p− v′(t)⟩| − h2(t).

Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤M(t) for all t ∈ [0, 1].

4. Nagumo-type growth condition

Theorem 4.1. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
(H1), (H5) and

(H6) there exist a Borel measurable function ϕ : [0,∞) → (0,∞) and a function
h ∈ L1([0, 1]) such that ∥f(t, x, p)∥ ≤ ϕ(∥p∥)(h(t)+ ∥p∥) a.e. t ∈ [0, 1] and
for all (x, p) ∈ R2n with ∥x− v(t)∥ ≤M(t);

and

∫ ∞ ds

ϕ(s)
= ∞.
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Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤M(t) for all t ∈ [0, 1].

First of all, observe that ϕ is not necessarily continuous, and v′′ andM ′′ could be
not essentially bounded. To prove this theorem, we can not use the problems (⋆)ελ as
we did for Theorem 3.1, since an assumption like (H6) is not necessarily satisfied by
fελ. In fact, to prove this theorem, we will use the theory of differential inclusions.
We will construct a multivalued mapping and we will deduce the existence of a
solution of the differential inclusion associated. Finally, we will observe that this
solution is in fact a solution to our original problem (⋆).

For ε ≥ 0, λ ∈ [0, 1], we define the multivalued fonction T ε
λ : [0, 1]× R2n → 2R

n

by T ε
λ(t, x, p) = f̂ελ(t, x, p) +Gλ(t, x, p) where f̂

ε
λ is the function defined by

f̂ελ(t, x, p) =
λ
(

M(t)
∥x−v(t)∥f(t, x̃, p̂)− εx̃

)
− ε(1− λ)v(t), if ∥x− v(t)∥ > M(t) > 0,

λ (f(t, x, p)− εx)− ε(1− λ)v(t), if ∥x− v(t)∥ ≤M(t), M(t) > 0,

v′′(t)− εv(t), if M(t) = 0;

and Gλ is the multivalued function defined by

Gλ(t, x, p) =

((
1− λM(t)

∥x−v(t)∥
)(
M ′′(t) + ⟨x−v(t),v′′(t)⟩

∥x−v(t)∥
)
+

(1− λ)
(M ′(t)2−∥p̂−v′(t)∥2

∥x−v(t)∥
))+

(x−v(t))
∥x−v(t)∥ , if ∥x− v(t)∥ > M(t) > 0,

[0, (1− λ)]

(
M ′′(t) + ⟨x−v(t),v′′(t)⟩

∥x−v(t)∥ +

M ′(t)2−∥p̂−v′(t)∥2

∥x−v(t)∥

)+
(x−v(t))
∥x−v(t)∥ , if ∥x− v(t)∥ =M(t) > 0,

0, if ∥x− v(t)∥ < M(t)

or M(t) = 0;

where, as before, (v,M) is the solution-tube to (⋆) given in (H1), x̃ = v(t) +
M(t)

∥x−v(t)∥ (x− v(t)) and p̂ = p+
(
M ′(t)− ⟨x−v(t),p−v′(t)⟩

∥x−v(t)∥

)(
x−v(t)

∥x−v(t)∥

)
.

To the function T ε
λ , we associate the operator T ε

λ = F̂ ε
λ + Gλ : C1([0, 1],Rn) →

2L
1([0,1],Rn), where F̂ ε

λ and Gλ are respectively defined by

F̂ ε
λ(x)(t) = f̂ελ(t, x(t), x

′(t)),

Gλ(x) = {u ∈ L1([0, 1],Rn) : u(t) ∈ Gλ(t, x(t), x
′(t)) a.e. t ∈ [0, 1] }.

Proposition 4.2. Let f : [0, 1] × R2n → Rn be a Carathéodory function and
let (v,M) be a solution-tube to (⋆). Then the previously defined operator T ε

λ is
upper semi-continuous, and integrably bounded on bounded, with non-empty, closed,
convex values.

Proof. To show that F̂ ε
λ is continuous and integrably bounded on bounded inde-

pendently of λ ∈ [0, 1], we argue as in Proposition 3.5.
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On the other hand, it is clear that Gλ(t, x, p) has non-empty, closed, convex
values, t 7→ Gλ(t, x, p) is measurable for all (x, p) ∈ R2n, and (x, p) 7→ Gλ(t, x, p) is
upper semi-continuous for almost all t ∈ [0, 1]. Observe that if ∥x−v(t)∥ ≥M(t) > 0
and((

1− λM(t)

∥x− v(t)∥
)(
M ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)
+ (1− λ)

(M ′(t)2 − ∥p̂− v′(t)∥2

∥x− v(t)∥
))+

> 0,

then∥∥∥∥((1− λM(t)

∥x− v(t)∥
)(
M ′′(t) +

⟨x− v(t), v′′(t)⟩
∥x− v(t)∥

)
+ (1− λ)

(M ′(t)2 − ∥p̂− v′(t)∥2

∥x− v(t)∥
))+

(x− v(t))

∥x− v(t)∥

∥∥∥∥
= (1− λ)

( ⟨M(t)(x−v(t)),v′′(t)⟩
∥x−v(t)∥ +M ′′(t)M(t) +M ′(t)2 − ∥p̂− v′(t)∥2

∥x− v(t)∥
)

+
(
1− M(t)

∥x− v(t)∥
)( ⟨x− v(t), v′′(t)⟩

∥x− v(t)∥
+M ′′(t)

)
≤ (1− λ)

⟨M(t)(x− v(t)), f(t, x̃, p̂)⟩
∥x− v(t)∥2

+ ∥v′′(t)∥+ |M ′′(t)|

≤ ∥f(t, x̃, p̂)∥+ ∥v′′(t)∥+ |M ′′(t)|.

Hence, Gλ is Carathéodory. It follows from Lemma 2.1 that Gλ is upper semi-con-
tinuous with non-empty, closed, convex values, and integrably bounded on bounded.
This completes the proof. �

Let us consider the associated problems

(⋆⋆)ελ

{
x′′(t)− ε x(t) ∈ T ε

λ(t, x(t), x
′(t)) a.e. t ∈ [0, 1]

x ∈ BC

Proof of Theorem 4.1. We will show that the problem (⋆⋆)ε1 has a solution satisfying
∥x(t) − v(t)∥ ≤ M(t). By the definition of T ε

1 , this solution will be a solution to
our original problem (⋆).

Let x be a solution to (⋆⋆)ελ. By Lemma 2.4, M ′′(t) = 0 a.e. on {t ∈ [0, 1] :
M(t) = 0}. This and (H1) imply that

⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
− ε∥x(t)− v(t)∥

≥M ′′(t)− εM(t)

a.e. on {t ∈ [0, 1] : ∥x − v(t)∥ > M(t)}. It follows from Lemma 3.2 that every
solution to (⋆⋆)ελ satisfies ∥x(t)− v(t)∥ ≤M(t) for all t ∈ [0, 1].

13



On the other hand, for every solution x of (⋆⋆)ελ, we have a.e. on {t ∈ [0, 1] :
∥x′(t)− v′(t)∥ ≥ k},

⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x′(t)− v′(t)∥

− ⟨x′(t)− v′(t), x′′(t)− v′′(t)⟩⟨x(t)− v(t), x′(t)− v′(t)⟩
∥x′(t)− v′(t)∥3

≥ λ
⟨x(t)− v(t), f(t, x′(t), x′(t))− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x′(t)− v′(t)∥

− λ
⟨x′(t)− v′(t), f(t, x(t), x′(t))− v′′(t)⟩⟨x(t)− v(t), x′(t)− v′(t)⟩

∥x′(t)− v′(t)∥3

+ (1− λ)∥x′(t)− v′(t)∥ − 2M(t)∥v′′(t)∥/k.

(4.1)

Inequality (4.1) and (H5) imply that the assumptions of Lemma 3.3 are satisfied.
Thus, there exists K1 = K1(∥M∥0) > 0 such that ∥x′ − v′∥L1[a,b] ≤ K1 for any
interval [a, b] on which ∥x′(t) − v′(t)∥ ≥ k; and ∥x′(t) − v′(t)∥ ≤ max{k,K1} for
some t ∈ [0, 1].

By Lemma 2.4, x′(t) = x̂′(t) a.e. on {t ∈ [0, 1] : ∥x− v(t)∥ = M(t) > 0}. Thus,
it follows from (H1) that for almost all t in that set and such that(

M ′′(t) +
⟨x(t)− v(t), v′′(t)⟩+M ′(t)2 − ∥x̂′(t)− v′(t)∥2

∥x(t)− v(t)∥

)+

> 0,

∥∥∥∥∥∥
(
M ′′(t) +

⟨x(t)− v(t), v′′(t)⟩+M ′(t)2 − ∥x̂′(t)− v′(t)∥2

∥x(t)− v(t)∥

)+
(x− v(t))

∥x(t)− v(t)∥

∥∥∥∥∥∥
≤ ⟨(x− v(t)), f(t, x(t), x̂′(t))⟩

∥x(t)− v(t)∥

≤ ∥f(t, x(t), x̂′(t))∥ = ∥f(t, x(t), x′(t))∥.

Hence,
∥T ε

λ(t, x(t), x
′(t)) + εx(t)∥ ≤ ∥f(t, x(t), x′(t))∥+ ε∥M∥0.

Fix k0 = max{k,K1}+∥v′∥0 and ε ≥ 0 such that the previously defined operator
Lε is invertible, and∫ ∞

k0

ds

ϕ(s) + ε∥M∥0
> ∥h∥L1 + 1 +K1 + ∥v′∥L1 .

Lemma 3.4 applied with ψ(s) = s(ϕ(s)+ε∥M∥0), l(t) = h(t)+1 gives the existence
of K such that ∥x′∥0 < K.

By using the multivalued version of Theorem 2.2 with the homotopy given by
the operators L−1

ε ◦ NT ε
λ
, and arguing as in the proof of Theorem 3.1, we deduce

the existence of a solution to (⋆⋆)ελ. The conclusion follows from the definition of
T ε
1 . �
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Corollary 4.3. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
(H1), (H6) and

(H7) there exist k, θ > 0, h1 ∈ L1([0, 1]) such that for a.e. t and for all (x, p)
with ∥x− v(t)∥ ≤M(t) and ∥p− v′(t)∥ ≥ k,

⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2

∥p− v′(t)∥

−⟨p− v′(t), f(t, x, p)− v′′(t)⟩⟨x− v(t), p− v′(t)⟩
∥p− v′(t)∥3

≥ θ∥p− v′(t)∥ − h1(t).

Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤M(t) for all t ∈ [0, 1].

5. Examples

The following problems have a solution.

Example 5.1.

x′′(t) = ∥x′(t)∥x′(t)− c

x(0) = x(1) = (0, · · · , 0)

where c ∈ Rn with ∥c∥ = 1. Verify that v(t) ≡ 0, M(t) = t, any k > 0, θ =
1, h1(t) = 2t/k, h ≡ 0, C = D = 1 satisfy the assumptions of Corollary 3.6.
Consequently, this problem has a solution such that ∥x(t)∥ ≤ t. Observe that there
is no constantM such that (0,M) is a solution-tube to this problem and Hartman’s
condition (1.2) is not satisfied.

Example 5.2.

x′′(t) = −4⟨x(t), x′(t)⟩2x(t) + x(t) + c

x(0) = x(1) = (0, · · · , 0)

where c ∈ Rn with ∥c∥ = 1. Verify that v ≡ 0, M ≡ 1, γ = 1/4, θ = 1, m = 4,
any k > 0, h1 = h2 ≡ 3/k, h ≡ 0, C = 4, D = 2 satisfy the assumptions of
Theorem 3.1. Consequently, this problem has a solution such that ∥x(t)∥ ≤ 1.
Observe that Hartman’s condition (1.2) and (H4) are not satisfied with this (v,M).

Example 5.3.

x′′(t) = ∥x′(t)− c t1/2∥ (x′(t)− c t1/2) + (c t−1/2)/2

x(0) = x(1) = (0, · · · , 0)

where c ∈ Rn. Verify that v(t) = (2c t3/2)/3, M(t) = 2∥c∥/3, θ = 1, any k > 0,
h1 ≡ 0, h(t) = ∥c∥(t−1/2 + 2)/2, ϕ(s) = (s + ∥c∥) satisfy the assumptions of
Corollary 4.3.

Example 5.4.

x′′(t) = ϕ(∥x′(t)∥)x′(t)
x′(0) = (0, · · · , 0), x′(1) = c

where c ∈ Rn, ϕ : [0,∞) → (0,∞) is continuous and
∫∞

ds/ϕ(s) = ∞. Verify that
v(t) ≡ 0, M(t) = ∥c∥t, θ = 1, any k > 0, h = h1 ≡ 0 satisfy the assumptions of
Corollary 4.3. Consequently, this problem has a solution such that ∥x(t)∥ ≤ ∥c∥t.

15



References

1. J. W. Bebernes and K. Schmitt, Periodic boundary value problems for systems
of second order differential equations, J. Diff. Eq. 13 (1973), 32–47.

2. S. R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary
value problems, Academic Press Inc., New York, 1974.

3. J. Dugundji and A. Granas, Fixed point theory, vol. 1, PWN, Warszawa, 1982.
4. L. H. Erbe and P. K. Palamides, Boundary value problems for second order

differential systems, J. Math. Analysis and Appl. 127 (1987), 80–92.
5. C. Fabry and P. Habets, The Picard boundary value problem for nonlinear

second order vector differential equations, J. Diff. Eq. 42 (1981), 186–198.
6. M. Frigon, Boundary and periodic value problems for systems of nonlinear

second order differential equations, Topol. Methods Nonlinear Anal. 1 (1993).
7. M. Frigon, A. Granas and Z. Guennoun, Sur l’intervalle maximal d’existence

de solutions pour des inclusions differentielles, C. R. Acad. Sci. Paris, série 1
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