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Abstract

In this paper, we establish the existence of solutions to systems of first order differential inclusions
with maximal monotone terms satisfying the periodic boundary condition. Our proofs rely on the theory of
maximal monotone operators, and the Schauder and the Kakutani fixed point theorems. A notion of solution-
tube to these problems is introduced. This notion generalizes the notion of upper and lower solutions of first
order differential equations.
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1. Introduction

In this paper, we establish existence results for the following systems of first order differential
inclusions:

x ′(t) ∈ −A(x(t)) + F(t, x(t)), a.e. t ∈ [0, 1],
x(0) = x(1); (1.1)

and

x ′(t) ∈ A(x(t)) + F(t, x(t)), a.e. t ∈ [0, 1],
x(0) = x(1).

(1.2)

∗ Fax: +1 514 343 5700.
E-mail address: frigon@dms.umontreal.ca.

0362-546X/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2006.03.002

http://www.elsevier.com/locate/na
mailto:frigon@dms.umontreal.ca
http://dx.doi.org/10.1016/j.na.2006.03.002


M. Frigon / Nonlinear Analysis 66 (2007) 2064–2077 2065

Here, A : dom(A) ⊂ Rn → Rn is a multi-valued maximal monotone operator, F : [0, 1]×Rn →
Rn is a multi-valued map with compact values that satisfies a lower semi-continuity or an upper
semi-continuity condition. In this last case, F has convex values. We consider the cases where
dom(A) = Rn and dom(A) are strictly included in Rn . In this last case, an extra assumption is
needed.

In this paper, we introduce the notions of L p-solution-tube to problems (1.1) and (1.2) similar
to the notion of solution-tube introduced in [7] and [10] for first order systems (see also [8]), when
p = 1. This notion generalizes the notion of upper and lower solutions of first order differential
equations; see [9]. Under the assumption of the existence of an L p-solution-tube, we establish
existence results. In particular, our Theorem 3.4 generalizes a result obtained by Montoki [20] in
his thesis.

This type of problem was studied by [9,10] and [12] when A = 0 and F is single-valued. An
important class of those problems appears in particular where A = ∂φ, the subdifferential of a
proper convex map φ. In [23], Yotsutani studied the problem (1.1) with A = ∂φ and the periodic
boundary condition replaced by the initial value condition. His results generalize results of [21]
and [22]. These type of problems were also studied in [18] by Kandilakis and Papageorgiou for
a family of problems depending on a parameter, and by Hirano [16] for the periodic problem
with A = ∂φ and F single-valued. Bader [1] considered the case where A is the infinitesimal
generator of a C0-semigroup.

Recently, in a very interesting paper, Bader and Papageorgiou [2] studied the problem (1.1)
with A = ∂φ in the more general context of Hilbert spaces. They also treated the two cases
where F satisfies a lower semi-continuity and an upper semi-continuity conditions. In this last
case, our condition of existence of an L2-solution-tube generalizes considerably their condition
H(F)2(v). They did not impose this type of condition with the lower semi-continuity condition.
In both cases, they assumed a Nagumo-type tangential condition that we do not impose.

We first study Problem (1.1). In Section 3, we state existence results for this problem that
we prove in Section 5 after having studied appropriate operators. Finally, existence results for
Problem (1.2) are obtained in the last section. Our existence results will rely on the Schauder and
the Kakutani fixed point theorems; see [13].

2. Preliminaries

In what follows, we will use the following notations: I = [0, 1], and C(I, Rn) is the space
of continuous functions endowed with the usual norm which we denote ‖ · ‖0. For p ∈ [1,∞],
L p(I, Rn) is the space of L p-integrable functions with the usual norm ‖ · ‖L p ; W 1,p(I, Rn) is
the Sobolev space {x ∈ C[0, 1] : x is absolutely continuous and x ′ ∈ L p(I, Rn)} endowed with
the usual norm ‖ · ‖1,p; and W 1,p

P (I, Rn) is the subset of x in W 1,p(I, Rn) satisfying the periodic
boundary condition.

Let X, Y be topological spaces and Ω a measurable space. We say that a multi-valued map
G : Ω → X is measurable if {t ∈ Ω : G(t) ∩ C �= ∅} is measurable for every closed set C ⊂ X .
A multi-valued map G : X → Y is upper semi-continuous (u.s.c.) (resp. lower semi-continuous
(l.s.c.)) if {x ∈ X : G(x) ∩ C �= ∅} is closed (resp. open) for every closed (resp. open) set
C ⊂ Y ; it is continuous if it is lower and upper semi-continuous. Notice that we consider only
multi-valued maps with nonempty values. The reader is referred to [3], [6], [15], or [17] for more
details on multi-valued maps.
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Let H be a Hilbert space and M : dom(M) ⊂ H → H a multi-valued maximal monotone
operator. Let us recall that M is a monotone operator, if

〈x∗ − y∗, x − y〉 ≥ 0 ∀x, y ∈ dom(M),∀x∗ ∈ M(x),∀y∗ ∈ M(y);
and it is maximal if

〈x∗ − y∗, x − y〉 ≥ 0 ∀y ∈ dom(M),∀y∗ ∈ M(y) �⇒ x ∈ dom(M), and x∗ ∈ M(x).

We recall some results on monotone operators. For their proofs and for more information on
monotone operators, the reader is referred to [5,17] or [24].

Lemma 2.1. A multi-valued monotone map M : dom(M) ⊂ H → H is locally bounded at
every point in the interior of its domain.

Lemma 2.2. Let M : dom(M) ⊂ H → H be a multi-valued maximal monotone operator. Then
M has closed, convex values, and Gr(M) := {(x, x∗) : x∗ ∈ Mx} is sequentially closed in
(H,Ts) × (H,Tw) and in (H,Tw) × (H,Ts), where Ts and Tw denote, respectively, the strong
and the weak topologies of H .

Lemma 2.3. Let M : dom(M) ⊂ H → H be a multi-valued monotone operator. Then the
following statements are equivalent:

(a) M is maximal;
(b) id + M is surjective.

Lemma 2.4. Let M : dom(M) ⊂ H → H be a multi-valued maximal monotone operator and
N : H → H a single-valued Lipschitzian monotone operator. Then M+N is maximal monotone.

We can associate with M the operator M̂ : dom(M̂) ⊂ L2(I, H ) → L2(I, H ) defined by

M̂(x) = {y ∈ L2(I, H ) : y(t) ∈ M(x(t)) a.e.t ∈ I },
where

dom(M̂) = {x ∈ L2(I, H ) : x(t) ∈ dom(M) a.e. t ∈ I and

∃y ∈ L2(I, H ) such that y(t) ∈ M(x(t)) a.e. t ∈ I }.
Lemma 2.5. Let M : dom(M) ⊂ H → H be a multi-valued maximal monotone operator. The
operator M̂ is maximal monotone.

We define, for λ > 0,

Jλ = (id + λM)−1 (the resolvent of M),

Mλ = 1

λ
(id − Jλ) (the Yosida approximation of M).

It is well known that dom(Jλ) = dom(Mλ) = H , Jλ and Mλ are single-valued, Jλ is non-
expansive, Mλ is monotone and Lipschitzian with constant 1/λ, and hence maximal monotone.
Moreover, for every x ∈ dom(M), Mλ(x) ∈ M(Jλ(x)), and for all λ > 0,

‖Mλ(x)‖ ≤ inf{‖y‖ : y ∈ M(x)}. (2.1)

Moreover, Mλ(x) → y0 ∈ M(x) as λ → 0, where y0 is the element of minimal norm in M(x).
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Lemma 2.6. Let M : dom(M) ⊂ H → H and N : dom(N) ⊂ H → H be multi-valued
maximal monotone operators such that dom(M) ∩ dom(N) �= ∅. Then

(a) Mλ + N is maximal for every λ > 0;
(b) y ∈ Im(id + M + N) if and only if {Mλ(xλ)} is bounded as λ → 0+, where y =

(id + Mλ + N)(xλ). Moreover, if those properties hold, then xλ → x and Mλ(xλ) → z ∈
M(x) ∩ {y − x − N(x)}.

3. Existence results

Our goal is to establish existence results for the problem (1.1). By a solution, we mean a
function x ∈ W 1,1

P (I, Rn) satisfying (1.1).
We introduce the notion of L p-solution-tube of the problem (1.1). This notion will play a

fundamental role in our existence results.

Definition 3.1. Let v ∈ W 1,p(I, Rn), and r ∈ W 1,p(I, R) with p ∈ [1,∞]. We say that (v, r) is
an L p-solution-tube of (1.1) if there exists a ∈ L p(I, Rn) such that

(i) a(t) ∈ Av(t) a.e. t ∈ I ;
(ii) for a.e. t ∈ I , and every x ∈ Rn such that ‖x − v(t)‖ = r(t), there exists y ∈ F(t, x) such

that

〈x − v(t), y − a(t) − v′(t)〉 ≤ r(t)r ′(t);
(iii) v′(t) ∈ −a(t) + F(t, v(t)) a.e. on {t ∈ [0, 1] : r(t) = 0};
(iv) ‖v(0) − v(1)‖ ≤ r(0) − r(1).

We denote

T (v, r) = {x ∈ C(I, Rn) : ‖x(t) − v(t)‖ ≤ r(t) ∀t ∈ I }.
Remark 3.2. If φ : Rn → R is a convex function, A = ∂φ the subdifferential of φ, and (v, r) is
an L p-solution-tube of (1.1), then, for a.e. t ∈ I , and every x ∈ Rn such that ‖x − v(t)‖ = r(t),
there exists y ∈ F(t, x) such that

φ(x) + r(t)r ′(t) + 〈x − v(t), v′(t)〉 ≥ φ(v(t)) + 〈x − v(t), y〉.
Our results will rely on some of the following assumptions:

(F1-u) F : I × Rn → Rn is a multi-valued map with compact convex values such that
t �→ F(t, x) is measurable for all x ∈ Rn , and x �→ F(t, x) is u.s.c. a.e. t ∈ I ;

(F1-l) F : I × Rn → Rn has compact values and is such that x �→ F(t, x) is l.s.c. a.e. t ∈ I ,
and (t, x) �→ F(t, x) is L ⊗ B-measurable (here I × Rn is endowed with the σ -algebra
generated by subsets C × D, where C ⊂ I and D ⊂ Rn are, respectively, Lebesgue and
Borel measurable);

(F2-p) for every m ≥ 0, there exists hm ∈ L p(I ) such that

max{‖y‖ : y ∈ F(t, x), ‖x‖ ≤ m} ≤ hm(t) a.e. t ∈ I ;
(ST-p) there exists (v, r) ∈ W 1,p(I, Rn) × W 1,p(I, [0,∞[) an L p-solution-tube of (1.1);

(A1) the multi-valued operator A : Rn → Rn is maximal monotone;
(A2) the operator A : dom(A) ⊂ Rn → Rn is a multi-valued maximal monotone operator

such that dom(A) �= ∅;
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(A3) for all bounded set B in L2(I, Rn) ∩ dom( Â),

sup
{

inf
{‖y‖L2 : y ∈ Â(x)

} : x ∈ B
}

< ∞.

Remark 3.3. Observe that, in what follows, the assumption (F1-l) can be replaced by

(F1-c) F : I × Rn → Rn is a multi-valued map with compact values such that t �→ F(t, x) is
measurable for all x ∈ Rn , and x �→ F(t, x) is continuous a.e. t ∈ I .

One aim of this paper is to establish the following existence results:

Theorem 3.4. Assume (F1-u), (F2-1), (A1), and (ST-1). Then the problem (1.1) has a solution
x ∈ W 1,1(I, Rn) ∩ T (v, r).

We can replace the upper semi-continuity assumption (F1-u) by other continuity conditions
such as (F1-l) or (F1-c) (see Remark 3.3). In this case, the values of F do not need to be convex.

Theorem 3.5. Assume (F1-l), (F2-1), (A1), and (ST-1). Then the problem (1.1) has a solution
x ∈ W 1,1(I, Rn) ∩ T (v, r).

It is also possible to obtain existence results if dom(A) �= Rn .

Theorem 3.6. Assume (F1-u), (F2-2), (A2), (A3), and (ST-2). Then the problem (1.1) has a
solution x ∈ W 1,2(I, Rn) ∩ T (v, r).

We obtain a similar result for F satisfying a lower semi-continuity condition.

Theorem 3.7. Assume (F1-l), (F2-2), (A2), (A3), and (ST-2). Then the problem (1.1) has a
solution x ∈ W 1,2(I, Rn) ∩ T (v, r).

4. Operators

To prove our existence theorems, we will consider suitable modified problems for which we
will establish the existence of solutions. To this aim, we introduce appropriate maps.

Let (v, r) and a be given in (ST-p) (see Definition 3.1). Define

Fu : I × Rn → Rn by Fu = F̃ ∩ Gu,

where

F̃(t, x) =
{

F(t, x̃t ), if ‖x − v(t)‖ > r(t),
F(t, x), if ‖x − v(t)‖ ≤ r(t);

Gu(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v′(t) + a(t), if r(t) = 0,

Rn, if ‖x − v(t)‖ ≤ r(t)
and r(t) > 0,

{z : 〈x − v(t), z − a(t) − v′(t)〉
≤ r ′(t)‖x − v(t)‖}, otherwise;

with

x̃t = v(t) + r(t)

‖x − v(t)‖ (x − v(t)). (4.1)

Similarly, we define

Fl : I × Rn → Rn by Fl = F̃ ∩ Gl,
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where

Gl(t, x) =

⎧⎪⎪⎨⎪⎪⎩
v′(t) + a(t), if r(t) = 0,

Rn, if ‖x − v(t)‖ < r(t),
{z : 〈x − v(t), z − a(t) − v′(t)〉

≤ r ′(t)‖x − v(t)‖}, otherwise.

Proposition 4.1. Assume (F1-u), (F2-1), and (ST-1). Let Fu : C(I, Rn) → L1(I, Rn) be
defined by

Fu(x) = {y ∈ L1(I, Rn) : y(t) ∈ Fu(t, x(t)) + x̃(t)t a.e.t ∈ I }
with L1(I, Rn) endowed with the weak topology. Then Fu is u.s.c. and has compact and convex
values. Moreover, there exists h ∈ L1(I, [0,∞)) such that, for all x ∈ C(I, Rn) and all
y ∈ Fu(x), ‖y(t)‖ ≤ h(t) a.e. t ∈ I .

Proof. It is easy to verify that Fu is measurable in t for all x ∈ Rn , and u.s.c. in x for almost
every t ∈ I . It follows from (ST-1) that Fu(t, x) �= ∅ for all x ∈ Rn and almost every
t ∈ I . Also Fu(t, x) is closed and convex. Therefore, for all x ∈ C(I, Rn), t �→ Fu(t, x(t))
is measurable, and hence has a measurable selection by the Kuratowski, Ryll-Nardzewski
selection theorem [19]. So, Fu has nonempty values. Indeed, from (F2-1) and the fact that
‖x̃(t)t‖ ≤ ‖v‖0 + ‖r‖0, we deduce that there exists h ∈ L1(I, [0,∞)) such that for all
x ∈ C(I, Rn) and all y ∈ Fu(x),

‖y(t)‖ ≤ h(t) a.e. t ∈ I. (4.2)

It is clear that Fu has closed, convex, bounded values in L1(I, Rn) endowed with the strong
topology, and hence has compact convex values in the weak topology by (4.2) and Pettis’
theorem.

It is left to show that Fu is u.s.c. Let E be a weakly closed subset of L1(I, Rn) and let {xn}
a sequence in {x ∈ C(I, Rn) : Fu(x) ∩ E �= ∅} converging to x0. Take yn ∈ Fu(xn) ∩ E .
By (4.2) and Pettis’ theorem, {yn} has a weakly convergent subsequence still denoted {yn}.
Denote y its weak limit. Notice that y ∈ E , since E is weakly closed. Moreover, there exists
zn ∈ co{yn, yn+1, . . .} such that the sequence {zn} converges strongly to y in L1(I, Rn). Without
loss of generality, we can assume that zn(t) → y(t) almost everywhere in I . Since Fu has convex
values and is u.s.c.,

y(t) ⊂
⋂
n≥1

co

{ ⋃
m≥n

yn(t)

}
⊂

⋂
n≥1

co

{ ⋃
m≥n

Fu(t, xn(t)) + x̃n(t)t

}
⊂ Fu(t, x0(t)) + x̃0(t)t a.e. t ∈ I.

Therefore, y ∈ Fu(x0) ∩ E . �

Remark 4.2. Assume that (F1-u), (F2-2) and (ST-2) hold. Then the conclusion of
Proposition 4.1 is true if we replace L1(I, Rn) by L2(I, Rn).

Proposition 4.3. Assume (F1-l), (F2-1), and (ST-1). Then there exists a continuous single-
valued map fl : C(I, Rn) → L1(I, Rn) such that

fl (x)(t) ∈ Fl(t, x(t)) + x̃(t)t a.e. t ∈ I.
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Moreover, there exists h ∈ L1(I, [0,∞)) such that, for all x ∈ C(I, Rn), ‖ fl (x)(t)‖ ≤ h(t) a.e.
t ∈ I . In addition, if (F2-2) and (ST-2) hold, then h can be chosen in L2(I, Rn), and hence
fl(C(I, Rn)) ⊂ {y ∈ L2(I, Rn) : ‖y(t)‖ ≤ h(t) a.e. t ∈ I }.
Proof. Observe that, by (ST-1), Fl has nonempty values. Since F satisfies (F1-l), (t, x) �→
Fl(t, x) is L ⊗ B-measurable, and x �→ Fl(t, x) is l.s.c. a.e. t ∈ I . Indeed, let C ⊂ Rn be
open, E = {x ∈ Rn : Fl(t, x) ∩ C �= ∅}. If r(t) = 0, Fl(t, x) = v′(t) + a(t) for all x ∈ Rn , and
hence E is open. In the case r(t) > 0, take x ∈ E . If ‖x − v(t)‖ < r(t), then there exists δ > 0
such that ‖u − v(t)‖ < r(t) for all u ∈ B(x, δ). Since Fl(t, u) = F(t, u) for all u ∈ B(x, δ),
the lower semi-continuity of F with respect to its second variable implies that there exists a
neighborhood of x in E .

On the other hand, if ‖x − v(t)‖ ≥ r(t), there exists

z0 ∈ C ∩ F(t, x̃t ) ∩ {z : 〈x − v(t), z − a(t) − v′(t)〉 ≤ r ′(t)‖x − v(t)‖}.
Set ε > 0 such that B(z0, ε) ⊂ C and fix w = −ε(x − v(t))/(2‖x − v(t)‖). For y ∈ Sn−1 and
λ ≥ 0,

〈x + λy − v(t), z0 + w − a(t) − v′(t)〉
= 〈x − v(t), z0 − a(t) − v′(t)〉 + λ〈y, z0 + w − a(t) − v′(t)〉 + 〈x − v(t),w〉
≤ ‖x − v(t)‖r ′(t) + λ‖z0 + w − a(t) − v′(t)‖ − ε

2
‖x − v(t)‖

≤ ‖x + λy − v(t)‖r ′(t) + λ
(|r ′(t)| + ‖z0 + w − a(t) − v′(t)‖) − ε

2
‖x − v(t)‖.

Choose 0 < λ0 < ε‖x −v(t)‖/(2|r ′(t)|+2‖z0 +w −a(t)−v′(t)‖). So, for every u ∈ B(x, λ0),

z0 + w ∈ {z : 〈u − v(t), z − a(t) − v′(t)〉 ≤ r ′(t)‖u − v(t)‖} ∩ C.

On the other hand, the lower semi-continuity of F with respect to its second variable implies that
there exists λ1 > 0 such that B(x, λ1) ⊂ {u : F(t, ũt ) ∩ C �= ∅}. So, for λ2 = min{λ0, λ1},

B(x, λ2) ⊂ {
u ∈ Rn : C ∩ F(t, ũt )

∩ {z : 〈u − v(t), z − a(t) − v′(t)〉 ≤ r ′(t)‖u − v(t)‖} �= ∅} ⊂ E .

So, E is open.
Also, by (F2-1) (resp. (F2-2) and (ST-2)), there exists h ∈ L1(I, Rn) (resp. h ∈ L2(I, Rn))

such that, for every x ∈ C(I, Rn), Fl(t, x(t)) + x̃(t)t ⊂ B(0, h(t)) a.e. t ∈ I , since ‖x̃(t)t‖ ≤
‖v‖0 + ‖r‖0. Moreover, we deduce that, for every x ∈ C(I, Rn), the map t �→ Fl (t, x(t))
is measurable with closed nonempty values; see, for example, [14]. By the Kuratowski, Ryll-
Nardzewski selection theorem [19], this map has a measurable selection, and hence the map
Fl : C(I, Rn) → L1(I, Rn) defined by

Fl(x) = {y ∈ L1(I, Rn) : y(t) ∈ Fl(t, x(t)) + x̃(t)t a.e. t ∈ I }
has bounded nonempty values. It is easy to see that Fl has closed, decomposable values, i.e. for
every y, z ∈ Fl(x) and every measurable set Ω ⊂ I , yχΩ + zχΩ c ∈ Fl(x).

Now, we show that Fl is l.s.c. Let E ⊂ L1(I, Rn) be closed and {xn} a sequence in
{x ∈ C(I, Rn) : Fl(x) ⊂ E} converging to x0. Let y ∈ Fl(x0). For every n ∈ N, there exists
yn ∈ Fl(xn) such that

‖yn(t) − y(t)‖ = dist(y(t), Fl(t, xn(t)) + x̃n(t)t );
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see, for example, [6, Proposition 3.4]. The lower semi-continuity of x �→ Fl (t, x)+ x̃(t)t implies
that

dist(y(t), Fl (t, xn(t)) + x̃n(t)t ) → 0 a.e. t ∈ I.

The Lebesgue dominated convergence theorem implies that yn → y in L1(I, Rn) and y ∈ E .
So, Fl(x0) ⊂ E . The conclusion follows from the Fryskowski, Bressan-Colombo selection
theorem [4] and [11]. �

We define the multi-valued map A∗ : I × Rn → Rn by

A∗(t, x) =
{

A(̃xt ), if r(t) > 0,

a(t), if r(t) = 0,

where x̃t is defined in (4.1), and a is given in (ST-1) (see also Definition 3.1).

Proposition 4.4. Assume (A1) and (ST-1). Then A∗ : C(I, Rn) → L1(I, Rn) defined by

A∗(x) = {y ∈ L1(I, Rn) : y(t) ∈ A∗(t, x(t)) a.e. t ∈ I }
has closed, convex values, and is u.s.c. when L1(I, Rn) is endowed with the weak topology.
Moreover there exists m > 0 such that ‖y(t)‖ ≤ m a.e. on {t ∈ I : r(t) > 0} and for all
x ∈ C(I, Rn) and y ∈ A∗(x).

Proof. By (A1), and Lemmas 2.1 and 2.2, x �→ A(x) is u.s.c. with convex, compact values, and
there exists m > 0 such that ‖z‖ ≤ m for all z ∈ A(x) and all x such that ‖x‖ ≤ ‖v‖0 + ‖r‖0.
So, x �→ A∗(t, x) is u.s.c. for all t ∈ I ; t �→ A∗(t, x) is measurable for all x ∈ Rn , and
(t, x) �→ A∗(t, x) has convex compact values. In other words, A∗ is a Carathéodory function,
i.e. it satisfies (F1-u) and (F2-1). Therefore, in arguing as in Proposition 4.1, we deduce that A∗
has closed convex values and is u.s.c. when L1(I, Rn) is endowed with the weak topology. �

Now we want to consider the case where dom(A) �= Rn .
Let us define M+ : D ⊂ L2(I, Rn) ⊂ L2(I, Rn) → L2(I, Rn) by M+ = L(x) + Â(x),

where D = W 1,2
P (I, Rn) ∩ dom( Â) and L(x) = x ′. Similarly, we define M− : D ⊂ L2(I, Rn)

⊂ L2(I, Rn) → L2(I, Rn) by M−(x) = −L(x) + Â(x).

Proposition 4.5. Under (A2), (A3), M+ (resp. M−) is a multi-valued maximal monotone
operator.

Proof. Let us show that M+ is monotone. First of all, observe that D �= ∅. Take x, y ∈ D and
u ∈ Â(x),w ∈ Â(y). Since Â is monotone, we have

〈x ′ + u − y ′ − w, x − y〉L2 ≥
∫

I
〈x ′(t) − y ′(t), x(t) − y(t)〉 dt

= 1

2

(
‖x(1) − y(1)‖2 − ‖x(0) − y(0)‖2

)
= 0.

Now, we have to show that M+ is maximal. By Lemma 2.3, we have to show that id + M+
is surjective. It is well known that id + L is invertible and hence surjective. By Lemma 2.3, L is
maximal monotone. Since for λ > 0, Âλ is single-valued, monotone and Lipschitzian, L + Âλ
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is maximal monotone, and hence id + L + Âλ is surjective by Lemmas 2.3 and 2.4. So, for
h ∈ L2(I, Rn), there exists xλ ∈ W 1,2

P (I, Rn) such that

(id + L + Âλ)xλ = h. (4.3)

Let x0 ∈ dom(A), and denote

zλ = x0 + Aλ(x0).

Using the facts that xλ(0) = xλ(1), Âλ is monotone and Âλ(x0) ≡ Aλ(x0), we have that∫
I
〈h(t) − zλ, xλ(t) − x0 〉 dt

=
∫

I
〈 xλ(t) − x0 + x ′

λ(t) + Âλ(xλ(t)) − Âλ(x0), xλ(t) − x0〉 dt

≥ ‖xλ − x0‖2
L2 .

So, {xλ} is bounded in L2(I, Rn) by a constant c. By (A3) and (2.1),

‖ Âλ(xλ)‖L2 ≤ inf{‖y‖L2 : y ∈ Â(xλ)}
≤ sup{inf{‖y‖L2 : y ∈ Â(x)} : ‖x‖L2 ≤ c}
< ∞.

So, { Âλ(xλ)} is bounded in L2(I, Rn) for λ bounded. If follows from Lemma 2.6 that M+ is
maximal. The proof is exactly the same for M−. �

When M+ (resp. M−) is maximal monotone, id + M+ (resp. id + M−) is surjective and
invertible, so we denote the resolvent of M± for λ = 1 by J±, which is defined for x ∈ L2(I, Rn)

by

J±(x) = (id + M±)−1(x) ∈ W 1,2
P (I, Rn).

Proposition 4.6. Under (A2) and (A3), the operator J± : L2(I, Rn) → W 1,2(I, Rn), where
W 1,2(I, Rn) is endowed with the topology of C(I, Rn), is completely continuous, and is
continuous when L2(I, Rn) is endowed with the weak topology.

Proof. We first consider the case of J+. Since L2(I, Rn) is a Hilbert space, it is sufficient to
show that, if yn ⇀ y weakly in L2(I, Rn), xn = J+(yn) → x = J+(y) in C(I, Rn). Since
J+ : L2(I, RN ) → L2(I, Rn) is nonexpansive, we deduce that {xn} is bounded in L2(I, Rn) by
some constant k ≥ 0.

Now, we want to show that xn → x in C(I, Rn). For λ > 0, let xλ
n be the unique solution of

yn = xλ
n + (xλ

n )′ + Âλ(xλ
n ).

For each n ∈ N, Lemma 2.6 ensures that xλ
n → xn , and Âλ(xλ

n ) → un ∈ Â(xn) ∩ {yn − xn − x ′
n}

in L2(I, Rn). Observe that, by (A3),

‖un‖ ≤ lim
λ→0+ ‖ Âλ(xλ

n )‖L2 ≤ lim
λ→0+ inf{‖z‖L2 : z ∈ Â(xλ

n )}
≤ sup{inf{‖z‖L2 : z ∈ Â(u)} : ‖u‖L2 ≤ k + 1}
< ∞.
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This implies that {un} is bounded in L2(I, Rn), and hence {xn} is bounded in W 1,2(I, Rn). So,
there are subsequences still denoted {xn} and {un} such that un ⇀ u weakly in L2(I, Rn),
and xn → x strongly in C(I, Rn) and hence in L2(I, Rn), and weakly in W 1,2(I, Rn).
Since M+ is maximal monotone, we deduce that (x, x ′ + u) ∈ Gr(M+), which is closed in
(L2(I, Rn),Ts) × (L2(I, Rn),Tw). It follows that xn = J+(yn) → x = J+(y) strongly in
C(I, Rn). The proof is exactly the same for J−. �

Remark 4.7. Let h ∈ L2(I, [0,∞)) and E = {y ∈ L2(I, Rn) : ‖y(t)‖ ≤ h(t) a.e. t ∈ I }
endowed with the topology of L1(I, Rn). It can be shown that J± : E → C(I, Rn) is continuous
and compact. Indeed, it suffices to argue as in the proof of the previous proposition.

5. Proofs of our existence results

We consider the problems

x ′(t) + x(t) ∈ −A∗(t, x(t)) + Fu(t, x(t)) + x̃(t)t a.e. t ∈ [0, 1],
x(0) = x(1); (5.1)

and

x ′(t) + x(t) ∈ −A∗(t, x(t)) + Fl (t, x(t)) + x̃(t)t a.e.t ∈ [0, 1],
x(0) = x(1).

(5.2)

A priori bounds can be obtained for the solutions of (5.1) and (5.2).

Proposition 5.1. Assume that (A1), (ST-1) are satisfied. Then every solution x ∈ W 1,1
P (I, Rn)

of (5.1) or (5.2) is such that x ∈ T (v, r).

Proof. Without loss of generality, we assume that x is a solution of (5.1). There exists y, ax ∈
L1(I, Rn) such that ax(t) ∈ A∗(t, x(t)), y(t) ∈ Fu(t, x(t)), and x ′(t) + x(t) = −ax(t) + y(t) +
x̃(t)t a.e. t ∈ I . Since A is a maximal monotone operator and, by (ST-1), we deduce that, for
almost every t ∈ {t ∈ I : ‖x(t) − v(t)‖ > r(t) > 0},

〈x(t) − v(t), x ′(t) − v′(t)〉
‖x(t) − v(t)‖

= 〈x(t) − v(t),−ax (t) + y(t) + x̃(t)t − x(t) − v′(t)〉
‖x(t) − v(t)‖

= 〈x̃(t)t − v(t), y(t) − a(t) − v′(t)〉 − 〈x̃(t)t − v(t), ax (t) − a(t)〉
r(t)

+ r(t) − ‖x(t) − v(t)‖
< r ′(t).

Also, for almost every t ∈ {t ∈ I : ‖x(t)−v(t)‖ > r(t) = 0}, we deduce that y(t) = v′(t)+a(t),
x ′(t) = v′(t) + x̃(t)t − x(t) and

〈x(t) − v(t), x ′(t) − v′(t)〉
‖x(t) − v(t)‖ = −‖x(t) − v(t)‖ < 0 = r ′(t).

So,

d

dt
‖x(t) − v(t)‖ < r ′(t) a.e. on {t ∈ I : ‖x(t) − v(t)‖ > r(t)}. (5.3)
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Also, since x satisfies the periodic boundary condition and ‖v(0) − v(1)‖ ≤ r(0) − r(1), we
deduce that

‖x(0) − v(0)‖ − r(0) ≤ ‖x(1) − v(1)‖ − r(1). (5.4)

The conclusion follows from (5.3) and (5.4). �

Now, we can prove our existence theorems.

Proof of Theorem 3.4. By Propositions 4.1 and 4.4, the operator

Fu − A∗ : C(I, Rn) → L1(I, Rn)

has closed, convex, bounded values and is u.s.c. when L1(I, Rn) is endowed with the weak
topology. Moreover, there exists h ∈ L1(I, [0,∞)) such that

‖y(t)‖ ≤ h(t) a.e. t ∈ I for all y ∈ Fu(x) − A∗(x) and x ∈ C(I, Rn). (5.5)

Let us define L : W 1,1
P (I, Rn) → L1(I, Rn) by L(x) = x ′. It is well known that L + id is

linear, continuous and bijective. Therefore, (L + id)−1 is continuous and hence (L + id)−1 :
(L1(I, Rn),Tw) → (W 1,1(I, Rn),Tw) is continuous. Let i : W 1,1(I, Rn) → C(I, Rn) be the
inclusion. Combining the results mentioned above with (5.5) and Pettis’ theorem, we deduce that

i ◦ (L + id)−1 ◦ (Fu − A∗) : C(I, Rn) → C(I, Rn)

is compact u.s.c. with compact convex values. Therefore, the Kakutani fixed point theorem
ensures the existence of a fixed point, and hence a solution x to (5.1). Finally, Proposition 5.1
guaranties that x ∈ T (v, r), and hence x is a solution to (1.1). �

Proof of Theorem 3.5. Let fl be the continuous single-valued map given by Proposition 4.3. It
follows from Proposition 4.4 that operator fl −A∗ : C(I, Rn) → L1(I, Rn) has closed, convex,
bounded values, and is u.s.c. when L1(I, Rn) is endowed with the weak topology. Moreover,
there exists h ∈ L1(I, [0,∞)) such that

‖y(t)‖ ≤ h(t) a.e. t ∈ I for all y ∈ fl (x) − A∗(x) and x ∈ C(I, Rn). (5.6)

The rest of the proof is analogous to the proof of Theorem 3.4. �

Now, we want to prove Theorems 3.6 and 3.7. To this aim, we consider the problems

x ′(t) + x(t) ∈ −A(x(t)) + Fu(t, x(t)) + x̃(t)t a.e. t ∈ [0, 1],
x(0) = x(1); (5.7)

and

x ′(t) + x(t) ∈ −A(x(t)) + Fl(t, x(t)) + x̃(t)t a.e. t ∈ [0, 1],
x(0) = x(1).

(5.8)

Again, solutions to those problems are in T (v, r).

Proposition 5.2. Assume that (A2), (A3), (ST-2) are satisfied. Then every solution x ∈
W 1,2

P (I, Rn) of (5.7) or (5.8) is such that x ∈ T (v, r).

The proof of this proposition is similar to the proof of Proposition 5.1. We are ready to prove
our existence results.
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Proof of Theorem 3.6. By Proposition 4.1 and Remark 4.2, the operator

Fu : C(I, Rn) → L2(I, Rn)

has closed, convex, bounded values and is u.s.c. when L2(I, Rn) is endowed with the weak
topology. Moreover, there exists h ∈ L2(I, [0,∞)) such that

‖y(t)‖ ≤ h(t) a.e. t ∈ I for all y ∈ Fu(x) and x ∈ C(I, Rn). (5.9)

On the other hand, Proposition 4.6 implies that J+ ◦Fu : C(I, Rn) → C(I, Rn) is compact u.s.c.
with compact convex values. Moreover, x is a solution of (5.7) if and only if x is a fixed point of
J+ ◦ Fu . Therefore, the Kakutani fixed point theorem ensures the existence of a fixed point, and
hence a solution x to (5.7). Finally, Proposition 5.2 guarantees that x ∈ T (v, r), and hence x is a
solution to (1.1). �

Proof of Theorem 3.7. Let fl : C(I, Rn) → L1(I, Rn) be the continuous single-valued map
given by Proposition 4.3 such that there exists h ∈ L2(I, [0,∞)) satisfying

‖y(t)‖ ≤ h(t) a.e. t ∈ I for all y ∈ fl(x) and x ∈ C(I, Rn). (5.10)

It follows from Proposition 4.6 and Remark 4.7 that J+ ◦ fl : C(I, Rn) → C(I, Rn) is a
single-valued continuous compact operator. It follows from the Schauder fixed point theorem
that this operator has a fixed point x , and hence a solution to (5.8). This solution is in T (v, r) by
Proposition 5.2. Therefore, x is a solution to (1.1). �

6. Existence results for the problem (1.2)

Now, we consider the problem (1.2)

x ′(t) ∈ A(x(t)) + F(t, x(t)), a.e. t ∈ [0, 1],
x(0) = x(1).

(6.1)

We can obtain existence results analogous to those obtained for the problem (1.1) in
introducing a notion of L p-solution-tube for this problem.

Definition 6.1. Let v ∈ W 1,p(I, Rn), and r ∈ W 1,p(I, R) with p ∈ [1,∞]. We say that (v, r) is
an L p-solution-tube of (1.2) if there exists a ∈ L p(I, Rn) such that

(i) a(t) ∈ Av(t) a.e. t ∈ I ;
(ii) for a.e. t ∈ I , and every x ∈ Rn such that ‖x − v(t)‖ = r(t), there exists y ∈ F(t, x) such

that

〈x − v(t), y + a(t) − v′(t)〉 ≥ r(t)r ′(t);
(iii) v′(t) ∈ a(t) + F(t, v(t)) a.e. on {t ∈ [0, 1] : r(t) = 0};
(iv) ‖v(0) − v(1)‖ ≤ r(1) − r(0).

We denote

T (v, r) = {x ∈ C(I, Rn) : ‖x(t) − v(t)‖ ≤ r(t) ∀t ∈ I }.
We consider the following condition:

(ST-p)∗ there exists (v, r) ∈ W 1,p(I, Rn) × W 1,p(I, [0,∞[) an L p-solution-tube of (1.2).
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We obtain similar existence results to those obtained above.

Theorem 6.2. Assume (F2-1), (ST-1)∗, (A1), and (F1-u) or (F1-l). Then the problem (1.2) has
a solution x ∈ W 1,1(I, Rn) ∩ T (v, r).

Theorem 6.3. Assume (F2-2), (ST-2)∗, (A2), (A3), and (F1-u) or (F1-l). Then the
problem (1.2) has a solution x ∈ W 1,2(I, Rn) ∩ T (v, r).

The proofs are similar to those presented in the previous section when we consider the
following auxiliary problems:

x ′(t) − x(t) ∈ A∗(t, x(t)) + F∗
�(t, x(t)) − x̃(t)t a.e.t ∈ [0, 1],

x(0) = x(1);
and

x ′(t) − x(t) ∈ A(x(t)) + F∗
�(t, x(t)) − x̃(t)t a.e. t ∈ [0, 1],

x(0) = x(1);
where � = u or l, and F∗

� = F̃ ∩ G∗
� with

G∗
u(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v′(t) + a(t), if r(t) = 0,

Rn, if ‖x − v(t)‖ ≤ r(t)
and r(t) > 0,

{z : 〈x − v(t), z − a(t) − v′(t)〉
≥ r ′(t)‖x − v(t)‖}, otherwise;

and

G∗
l (t, x) =

⎧⎪⎪⎨⎪⎪⎩
v′(t) + a(t), if r(t) = 0,

Rn, if ‖x − v(t)‖ < r(t),
{z : 〈x − v(t), z − a(t) − v′(t)〉

≥ r ′(t)‖x − v(t)‖}, otherwise.
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[5] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-
Holland Publishing Co., Amsterdam, 1973.

[6] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.



M. Frigon / Nonlinear Analysis 66 (2007) 2064–2077 2077

[7] M. Frigon, Boundary and periodic value problems for systems of nonlinear second order differential equations,
Topol. Methods Nonlinear Anal. 1 (1993) 259–274.
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