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BOUNDARY AND PERIODIC

VALUE PROBLEMS FOR SYSTEMS

OF NONLINEAR SECOND ORDER

DIFFERENTIAL EQUATIONS

Marlène Frigon

Abstract. In this paper, using the Schauder Fixed Point Theorem, we establish
some existence results to boundary and periodic value problems for systems of nonlin-
ear second order differential equations. Also, the notion of upper and lower solutions

to a differential equation is generalized in a natural way to systems of differential
equations.

1. Introduction

In this paper, we consider the boundary and periodic value problem for systems
of nonlinear second order differential equations

(⋆)

{
x′′(t) = f(t, x(t), x′(t)) a.e. t ∈ [0, 1]

x ∈ BC

where f : [0, 1] × R2n → Rn, is a Carathéodory function and BC denotes a boun-
dary condition such as non-homogeneous Dirichlet, Neumann, Sturm-Liouville con-
ditions, or the periodic condition:

(P )

{
x(0) = x(1),

x′(0) = x′(1);

(SL)

{
A0x(0)− β0x

′(0) = r0,

A1x(1) + β1x
′(1) = r1;

where Ai is a n× n matrix (possibly nonsymmetric) for which there exists αi ≥ 0
such that ⟨x,Aix⟩ ≥ αi∥x∥2 for all x in Rn; βi = 0, 1; αi + βi > 0; i = 0, 1.

The literature on this problem is voluminuous, and we refer to [1–4,7–11] and
the references therein. Recall that in the scalar case (n = 1), many results rely on
an assumption of the following form:

(1.1) xf(t, x, 0) ≥ 0 for |x| =M .

This assumption was generalized by one of existence of upper and lower solutions:

(1.2) there exist ϕ ≤ ψ ∈W 2,1([0, 1],R) such that
ϕ′′(t) ≥ f(t, ϕ(t), ϕ′(t)), and ψ′′(t) ≤ f(t, ψ(t), ψ′(t)) a.e. t ∈ [0, 1].
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2 M. FRIGON

The condition (1.1) was generalized for systems of differential equations by the
following assumption from which arose many results (see [1,3,8,10]):

(1.3) there exists a constant M > 0 such that ⟨x, f(t, x, p)⟩ + ∥p∥2 ≥ 0 for
∥x∥ =M and ⟨x, p⟩ = 0.

On the other hand, the assumption (1.2) was generalized in a number of ways, of
which we mention the following two:

(1.4) there exist ϕ ≤ ψ ∈W 2,1([0, 1],Rn) such that
ϕi

′′ ≥ fi(t, x1, . . . , xi−1, ϕi, xi+1, . . . , xn, p1, . . . , pi−1, ϕi
′, pi+1, . . . , pn),

ψi
′′ ≤ fi(t, x1, . . . , xi−1, ψi, xi+1, . . . , xn, p1, . . . , pi−1, ψi

′, pi+1, . . . , pn)
for ϕj(t) ≤ xj ≤ ψj(t), −cj ≤ pj ≤ cj for j ̸= i, and c being any
vector satisfying |ϕ′i(t)|, |ψ′

i(t)| < ci (see [2]);
(1.5) there exist ϕ ≤ ψ ∈W 2,1([0, 1],Rn) such that ϕ′′(t) ≥ f(t, ϕ(t)), and

ψ′′(t) ≤ f(t, ψ(t)) a.e. t ∈ [0, 1].

This last assumption was given in the case where the considered problem was the
periodic problem and the function f did not depend on the derivative x′ (see [11]).

I recall also that those assumptions came with some other assumptions related
to the boundary conditions. In particular, the assumptions (1.1) and (1.3) are
deficient for the non-homogeneous Neumann problem.

Note also that in the scalar case, the assumption of existence of upper and lower
solutions (1.2) generalizes the assumption (1.1). This is not the case for systems;
that is, the assumptions (1.4) and (1.5) don’t generalize the assumption (1.3).

In this paper, we introduce a new notion which is a natural generalization of
the assumption (1.3). Moreover, in the scalar case, this notion is equivalent to
the notion of upper and lower solutions. Furthermore, using this notion, we ob-
tain existence results for problems with periodic, or non-homogeneous Dirichlet,
Neumann, or Sturm-Liouville boundary conditions. Our Theorems 4.1 and 4.2 are
generalizations of some results obtained by Bebernes and Schmitt [1], Fabry and
Habets [4], and Hartman [8]. As we mentioned at the beginning, our results are
given in the Carathéodory context. The proofs rely on the Schauder Fixed Point
Theorem.

The author wishes to thank Professor Granas for a useful discussion.

2. Preliminaries

In this section, we establish notations, definitions, and results which are used
throughout this paper. We denote ⟨ , ⟩ the scalar product, and ∥ · ∥ the Euclidian
norm in Rn. The Banach space of the k-times continuously differentiable functions x
is denoted by Ck([0, 1],Rn) with the norm: ∥x∥k = max{∥x∥0, ∥x′∥0, . . . , ∥x(k)∥0},
where ∥x∥0 = max{∥x(t)∥ : t ∈ [0, 1]}. The Sobolev space of functions in C1([0, 1],Rn)
with the derivative being absolutely continuous is denoted by W 2,1([0, 1],Rn). We
define C0([0, 1],Rn) = {x ∈ C([0, 1],Rn) : x(0) = 0}, and Ck

B([0, 1],Rn), (resp.

W 2,1
B ([0, 1],Rn)) the set of functions x ∈ Ck([0, 1],Rn) (resp. W 2,1([0, 1],Rn)) sat-

isfying the boundary condition x ∈ BC. Let L1([0, 1],Rn) denote the space of
integrable functions, with the usual norm ∥ · ∥L1 .

Let ε ≥ 0, we define the operator Lε : C
1
B([0, 1],Rn) → C0([0, 1],Rn) by:

Lε(x)(t) = x′(t)− x′(0)− ε

∫ t

0

x(s)ds.
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A function F : C1([0, 1],Rn) → L1([0, 1],Rn) is said integrably bounded if there
exists an integrable function h in L1([0, 1], [0,∞)) such that

∥F (x)(t)∥ ≤ h(t) a.e. t ∈ [0, 1], and for every x in C1([0, 1],Rn).

We associate to F an operator NF : C1([0, 1],Rn) → C0([0, 1],Rn) defined by:

NF (x)(t) =

∫ t

0

F (x)(s)ds.

We recall the following result (see [7]).

Lemma 2.1. If F : C1([0, 1],Rn) → L1([0, 1],Rn) is a continuous and integrably
bounded function, then the associated operator NF is continuous and compact.

We say that a function f : [0, 1] × R2n → Rn is a Carathéodory function if:
(i) for every (x, p) in R2n, the function t 7→ f(t, x, p) is measurable; (ii) the function
(x, p) 7→ f(t, x, p) is continuous for almost every t in [0, 1]; (iii) for every k > 0,
there exists a function hk in L1([0, 1], [0,∞)) such that ∥f(t, x, p)∥ ≤ hk(t) a.e.
t ∈ [0, 1], for all ∥x∥ ≤ k and ∥p∥ ≤ k.

For sake of completeness, we state the following results which will be used later
in this paper.

Lemma 2.2. Let u : [0, 1] → Rn be an absolutely continuous function and let E be
a negligeable set in Rn, then meas{t ∈ [0, 1] : u(t) ∈ E and u′(t) ̸= 0} = 0.

Lemma 2.3. Let u ∈ W 2,1([0, 1],R) and ε > 0. Assume one of the following
properties is satisfied:

(i) u′′(t) ≥ 0 a.e. t ∈ [0, 1],
a0u(0)− b0u

′(0) ≤ 0, a1u(1) + b1u
′(1) ≤ 0,

where ai, bi ≥ 0, and max{ai, bi} > 0, max{a0, a1} > 0;
(ii) u′′(t)− εu(t) ≥ 0 a.e. t ∈ [0, 1],

a0u(0)− b0u
′(0) ≤ 0, a1u(1) + b1u

′(1) ≤ 0,
where ai, bi ≥ 0, and max{ai, bi} > 0;

(iii) u′′(t)− εu(t) ≥ 0 a.e. t ∈ [0, 1],
u(0) = u(1), u(0) ≤ 0 or u′(1)− u′(0) ≤ 0.

Then u(t) ≤ 0 for all t ∈ [0, 1].

Let us consider the following problem:

(⋆)

{
x′′(t) = f(t, x(t), x′(t)) a.e. t ∈ [0, 1]

x ∈ BC

where f : [0, 1] × R2n → Rn is a Carathéodory function and BC denotes one of
the following boundary conditions:

(P )

{
x(0) = x(1),

x′(0) = x′(1);

(SL)

{
A0x(0)− β0x

′(0) = r0,

A1x(1) + β1x
′(1) = r1;
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where Ai is a n× n matrix (possibly nonsymmetric) for which there exists αi ≥ 0
such that ⟨x,Aix⟩ ≥ αi∥x∥2 for all x in Rn; βi = 0, 1; αi + βi > 0, i = 0, 1.
In particular, (SL) includes non-homogeneous Dirichlet and Neumann boundary

conditions. A solution to (⋆) is a function x ∈W 2,1
B ([0, 1],Rn) satisfying (⋆).

Now, we introduce the notion of solution-tube to the problem (⋆). This notion
will play an essential role in our existence results.

Definition 2.4. A solution-tube to the problem (⋆) is a couple (v,M) where M
is a non-negative function in W 2,1([0, 1],R), and v is a function in W 2,1([0, 1],Rn)
such that:

(i) ⟨x− v(t), f(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2 ≥M(t)M ′′(t) + (M ′(t))2

a.e. t ∈ [0, 1] and for all (x, p) ∈ R2n such that ∥x− v(t)∥ =M(t), and
⟨x− v(t), p − v′(t)⟩ =M(t)M ′(t);
and v′′(t) = f(t, v(t), v′(t)) a.e. on {t ∈ [0, 1] :M(t) = 0};

(ii) if BC denotes (SL), ∥r0 − (A0v(0)− β0v
′(0))∥ ≤ α0M(0)− β0M

′(0),
∥r1 − (A1v(1) + β1v

′(1))∥ ≤ α1M(1) + β1M
′(1);

and if BC denotes (P ), v(0) = v(1), ∥v′(1) − v′(0)∥ ≤ M ′(1) −M ′(0),
and M(0) =M(1).

Remark that if BC denotes the homogeneous boundary condition (SL) (i.e.
r0 = r1 = 0) or the periodic condition (P ), to say that (0,M) is a solution-tube to
(⋆) with M > 0 being a constant, is equivalent to have:

⟨x, f(t, x, p)⟩+ ∥p∥2 ≥ 0 a.e. t ∈ [0, 1] and for all (x, p) ∈ R2n

with ∥x∥ =M and ⟨x, p⟩ = 0.

This condition was considered by many authors, we mention [1,3,8,11].
Remark also that in the scalar case, the notion of upper and lower solutions to (⋆)

is equivalent to the notion of solution-tube to (⋆). Indeed, if ϕ ≤ ψ ∈W 2,1([0, 1],R)
are respectively lower and upper solutions to (⋆), then ( (ϕ+ ψ)/2 , (ψ − ϕ)/2 ) is
a solution-tube to (⋆). Conversely, if (v,M) is a solution-tube to (⋆), then v −M ,
and v +M are respectively lower and upper solutions to (⋆).

3. Main Theorem

Before the statement of the main exitence result for the problem (⋆), we introduce
some notations.

Let v ∈W 2,1([0, 1],Rn), and M ∈W 2,1([0, 1], [0,∞)). Define

pi =

{ ∥ri∥+ ∥Ai∥ (M(i) + ∥v(i)∥), if BC = (SL), and βi ̸= 0,

∞, otherwise

i = 0, 1;

p2 =

{
min{|M ′(t)| :M(t) = 0}, if {t ∈ [0, 1] :M(t) = 0 } ≠ ∅
∞, otherwise;

and

c = c(BC, v,M) = min{p0, p1, p2}.

We may now state our main Theorem.
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Theorem 3.1. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
there exists (v,M) a solution-tube to (⋆) such that c = c(BC, v,M) < ∞. In
addition, suppose there exist γ ∈ L1([0, 1], [0,∞)) and a Borel measurable function
ϕ : [0,∞) → (0,∞) such that

∥f(t, x, p)∥ ≤ γ(t)ϕ(∥p∥) a.e. t and for all (x, p) with ∥x− v(t)∥ ≤M(t);

and ∫ ∞

c

ds

ϕ(s)
> ∥γ∥L1 ,

Then the problem (⋆) has a solution such that ∥x(t)−v(t)∥ ≤ M(t) for all t ∈ [0, 1].

To prove this theorem, we will modify the function f . To this modified function,
we will associate a problem for which we will deduce the existence of a solution.
Finally, we will observe that this solution is in fact a solution to our original problem
(⋆). In order to do that, we need to introduce some notations. Before that, we give
some examples.

Examples 3.2. (1) The following problem has a solution.{
x′′(t) = x′(t)− ∥x(t)∥x(t) + (1, 0, · · · , 0)
x(0) = x(1) = (0, · · · , 0)

Verify that v(t) ≡ 0, M(t) = t − t2, ϕ(s) = s + 17/16, γ(t) ≡ 1, satisfy the
assumptions of Theorem 3.1. Consequently, this problem has a solution such that
∥x(t)∥ ≤ t− t2. Obseve that there is no constant M such that (0,M) is a solution-
tube to this problem.

(2) The following problem has a solution.{
x′′(t) = (x′(t)− (t, · · · , t)) (∥x(t)∥+ 2)

x(0) = (0, · · · , 0), x(1) = (1, · · · , 1)

Verify that v(t) = ( t
2

2 , · · · ,
t2

2 ), M(t) = t
√
n

2 , ϕ(s) = (s+
√
n)(2+

√
n), γ(t) ≡ 1,

satisfy the assumptions of Theorem 3.1. Consequently, this problem has a solution

such that ∥x(t)−( t
2

2 , · · · ,
t2

2 )∥ ≤ t
√
n

2 . Observe that if we look for a solution-tube of
the form (0,M(t)), then we must have ∥x(1)− (0, · · · , 0)∥ = ∥(1, · · · , 1)∥ =

√
n ≤

M(1). Therefore (0,M(t)) gives a worse approximation of the solution. Note also
that there is no solution-tube (0,M) with M a constant.

Let (v,M) be the solution-tube to (⋆) given in Theorem 3.1, and let K be a
positive constant which will be determined later. To (t, x, p) ∈ [0, 1] × R2n, we
associate x̃, p̃, and p̂ given by:

x̃ =

{
M(t)

∥x−v(t)∥ (x− v(t)) + v(t), if ∥x− v(t)∥ > M(t),

x, otherwise;

p̃ =

{ K
∥p−v′(t)∥ (p− v′(t)) + v′(t), if ∥p− v′(t)∥ > K,

p, otherwise;
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and

p̂ =



p̃+ (x− v(t))×(
M ′(t)

∥x−v(t)∥ − ⟨x−v(t),p̃−v′(t)⟩
∥x−v(t)∥2

)
, if ∥x− v(t)∥ > M(t),

p̃+
(
1− K

∥p−v′(t)∥

)
M ′(t)
M(t) (x− v(t)), if M(t) > 0, ∥x− v(t)∥ ≤M(t),

and ∥p− v′(t)∥ > K,

p, otherwise.

Observe that ∥x̃∥, ∥p̃∥, ∥p̂∥ are bounded independently of (t, x, p).

Remark 3.3. If ∥x− v(t)∥ > M(t) then

(i) ∥x̃− v(t)∥ =M(t),
(ii) ⟨x̃− v(t), p̂− v′(t)⟩ =M(t)M ′(t),

(iii) ∥p̂− v′(t)∥2 = ∥p̃− v′(t)∥2 + (M ′(t))2 − ⟨x−v(t),p̃−v′(t)⟩2
∥x−v(t)∥2 ,

(iv) if K ≥ 2 ∥M ′∥0, then there exists a constant K0 depending only on v′ and
M ′ such that ∥p̂∥2 ≤ ∥p∥2 +K0.

Let ε ≥ 0, we define the functions f1, f2 : [0, 1]× R2n → Rn by:

f1(t, x, p) =


M(t)

∥x−v(t)∥f(t, x̃, p̂) +
(
1− M(t)

∥x−v(t)∥

)
×(

v′′(t) + M ′′(t)
∥x−v(t)∥ (x− v(t))

)
, if ∥x− v(t)∥ > M(t),

f(t, x, p̂), otherwise;

f2(t, x, p) = f1(t, x, p)− εx̃.

Observe that f1(t, x, p) = f(t, x, p), f2(t, x, p) = f(t, x, p) − εx on {(t, x, p) :
∥x − v(t)∥ ≤ M(t), ∥p − v′(t)∥ ≤ K}, and there exists h in L1([0, 1], [0,∞)) such
that ∥fi(t, x, p)∥ ≤ h(t) a.e. t, and for all (x, p) ∈ R2n, i = 1, 2.

To the function fi, we associate Fi : C1([0, 1],Rn) → L1([0, 1],Rn), (i = 1, 2),
an operator defined by:

Fi(x)(t) = fi(t, x(t), x
′(t)).

The function f1, and consequently f2 are not necessarily Carathéodory functions,
but we have the following result:

Proposition 3.4. Let f : [0, 1] × R2n → Rn be a Carathéodory function and
let (v,M) be a solution-tube to (⋆). Then the previously defined operator F1 :
C1([0, 1],Rn) → L1([0, 1],Rn), is continuous and integrably bounded.

Proof. Obviously, F1 is integrably bounded. Therefore, it is sufficient to show that
if xn → x in C1([0, 1],Rn), then

(3.1) f1(t, xn(t), x
′
n(t)) → f1(t, x(t), x

′(t)) a.e. t ∈ [0, 1].

The conclusion will follow from the Lebesgue Dominated Convergence Theorem.
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Since f is a Carathéodory function, it is clear from the definition of f1 that the
relation (3.1) holds almost everywhere on {t ∈ [0, 1] : ∥x(t) − v(t)∥ ̸= M(t)}. On
the other hand, by Lemma 2.2, we have

⟨x(t)− v(t), x′(t)− v′(t)⟩ =M(t)M ′(t) a.e.

on {t ∈ [0, 1] : ∥x(t) − v(t)∥ = M(t) > 0}. Therefore, it is easy to verify that
almost everywhere on that set,

x̂′n(t) → x̂′(t).

Thus, the relation (3.1) is satisfied almost everywhere on that set.

Finally, on {t ∈ [0, 1] : ∥x(t) − v(t)∥ = 0 = M(t)}, x(t) = v(t), x′(t) = v′(t),
M ′(t) = 0,M ′′(t) = 0 a.e.; so, f1(t, x(t), x

′(t)) = f(t, x(t), x′(t)) = f(t, v(t), v′(t)) =
v′′(t) a.e. Observe that, on that set, f1(t, y, p) = v′′(t) a.e., for all p, and y ̸= v(t).
This completes the proof. �

Corollary 3.5. Under the assumptions of Proposition 3.4, the operator F2 : C1([0, 1],Rn) →
L1([0, 1],Rn) previously defined, is continuous, and integrably bounded.

Now, we consider the associated problems:

(⋆)1

{
x′′(t) = f1(t, x(t), x

′(t)) a.e. t ∈ [0, 1]

x ∈ BC

(⋆)2

{
x′′(t)− ε x(t) = f2(t, x(t), x

′(t)) a.e. t ∈ [0, 1]

x ∈ BC

Fix ε ≥ 0 such that the operator Lε : C
1
B([0, 1],Rn) → C0([0, 1],Rn) defined in

§2 is invertible. In particular, if BC denotes (SL) with max{α0, α1} > 0, then we
can take ε = 0 (see [6]).

The following result gives a priori bounds on the solutions to the problem (⋆)2.

Lemma 3.6. Let f be a Carathéodory function and (v,M) a solution-tube to (⋆).
Then every solution to (⋆)2 satisfies ∥x(t)− v(t)∥ ≤M(t) for every t ∈ [0, 1].

Proof. First of all, we remark that

(3.2) ⟨x− v(t), f1(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2 ≥

M ′′(t) ∥x− v(t)∥+ ⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥2

a.e. t ∈ [0, 1], and for every (x, p) ∈ R2n, with ∥x− v(t)∥ > M(t).
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Indeed, if ∥x − v(t)∥ > M(t), using Definition 2.4 and Remark 3.3 give

⟨x− v(t), f1(t, x, p)− v′′(t)⟩+ ∥p− v′(t)∥2

= ⟨x̃− v(t), f(t, x̃, p̂)− v′′(t)⟩+M ′′(t) (∥x− v(t)∥ −M(t)) + ∥p− v′(t)∥2

≥M(t)M ′′(t) + (M ′(t))2 +M ′′(t) (∥x− v(t)∥ −M(t))

+ ∥p− v′(t)∥2 − ∥p̂− v′(t)∥2

=M ′′(t) ∥x− v(t)∥+ ∥p− v′(t)∥2 − ∥p̃− v′(t)∥2 + ⟨x− v(t), p̃− v′(t)⟩2

∥x− v(t)∥2

=



M ′′(t) ∥x− v(t)∥+ ⟨x−v(t),p−v′(t)⟩2
∥x−v(t)∥2 , if ∥p− v′(t)∥ ≤ K

M ′′(t) ∥x− v(t)∥+ ⟨x−v(t),p−v′(t)⟩2
∥x−v(t)∥2

+
(
1− K2

∥p−v′(t)∥2

)
×(

∥p− v′(t)∥2 − ⟨x−v(t),p−v′(t)⟩2
∥x−v(t)∥2

)
, otherwise

≥M ′′(t) ∥x− v(t)∥+ ⟨x− v(t), p− v′(t)⟩2

∥x− v(t)∥2
.

On the other hand, let x be a solution to (⋆)2. So,

(3.3) x′′(t) = f2(t, x(t), x
′(t)) + εx(t) = f1(t, x(t), x

′(t)) + ε(x(t)− x̃(t)).

On the set {t ∈ [0, 1] : ∥x(t)− v(t)∥ > M(t)}, we have

∥x(t)− v(t)∥′ = ⟨x(t)− v(t), x′(t)− v′(t)⟩
∥x(t)− v(t)∥

which exists for all t, and

(3.4) ∥x(t)− v(t)∥′′ = ⟨x(t)− v(t), x′′(t)− v′′(t)⟩+ ∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥

− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3
.

Fix δ > 0, and let Eδ = {t ∈ [0, 1] : ∥x(t) − v(t)∥ > M(t) + δ}. The function
∥x(t) − v(t)∥ belongs to the space W 2,1(Eδ,R). Therefore, if we note w(t) =
∥x(t)− v(t)∥ − (M(t) + δ), then, using the relations (3.2), (3.3) and (3.4), we
verify that:

w′′(t)− εw(t)

=

⟨
x(t)− v(t), f1(t, x(t), x

′(t))− v′′(t) + ε(1− M(t)
∥x(t)−v(t)∥ )(x(t)− v(t))

⟩
∥x(t)− v(t)∥

+
∥x′(t)− v′(t)∥2

∥x(t)− v(t)∥
− ⟨x(t)− v(t), x′(t)− v′(t)⟩2

∥x(t)− v(t)∥3

−M ′′(t)− εw(t)

≥ εδ

≥ 0.
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In order to apply the maximum principle (Lemma 2.3), we need to verify some
boundary conditions. If BC denotes (SL) then, either

w(0) ≤ 0 or α0w(0)− β0w
′(0) ≤ 0.

Indeed,

∥x(0)− v(0)∥ (α0∥x(0)− v(0)∥ − β0∥x(0)− v(0)∥′)
≤ ⟨x(0)− v(0), A0(x(0)− v(0))− β0(x

′(0)− v′(0))⟩
≤ ∥x(0)− v(0)∥ ∥r0 − (A0v(0)− β0v

′(0))∥
≤ ∥x(0)− v(0)∥(α0M(0)− β0M

′(0))

≤ ∥x(0)− v(0)∥(α0(M(0) + δ)− β0(M + δ)′(0)).

Similarly, either

w(1) ≤ 0 or α1w(1) + β1w
′(1) ≤ 0.

On the other hand, if BC denotes the periodic boundary condition (P ),

∥x(0)− v(0)∥ = ∥x(1)− v(1)∥, M(0) =M(1),

and, either

∥x(0)− v(0)∥ ≤ 0 or w′(1)− w′(0) ≤ 0.

Indeed,

∥x(1)− v(1)∥′ − ∥x(0)− v(0)∥′ = ⟨x(0)− v(0), v′(0)− v′(1)⟩
∥x(0)− v(0)∥

≤

∥v′(1)− v′(0)∥ ≤M ′(1)−M ′(0) = (M + δ)′(1)− (M + δ)′(0).

By Lemma 2.3 applied to w, we deduce that ∥x(t) − v(t)∥ ≤ M(t) + δ. But this
inequality holds for every δ > 0; therefore, ∥x(t)−v(t)∥ ≤M(t) for every t ∈ [0, 1].
This completes the proof. �

Now, we can prove our main Theorem.

Proof of Theorem 3.1. To prove this theorem, the constant K will be chosen ap-
propriately, and we will show that the problem (⋆)2 has a solution x satisfying
∥x(t) − v(t)∥ ≤ M(t), and ∥x′(t) − v′(t)∥ ≤ K. Thus, using the definition of f2,
this solution will be a solution to our original problem (⋆).

By Lemma 3.6, we know that every solution to (⋆)2 satisfies ∥x(t) − v(t)∥ ≤
M(t). Now, we will determine K in order that ∥x′(t)−v′(t)∥ ≤ K for every solution
to (⋆)2.

Let x be a solution to (⋆)2 and c = c(BC, v,M) be the constant previously
defined. By assumption, c < ∞. Using the boundary condition, we can show that

there exists t0 ∈ [0, 1] such that ∥x′(t0)∥ ≤ c. Fix K̃ > c such that

(3.5) ∥γ∥L1 <

∫ K̃

c

ds

ϕ(s)
,
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and choose K such that

(3.6) ∥p∥ ≤ K̃ implies ∥p− v′(t)∥ ≤ K for all t ∈ [0, 1].

We claim that ∥x′(t)∥ < K̃ for all t ∈ [0, 1]. Suppose that ∥x′(t1)∥ ≥ K̃ for some

t1 ∈ [0, 1]. Then, there exist t2, t3 ∈ [0, 1] such that ∥x′(t2)∥ = c, ∥x′(t3)∥ = K̃,

and c < ∥x′(t)∥ ≤ K̃ for all t between t2 and t3. Without loss of generality, assume
that t2 < t3, then

∥x′(t)∥′ = ⟨x′(t), x′′(t)⟩
∥x′(t)∥

which exists for all t ∈ (t2, t3], and

x′′(t) = f(t, x(t), x′(t)) a.e. t ∈ [t2, t3]

by the definition of f2. Thus,

∥x′(t)∥′ ≤ ∥x′′(t)∥ ≤ γ(t)ϕ(∥x′(t)∥) a.e. t ∈ (t2, t3].

Dividing by ϕ, integrating from t2 to t3, we obtain:∫ t3

t2

∥x′(t)∥′

ϕ(∥x′(t)∥)
dt ≤ ∥γ∥L1 .

By the inequality (3.5) and the change of variables formula (see [5]), we get

∥γ∥L1 <

∫ K̃

c

ds

ϕ(s)
=

∫ t3

t2

∥x′(t)∥′

ϕ(∥x′(t)∥)
dt ≤ ∥γ∥L1 .

This leads to a contradiction. In consequence, ∥x′(t)∥ < K̃ for all t ∈ [0, 1], and
the relation (3.6) gives

(3.7) ∥x′(t)− v′(t)∥ ≤ K for all t ∈ [0, 1].

On the other hand, a solution to (⋆)2 is a fixed point for the operator L−1
ε ◦NF2 :

C1
B([0, 1],Rn) → C1

B([0, 1],Rn), where Lε and NF2 are defined in §2. Using
Lemma 2.1 and Corollary 3.5, we deduce the compacity of this operator. The
Schauder Fixed Point Theorem gives the existence of a fixed point to L−1

ε ◦ NF2 ,
and then a solution to (⋆)2. Using Lemma 3.6 and the relation (3.7), we get the
conclusion. �

4. Other existence results

In what follows, we will generalize some results given by Hartmann [8,9], Be-
bernes and Schmitt [1], Fabry and Habets [4], for the periodic or the Dirichlet
problem. In those results, the function f was continuous, and they assumed the
existence of what we call a solution-tube of the form (0,M) with M a positve con-
stant, as in [1,8,9], or a positive function in C2([0, 1],R), as in [4]. As we mentioned
before, we will obtain results not only for the Dirichlet or periodic boundary condi-
tions, but also for the non-homogeneous Neumann and Sturm-Liouville boundary
conditions.
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Theorem 4.1. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
there exists (v,M) a solution-tube to the problem (⋆). In addition, assume there
exist a constant k ≥ 0, a function h ∈ L1([0, 1], [0,∞)), and a Borel measurable
function ϕ : [0,∞) → (0,∞) such that∫ ∞ s

ϕ(s)
ds = ∞,

and the two following properties are satisfied a.e. t ∈ [0, 1], and for (x, p) ∈ R2n

with ∥x− v(t)∥ ≤M(t):

(i) ∥f(t, x, p)∥ ≤ 2k (⟨x, f(t, x, p)⟩+ ∥p∥2) + h(t);
(ii) |⟨p, f(t, x, p)⟩| ≤ ∥p∥ϕ(∥p∥).

Then the system (⋆) has a solution such that ∥x(t)− v(t)∥ ≤M(t).

Proof. We will show that every solution to the problem (⋆)2 satisfies ∥x(t)−v(t)∥ ≤
M(t), and ∥x′(t) − v′(t)∥ ≤ K where K will be an appropriate constant which
will be chosen later.

Let K0 be the constant given in Remark 3.3(iv). Let M1 = ∥M∥0 + ∥v∥0,
K1 = 4(1 + kM1)M1 + ∥h∥L1 + kK0/2, and take K2 > K1 such that

(4.1)

∫ K2

K1

s

ϕ(s)
ds > K1 + 2kM2

1 ;

and choose K > 2 ∥M ′∥0 such that

(4.2) ∥p∥ ≤ K2 implies ∥p− v′(t)∥ ≤ K for all t ∈ [0, 1].

We will show that every solution to (⋆)2 satisfies ∥x′(t)∥ ≤ K2, hence

∥x′(t)− v′(t)∥ ≤ K for all t ∈ [0, 1].

Let x be a solution to (⋆)2. By Lemma 3.6, we already know that x satisfies
∥x(t)− v(t)∥ ≤M(t), and thus

(4.3) ∥x(t)∥ ≤M1.

The assumption (i), the inequality (4.3), Remark 3.3(iv), and the following re-
lation

x(t+ 1/2)− x(t)− x′(t)

2
=

∫ t+1/2

t

(t+ 1/2− s)x′′(s)ds, 0 ≤ t ≤ 1/2

imply that

(4.4) ∥x′(t)∥ ≤ 4M1 + 4kM2
1 + ∥h∥L1 − 2k(∥x(t)∥2)′ + kK0

2
, for 0 ≤ t ≤ 1/2.

Similarly, the assumption (i), the inequality (4.3), Remark 3.3(iv), and the following
relation

x(t)− x(t− 1/2)− x′(t)

2
=

∫ t

t−1/2

(t− 1/2− s)x′′(s)ds, 1/2 ≤ t ≤ 1
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leads to

(4.5) ∥x′(t)∥ ≤ 4M1 + 4kM2
1 + ∥h∥L1 + 2k(∥x(t)∥2)′ + kK0

2
, for 1/2 ≤ t ≤ 1.

Adding (4.4) and (4.5) gives

∥x′(1/2)∥ ≤ 4M1 + 4kM2
1 + ∥h∥L1 + kK0/2 = K1.

Now, suppose there exists t0 ∈ [0, 1] such that ∥x′(t0)∥ ≥ K2. Then there exist
t1 and t2 ∈ [0, 1] such that ∥x′(t1)∥ = K1, ∥x′(t2)∥ = K2, and K1 < ∥x′(t)∥ < K2

for t between t1 and t2. Without loss of generality, assume 1/2 ≤ t1 < t2. Then
the assumption (ii) and the inequality (4.5) imply that

⟨x′(t), x′′(t)⟩
ϕ(∥x′(t)∥)

≤ |⟨x′(t), x′′(t)⟩|
ϕ(∥x′(t)∥)

≤ ∥x′(t)∥ ≤ K1 + 2k(∥x(t)∥2)′.

Integrating from t1 to t2, and using the change of variables formula and the in-
equality (4.1) give∫ K2

K1

s

ϕ(s)
ds =

∫ t2

t1

⟨x′(t), x′′(t)⟩
ϕ(∥x′(t)∥)

dt ≤ K1 + 2kM2
1

<

∫ K2

K1

s

ϕ(s)
ds.

This is a contradiction. Therefore, ∥x′(t)∥ ≤ K2 for all t ∈ [0, 1] and then ∥x′(t)−
v′(t)∥ ≤ K. The rest of the proof follows as in the proof of Theorem 3.1, and we
get the existence of a solution to the problem (⋆). �

The following theorem generalizes a result given by Fabry and Habets [4], and
obtained for the classical homogeneous Dirichlet problem. They assumedM(t) > 0
for all t ∈ [0, 1], which is not the case here.

Theorem 4.2. Let f : [0, 1] × R2n → Rn be a Carathéodory function. Assume
there exists (v,M) a solution-tube to the problem (⋆). In addition, assume there
exist a constant k ∈ [0, 1), a function h ∈ L1([0, 1], [0,∞)), and a Borel measurable
function ϕ : [0,∞) → (0,∞) such that∫ ∞ s2

ϕ(s)
ds = ∞,

and the two following properties are satisfied a.e. t ∈ [0, 1], and for (x, p) ∈ R2n

with ∥x− v(t)∥ ≤M(t):

(i) 0 ≤ ⟨x, f(t, x, p)⟩+ k∥p∥2 + h(t);
(ii) |⟨p, f(t, x, p)⟩| ≤ ∥p∥ϕ(∥p∥).

Let BC denote the boundary condition (P ), or (SL) with (1 − βi)riM(i) = 0,
i = 0, 1. Then the system (⋆) has a solution such that ∥x(t)− v(t)∥ ≤M(t).

Proof. As before, we will show that the problem (⋆)2 has a solution satisfying
∥x(t)− v(t)∥ ≤ M(t), and ∥x′(t)− v′(t)∥ ≤ K, where K is a constant which will
be determined later.
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First of all, taking into account the boundary condition and Lemma 3.6, we note
that there exists a constant k0 = k0(BC, v,M) such that every solution to (⋆)2 is
such that

(4.6) ⟨x(1), x′(1)⟩ − ⟨x(0), x′(0)⟩ ≤ k0.

Let k1 =
(

1
1−k (∥h∥L1 + k0 + kK0)

)1/2

, where K0 is the constant given in Re-

mark 3.3(iv). Let k2 be such that

(4.7)

∫ k2

k1

s2

ϕ(s)
ds > k21,

and take K > 2 ∥M ′∥0 such that

(4.8) ∥p∥ ≤ k2, implies that ∥p− v′(t)∥ ≤ K.

Let x be a solution to (⋆)2. By Lemma 3.6,

(4.9) ∥x(t)− v(t)∥ ≤M(t).

By using Remark 3.3(iv), the relation (4.9), and the assumption (i), we get

⟨x(t), x′′(t)⟩ = ⟨x(t), f1(t, x(t), x′(t))⟩ = ⟨x(t), f(t, x(t), x̂′(t))⟩
≥ −k∥x′(t)∥2 − h(t)− kK0.

Integrating by parts gives

⟨x(1), x′(1)⟩ − ⟨x(0), x′(0)⟩ −
∫ 1

0

∥x′(t)∥2 dt ≥ −k
∫ 1

0

∥x′(t)∥2 dt− ∥h∥L1 − kK0.

It follows that ∫ 1

0

∥x′(t)∥2 dt ≤ 1

1− k
(∥h∥L1 + k0 + kK0) = k21.

Now, suppose there exists t0 ∈ [0, 1] such that ∥x′(t0)∥ ≥ k2. Then there exist
t1 and t2 in [0, 1] such that ∥x′(t1)∥ = k1, ∥x′(t2)∥ = k2, and k1 < ∥x′(t)∥ ≤ k2,
and then ∥x′(t) − v′(t)∥ ≤ K for t between t1 and t2. Without loss of generality,
assume t1 < t2, then the assumption (ii) implies that

∥x′(t)∥ ⟨x′(t), x′′(t)⟩
ϕ(∥x′(t)∥)

≤ ∥x′(t)∥2 a.e. t ∈ (t1, t2).

Integrating from t1 to t2, and using the change of variables formula give∫ k2

k1

s2

ϕ(s)
ds =

∫ t2

t1

∥x′(t)∥ ⟨x′(t), x′′(t)⟩
ϕ(∥x′(t)∥)

dt

≤
∫ t2

t1

∥x′(t)∥2 dt ≤ k21 <

∫ k2

k1

s2

ϕ(s)
ds.

We get a contradiction. Therefore, ∥x′(t)∥ < k2, and then ∥x′(t)− v′(t)∥ ≤ K for
all t ∈ [0, 1]. This completes the proof. �
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