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Abstract

This is a mere sketch of the course being given in the fall of 2004.

I shall give the course in French, but if some student so wishes, I

shall write on the blackboard in English. In the same eventuality,

these lecture notes are in English. Prerequisites for the course are

functions of one complex variable, functions of several real variables

and topology, all at the undergraduate level.

1 Introduction

If the coordinates of z ∈ Cn are given by z = (z1, · · · , zn), and we write
zj = xj + iyj, where xj = <zj and yj = =zj, then we denote:

x = (x1, · · · , xn) = <z, y = (y1, · · · , yn) = =z,

|z| =
√

∑

|zj|2 =
√

∑

(|xj|2 + |yj|2) =
√

|x|2 + |y|2,

∂

∂zj

=
1

2

(

∂

∂xj

− i
∂

∂yj

)

,
∂

∂zj

=
1

2

(

∂

∂xj

+ i
∂

∂yj

)

.

When speaking, we call these the derivative with respect to zj and the deriv-
ative with respect to zj respectively, however, they are not necessarily deriv-
atives. That is, for a C1 function f , the expressions ∂f

∂zj
and ∂f

∂zj
are well

defined above, but cannot always be expressed as the limit of some differen-
tial quotient.

Recall that a function f defined in an open subset Ω of C is said to be
holomorphic if f has a derivative at each point of Ω. If f is holomorphic in

1



an open set Ω of C, then f satisfies the Cauchy-Riemann equation ∂f/∂z = 0
in Ω. The converse is false. For example, the function f defined to be 0 at 0
and e−1/z4

elsewhere satisfies the Cauchy-Riemann equation at all points of
C but is not holomorphic at 0. However, if f ∈ C1(Ω), then f is holomorphic
in Ω if and only if it satisfies the Cauchy-Riemann equation.

Let Ω be an open subset of Cn. A function f ∈ C1(Ω) is said to be
holomorphic in Ω if it is holomorphic in each variable, thus, if and only if f
satisfies the system of (homogeneous) Cauchy-Riemann equations

∂f

∂z̄j

= 0, j = 1, · · · , n.

It is a deep result of Hartogs, that the condition that f be in C1(Ω) is
superfluous. A function is said to be holomorphic on a subset E of Cn if
it is holomorphic in an open neighborhood of E. In complex analysis, the
inhomogeneous system ofCauchy-Riemann equations

∂f

∂z̄j

= uj, j = 1, · · · , n,

is also important. Loosely speaking, we say that a system of differential
equations is integrable if the system has a solution. Of course, in order for a
solution to exist to the above inhomogeneous system, the functions uj must
satisfy the following integrability (or compatibility) conditions.

∂uj

∂z̄k
=
∂uk

∂z̄j
j, k = 1, · · · , n.

A function defined in an open subset of Rn (respectively Cn) is said to
be real (respectively complex) analytic if it is locally representable by power
series.

Theorem 1. A function is holomorphic iff it is complex analytic.

Theorem 2. A function is complex analytic iff it is complex analytic in each
variable.

Problem 1. Show Theorem 1 implies Theorem 2.

Problem 2. Show that the ’real’ analog of Theorem 2 is false. This is a big
difference between real analysis and complex analysis.
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Let fj be holomorphic in a domain Dj, j = 1, 2 and suppose If f1 = f2

in some non-empty component G of D1 ∩D2, then f2 is said to be a direct
holomorphic continuation of f1 through G. In shorthand, we also say (f2, D2)
is a direct holomorphic continuation of (f1, D1).

Let f be holomorphic in a domain D and let p ∈ ∂D. We say that f has a
direct holomorphic continuation to p if there is a holomorphic function fp in a
neighborhood Dp of p such that (fp, Dp) is a direct holomorphic continuation
of (f,D) through some component G of D ∩Dp with p ∈ ∂G.

Problem 3. In C give an example of a function f holomorphic in a domain
D and a boundary point p such that f has a direct holomorphic continuation
to p. Also, give and example where f has no direct holomorphic continuation
to p.

A domain D is a domain of holomorphy if it is the ’natural’ domain for
some holomorphic function. That is, if there is a function f holomorphic
in D which cannot be directly holomorphically continued to any boundary
point of D. In particular, f cannot be directly holomorphicaly continued to
any domain which contains D.

Problem 4. Give an example of a domain of holomorphy in C
1.

Problem 5. Show that each domain in C1 is a domain of holomorphy.

Problem 6. Give an example of a domain of holomorphy in C2.

The following theorem and its corollary show an important difference
between complex analysis in one variable and in several variables.

Theorem 3 (Hartogs phenomenon). Let Ω be a bounded domain in C
n, n >

1. Then, any function holomorphic in a neighborhood of ∂Ω has a direct
holomorphic continuation to Ω.

Corollary 4. In Cn, n > 1, not every domain is a domain of holomorphy.

Problem 7. Show that the corollary follows from the theorem.

Corollary 5. Holomorphic functions of more than one variable have no iso-
lated nonremovable singularities.

Problem 8. Show that the corollary follows from the theorem.
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Corollary 6. Holomorphic functions of more than one variable have no iso-
lated zeros.

Problem 9. Show that the corollary follows from the previous corollary.

In C there are two domains of particular interest, C and the unit disc D.
The Riemann mapping theorem asserts that each simply connected domain
in C is equivalent, in the sense of complex analysis, to one of these two
domains.

In Cn, the analog of the Riemann mapping theorem fails. First of all,
there are two natural generalizations of the unit disc, the unit ball Bn = {z :
‖z‖ < 1} and the unit polydisc D

n = {z : |zj| < 1, j = 1, · · · , n}. Both of
these domains are simply connected, but they are not equivalent in the sense
of complex analysis. Let us be more precise.

A mapping from a domain of Cn into Cm is said to be holomorphic if
each of its components is holomorphic. A holomorphic mapping from one
domain to another is said to be biholomorphic if it is bijective and if the
inverse mapping is also holomorphic. The two domains are then said to be
biholomorphically equivalent. Poincaré has shown that, for n > 1, the unit
polydisc D

n and the unit ball B
n are not biholomorphic!

The Hartogs phenomenon and the failure of the Riemann mapping the-
orem, for n > 1, are two major differences between complex analysis in one
variable and in several variables.

2 Cauchy Integral Formula

Often, we shall restrict our attention to functions of two complex variables
for simplicity.

Theorem 7. Let f be holomorphic on the closed polydisc D
2
. Then,

f(z1, z2) =
1

(2πi)2

∫

|ζ1|=1

∫

|ζ2|=1

f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2

for each z ∈ D2.

Proof. For each fixed z2 in the unit disc, f(z1, z2) is holomorphic in z1 for z1

in the closed unit disc. Hence, for |z1| < 1,

f(z1, z2) =
1

2πi

∫

|ζ1|=1

f(ζ1, z2)

ζ1 − z1
dζ1
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by the usual Cauchy formula. For each fixed ζ1 on the unit circle, f(ζ1, z2)
is holomorphic in z2 for z2 in the closed unit disc. Hence, for |z2| < 1,

f(ζ1, z2) =
1

2πi

∫

|ζ2|=1

f(ζ1, ζ2)

ζ2 − z2
dζ2.

Combining the last two expressions, we obtain the theorem.

Problem 10. Show that each function holomorphic in the polydisc is the
uniform limit on compact subsets of rational functions.

Problem 11. Show that each entire function (function holomorphic in C
n)

is the uniform limit on compact subsets of rational functions.

We have stated the Cauchy formula in the polydisc in C2 for simplic-
ity. As in one variable, there is also a Cauchy integral formula for deriv-
atives. To state the formula in Cn, we introduce multi-index notation.
α = (α1, · · · , αn), where each αj is a non-negative integer and, by abuse
of notation, we write 1 = (1, · · · , 1) and 0 = (0, · · · , 0). If a ∈ Cn and
aj 6= 0, j = 1, · · · , n, we write

z

a
=
z1

a1
=
z1 · · · zn

a1 · · ·an

. (1)

Set |α| = α1 + · · · + αn, α! = α1! · · ·αn! and zα = zα1
1 · · · zαn

n . We denote
derivatives with respect to real variables by

∂|β|+|γ|f

∂xβ∂yγ
=

∂|β|+|γ|f

∂xβ1
1 · · ·∂xβn

n ∂yγ1
1 · · ·∂yγn

n

and with respect to complex variables by

f (α) =
∂|α|f

∂zα
=

∂|α|f

∂zα1
1 · · ·∂zαn

n

.

The following lemma of Leibniz taken from Bartle allows one to differen-
tiate under the integral sign.

Lemma 8 (Leibniz). Let µ be a measure on a locally compact Hausdorff space
Y with countable base and let I be an open interval. Consider a function
f : I × Y → R, with f(x, ·) (Borel) measurable, for each x ∈ I. Suppose
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there exists a point x0 such that f(x0, ·) is µ-integrable, ∂f/∂x exists on I
and there is a µ-integrable function g on Y such that

∣

∣

∣

∣

∂f

∂x
(x, y)

∣

∣

∣

∣

≤ g(y), ∀(x, y).

Then
∂

∂x

∫

f(x, ·)dµ =

∫

∂f

∂x
(x, ·)dµ.

Let bDn = {z : |zj| = 1, j = 1, · · · , n} denote the distinguished boundary
of the polydisc and dζ = dζ1 · · ·dζn.

Theorem 9. Let f be holomorphic on the closed polydisc D
n
. Then, f ∈

C∞(Dn), and for each z ∈ Dn

∂|β|+|γ|f

∂xβ∂yγ
(z) =

1

(2πi)n

∫

bDn

f(ζ)
∂|β|+|γ|

∂xβ∂yγ

(

1

ζ − z

)

dζ.

All of these partial derivatives are holomorphic and, in particular,

f (α)(z) =
α!

(2πi)n

∫

bDn

f(ζ)

(ζ − z)α+1
dζ.

Proof. We already have the Cauchy integral formula for f itself, that is, for
the multi-index α = 0. In order to obtain the Cauchy formula for the first
order partial derivatives of f , we apply the Leibniz theorem to differentiate
the Cauchy formula for f by differentiating under the integral sign. Rep-
etition of this process gives the general formula. We note that from this
general Cauchy integral formula, it follows that all of the partial derivatives
are continuous. Since all partial derivatives of the Cauchy kernel are holo-
morphic, the Leibniz formula yields that all partial derivatives of f are also
holomorphic. The second formula is then a particular case of the first, since

∂

∂zj

=
1

2

(

∂

∂xj

− i
∂

∂yj

)

.

Problem 12. If f is holomorphic in an open set Ω of Cn, then f ∈ C∞(Ω).
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Problem 13. If F is a uniformly bounded family of holomorphic functions
on an open set Ω ⊂ Cn, then, for each compact subset K ⊂ Ω and each pair
of multi-indices α, β, there is a 0 < MK

αβ < +∞, such that, for each f ∈ F ,

∣

∣

∣

∣

∂|α|+|β|f

∂xα∂yβ
(z)

∣

∣

∣

∣

≤MK
αβ, for all z ∈ K.

Problem 14. If f is holomorphic in an open set Ω of Cn, then all partial
derivatives of f are also holomorphic in Ω.

Theorem 10. Let ϕ be continuous on the distinguished boundary of a poly-
disc D and define F as the Cauchy integral of ϕ:

F (z) =
1

(2πi)n

∫

bD

ϕ(ζ)

ζ − z
dζ,

for z ∈ D. Then, F is holomorphic in D.

Proof. The proof is the same as that of the Cauchy integral formula. Using
the Leibniz formula, we show that F is smooth and satisfies the Cauchy-
Riemann equations.

3 Sequences of holomorphic functions

Theorem 11. On an open set, the uniform limit of holomorphic functions
is holomorphic.

Proof. Let fn be holomorphic on an open set Ω and suppose fn → f uni-
formly. It is sufficient to show that f is holomorphic in a neighborhood of
each point of Ω. It is sufficient to show that f is holomorphic in each polydisc
whose closure is contained in Ω. Let D be such a polydisc. From the uniform
convergence, we have, for z ∈ D,

f(z) = lim fj(z) = lim
1

(2πi)n

∫

bD

fj(ζ)

ζ − z
dζ =

1

(2πi)n

∫

bD

f(ζ)

ζ − z
dζ.

Thus, f is a Cauchy integral in D and hence f is holomorphic in D.

One of the most fundamental facts concerning numerical sequences is the
Bolzano-Weierstrass theorem. Recall that a sequence of numbers ‘{zj} is
bounded if there is a number M > 0 such that |zj| ≤M , for all j.
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Theorem 12 (Bolzano-Weierstrass). Any bounded sequence of numbers has
a convergent subsequence.

A sequence of functions {fj} is (uniformly) bounded on a set E if there is
a number M > 0 such that |fj| ≤ M , for all j. For sequences of functions,
we have the following analog of the Bolzano-Weierstrass theorem, known as
Montel’s theorem.

Theorem 13 (Montel). Let F be a bounded family of holomorphic functions
on an open set Ω ⊂ Cn. Then, each sequence of functions in F has a
subsequence which converges uniformly on compact subsets.

In order to prove Montel’s theorem, we gather a certain amount of ma-
terial which is, in any case, interesting in itself.

Recall that a family F of complex-valued functions, defined on a metric
space (X, d) is equicontinuous if for each ε > 0, there is a δ > 0 such that,
for all f ∈ F and for all p, q ∈ X,

d(p, q) < δ implies |f(p) − f(q)| < ε.

Theorem 14 (Arzelà-Ascoli). If K be a compact metric space and {fj}
is a sequence of complex-valued functions which is pointwise bounded and
equicontinuous on K, then
(a) {fj} is uniformly bounded on K;
(b) {fj} has a uniformly convergent subsequence.

Problem 15. Use Problem 13 to show that if F is a bounded family of
holomorphic functions on an open subset Ω ⊂ Cn, then the family ∇F =
{∇f : f ∈ F} is bounded on compact subsets of Ω.

Problem 16. Let f be a smooth function defined in an open convex subset
B of Rn. If |∇f | ≤M in B, then |f(p)−f(q)| ≤M |p−q|, for each p, q ∈ B.

Let X be a topological space. An exhaustion of X by compact sets is a
sequence {Kj} of nested compact subsets, Kj ⊂ K0

j+1, whose union is X.

Problem 17. Show that each open subset of Rn admits an exhaustion by
compact sets.
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Proof. (of Montel theorem)Let {fj} be a bounded sequence of holomorphic
functions on an open set Ω ⊂ Cn. Now, let K be a compact subset of Ω. Let d
be the distance of K from ∂Ω and choose 2r < d. We may cover K by finitely
many balls B(a1, r) · · · , B(am, r) whose centers are in K. From Problem
13, it follows that the sequence {∇fj} of gradients of the sequence {fj} is
uniformly bounded on the union of the closed balls B(a1, 2r), · · · , B(am, 2r)
by some M < +∞. If z, ζ ∈ K and |z − ζ| < r, then, since z lies in
some B(ak, r), both z and ζ lie in B(ak, 2r). By Problem 16, it follows
that |fj(z) − fj(ζ| ≤ M |z − ζ|, j = 1, 2, · · · . Thus, the sequence {fj} is
equicontinuous on K. Since the sequence is also by hypothesis bounded on
K, it follows from the Arzelá-Ascoli theorem that the sequence {fj} has a
subsequence, which converges uniformly on K.

By Problem 17, the open set Ω has an exhaustion by compact sets:

K1 ⊂ K0
2 ⊂ K2 ⊂ · · · · · ·K0

k ⊂ Kk+1 ⊂ · · ·

From the previous paragraph, {fj} has a subsequence which converges uni-
formly on K1. Applying the same argument to this subsequence, we see that
the subsequence has itself a subsequence which converges uniformly on K2.
Continuing in this manner, we construct an infinite matrix {fkj} of functions.
The first row is the sequence {fj}; each row is a subsequence of the previous
row and, for each k = 1, 2, · · · , the k-th row converges uniformly on Kk.
The diagonal sequence {fkk} is thus a subsequence of {fj} which converges
uniformly on each Km, m = 1, 2, · · · .

Now, let K be an arbitrary compact subset of Ω. Since {K0
m} is a nested

open cover of Ω, it follows from compactness that K is contained in some
Km. Since {fkk} converges uniformly on Km it also converges uniformly on
K.

Let Ω be an open set in Rn. Denote by C(Ω) the family of continuous
complex-valued functions on Ω. Fix an exhaustion {Kj} of Ω and for f, g ∈
C(Ω), denote

dj(f, g) = sup
z∈Kj

|f(z) − g(z)|

and

d(f, g) =

∞
∑

j=1

1

2j

dj(f, g)

1 + dj(f, g)
.
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Problem 18. Let Ω be an open subset of Rn. Show that d is a distance
function on C(Ω), that the induced metric space is complete and separable and
that a sequence of functions in C(Ω) converges with respect to this distance
iff it converges uniformly on compact subsets of Ω. The induced topology on
C(Ω) is called the topology of uniform convergence on compacta. Show that
the space C(Ω) is a topological algebra.

If Ω is an open subset of Cn, denote by O(Ω) the family of holomorphic
functions on Ω.

Problem 19. Let Ω be an open subset of Cn. Show that O(Ω) is a closed
subalgebra of C(Ω).

4 Series

In the introduction, we asserted that holomorphic functions are the same as
(complex) analytic functions. In order to discuss analytic functions of several
variables, we must first discuss multiple series. We follow the presentation
in Range. As with ordinary series, by abuse of notation, the expression

∑

α∈Nn

bα, bα ∈ C.

will have two meanings depending on the context. The first meaning is that
this is simply a formal expression which we call a multiple series. The second
meaning will be the sum of this multiple series, when it exists. Of course
we now have to define what we mean by the sum of a multiple series. If
n > 1, the index set Nn does not carry any natural ordering, so that there
is no canonical way to consider

∑

bα as a sequence of (finite) partial sums
as in the case n = 1. The ambiguity is avoided if one considers absolutely
convergent series as follows. The multiple series

∑

α∈Nn bα is called absolutely
convergent if

∑

α∈Nn

|bα| = sup

{

∑

α∈Λ

|bα| : Λ finite

}

<∞.

In fact, absolutely convergent series are precisely the elements in L1(Nn, µ),
where µ is counting measure.
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Cauchy’s theorem on multiple series asserts that the absolute convergence
of
∑

bα is necessary and sufficient for the following to hold.
Any arrangement of

∑

bα into an ordinary series

∞
∑

j=0

bσ(j),

where σ : N → Nn is a bijection, converges in the usual sense to a limit L ∈ C

which is independent of σ. This number L is called the limit (or sum) of the
multiple series, and one writes

∑

α∈Nn

bα = L.

In particular, if
∑

bα converges absolutely, its limit can be computed from
the homogeneous expansion

L =
∞
∑

k=0





∑

|α|=k

bα



 .

Furthermore, for any permutation τ of {1, · · · , n}, the iterated series

∞
∑

ατ(n)=0



· · ·





∞
∑

ατ(1)=0

bα1···αn



 · · ·





converges to L as well. Here, as in any mathematical expression, we first
perform the operation in the innermost parentheses and work our way out.
Conversely, if bα ≥ 0, the convergence of any one of the iterated series implies
the convergence of

∑

bα.
The Cauchy theorem on multiple series can be viewed as a special case

of the Fubini-Tonelli theorem in integration theory, but we shall finesse in-
tegration theory and prove the Cauchy theorem for the case n = 2; that is,
for double series.

Suppose a double series
∑

bjk converges absolutely. Then, any arrange-
ment of

∑

bjk into a simple series converges absolutely. We know that if a
simple series converges absolutely then it converges and any rearrangement
converges to the same sum. Since any two arrangements of

∑

bjk into simple
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series are rearrangements of each other, it follows that all arrangements of
∑

bjk into simple series converge and to the same sum L. This proves the
first part of Cauchy’s double series theorem.

Now, let P1,P2, · · · be any partition of the set N × N of indices of the
double series

∑

bjk. Cauchy’s double series theorem further asserts that

L =
∑

ν

(

∑

Pν

bjk

)

.

We may consider each
∑

Pν bjk as a double series obtained from the double
series

∑

bjk by possibly setting some of the terms equal to zero. Since the
double series

∑

bjk converges absolutely, it follows that the double series
∑

Pν bjk also converges absolutely. Hence it converges. Denote the sum of
∑

Pν bjk by LPν . We must show that

L =
∑

ν

LPν .

Fix ε > 0. Let
∑∞

i=1 bσ(i) be any arrangement of
∑

bjk and choose n1 so large
that

∞
∑

i=n1

|bσ(i)| < ε.

Now choose n2 so large that each of the terms bσ(i), i < n1 are in one of the
Pν, ν < n2. Set n(ε) = max{n1, n2}. For n > n(ε) we have

|L−
n
∑

ν=1

LPν | = |
∞
∑

i=1

bσ(i) −
n
∑

ν=1

LPν | <

|
∞
∑

i=n1

bσ(i) −
n
∑

ν=1

L′
Pν | < ε +

n
∑

ν=1

|L′
Pν |,

where L′
Pν is the sum LPν from which those bσ(i) for which i < n1 (if there

are any such) have been removed. We note that

n
∑

ν=1

|L′
Pν | ≤ lim

m→∞

n
∑

ν=1

∑

{|bσ(i)| : σ(i) ∈ Pν , n1 ≤ i < m} ≤
∞
∑

i=n1

|bσ(i)| < ε.
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Combining the above estimates, we have that, for n > n(ε),

|L−
n
∑

ν=1

LPν | < 2ε,

which concludes the proof of Cauchy’s theorem for double series.
We recall the following from undergraduate analysis.

Theorem 15 (Weierstrass M-test). Let fn be sequence of functions defined
on a set E and Mn a sequence of constants. If |fn| ≤ Mn and

∑

Mn con-
verges, then

∑

fn converges absolutely and uniformly.

Problem 20. For ζ ∈ Dn, and recalling the abusive notation 1 = (1, · · · , 1)
as well as the notation given by (1) show that:

1

1 − ζ
=
∑

α≥0

ζα;

the series converges absolutely and any arrangement converges uniformly on
compact subsets of Dn.

The next theorem asserts that holomorphic functions are analytic. The
converse will come later.

Theorem 16. Let f be holomorphic in a domain Ω ⊂ Cn and let a ∈ Ω.
Then, f can be expanded in an absolutely convergent power series:

f(z) =
∑

α≥0

cα(z − a)α,

in a neighborhood of a. The series is the Taylor series of f ; that is,

cα =
f (α)(a)

α!
.

The representation of f as the sum of its Taylor series is valid in any polydisc
centered at a.

Proof. Consider a polydisc

D
n(a, r) = {z : |zj − aj| < r, j = 1, · · · , n},
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which for simplicity we denote by D, whose closure is contained in Ω. By the
Cauchy integral formula,

f(z) =
1

(2πi)n

∫

bD

f(ζ)

ζ − z
dζ.

By an earlier problem, we may write

f(ζ)

ζ − z
=

f(ζ)

(ζ − a) − (z − a)
=

f(ζ)

ζ − a
·

1

1 − z−a
ζ−a

=
f(ζ)

ζ − a

∑

α≥0

(

z − a

ζ − a

)α

and the convergence is uniform on bD ×K for any compact subset K of D.
Integrating term by term, we have

f(z) =
∑

α≥0

(

1

(2πi)n

∫

bD

f(ζ)

(ζ − a)α+1
dζ

)

(z − a)α =
∑

α≥0

cα(z − a)α

and the convergence is uniform on compact subsets of D. By the Cauchy
formula for derivatives, cα = f (α)(a)/α!.

We have assumed that the closure of the polydisc is contained in Ω, but
any polydisc whose closure is contained in Ω can be written as the union of
an increasing sequence of polydiscs with the same center whose closures are
contained in Ω. The function f is represented by its Taylor series about a for
each of the polydiscs in this sequence and hence the representation is valid
on the union of these polydiscs.

We have now established that holomorphic functions are analytic. In the
proof we did not require the property that holomorphic functions are C1. We
merely required uniform convergence to allow us to integrate term by term,
and for this it is sufficient that holomorphic functions be locally bounded.

To prove conversely that analytic functions are holomorphic, we need a
little more familiarity with multiple power series.

Theorem 17 (Abel). If the power series
∑

cαz
α converges at the point a

for some arrangement (as a simple series) and if aj 6= 0, j = 1, · · · , n, then
the series converges absolutely and uniformly on each compact subset of the
polydisc

{z : |zj| < |aj|, j = 1, · · · , n}.
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Proof. Since some arrangement of the series converges, it follows that the
terms are bounded. Thus |cαa

α| < M for all α. Fix 0 < rj < |aj|, j =
1, · · · , n and suppose |zj| ≤ rj, j = 1, · · · , n. Then,

|cαz
α| = |cαz

α1
1 · · · zαn

n | = |cαa
α1
1 · · ·aαn

n | ·

∣

∣

∣

∣

(

z1
a1

)α1

· · ·

(

zn

an

)αn
∣

∣

∣

∣

≤

M

∣

∣

∣

∣

r1
a1

∣

∣

∣

∣

α1

· · ·

∣

∣

∣

∣

rn

an

∣

∣

∣

∣

αn

= Mρα,

where ρj < 1, j = 1, · · · , n. Since
∑

ρα converges, the power series converges
absolutely and uniformly on the closed polydisc |zj| ≤ rj, j = 1, · · · , n, by
the Weierstrass M -test. Since any compact subset of the open polydisc {z :
|zj| < |aj|, j = 1, · · · , n} is contained in such a closed polydisc, the proof is
complete.

Let σα be a multiple power series. Abel’s theorem asserts that σ converges
absolutely and uniformly on compact subsets of the polydisc |zj| < |aj|, j =
1, · · · , n, if some arrangement of σα converges at the point a. Suppose we
write a = (b, c) and σα as the iteration σβσγ of two power series, which in
some sense converges at (b, c). Can we hope for the same conclusion that
σα converges absolutely and uniformly on compact subsets of the polydisc
|zj| < |aj|, j = 1, · · · , n? Our meaning will be made clear by the following
example which illustrates the futility of such a hope.

Example. Write z = (ζ, w) and consider the double power series

∑

α

zα =
∑

j,k

cj,kζ
jwk,

where cj,j = 4j, cj,j+1 = −4j and cj,k = 0 if k is different from j or j + 1.
Then, for z = (ζ, w) = (1, 1),

∑

j

cj,k1
j = 4j − 4j = 0, k = 0, 1, · · · ,

and consequently,

∑

k

(

∑

j

cj,k1
j

)

1k =
∑

k

0 · 1k = 0.
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It is certainly not true that the double power series converges absolutely on
the polydisc |ζ| < 1, |w| < 1. This would imply that for any such point (ζ, w),
the terms cj,kζ

jwk would tend to zero. However, for the point (1/2, 1/2) the
’diagonal’ terms are

cj,j

(

1

2

)j (
1

2

)j

= 4j

(

1

2

)2j

= 1.

Theorem 18. On an open set Ω in Cn, a function is holomorphic iff it is
analytic.

Proof. We have shown earlier that every holomorphic function is analytic.
Conversely, suppose f is analytic on Ω. It is sufficient to show that f is
holomorphic in a polydisc about each point of Ω. Fix a ∈ Ω and let D be a
polydisc containing a and contained in Ω, such that f can be represented as
a power series in D. We have seen that the power series converges uniformly
on compact subsets of D. In particular, let Q be a polydisc containing a and
whose closure is compact in D. Then the power series converges uniformly
in Q and, since the terms are polynomials, they are holomorphic. Thus, f is
the uniform limit of holomorphic functions on Q. Hence, f is holomorphic
on Q. We have shown that f is holomorphic in a neighborhood of each point
of Ω and so f is holomorphic in Ω.

Theorem 19 (uniqueness). Let f be holomorphic in a domain Ω and suppose
f = 0 on a (non empty) open subset of Ω. Then f = 0 on Ω.

Problem 21. Prove the theorem.

Corollary 20 (uniqueness). Let f and g be holomorphic in a domain Ω and
suppose f = g on an open subset of Ω. Then f = g on Ω.

5 Holomorphic mappings

Problem 22 (chain rule). Suppose ζ → z is a smooth mapping from an open
set D ⊂ C into an open set Ω ⊂ Cn and z → w is a smooth function from Ω
into C, then

∂w

∂ζ
=

n
∑

j=1

(

∂w

∂zj

∂zj

∂ζ
+
∂w

∂zj

∂zj

∂ζ

)
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and
∂w

∂ζ
=

n
∑

j=1

(

∂w

∂zj

∂zj

∂ζ
+
∂w

∂zj

∂zj

∂ζ

)

.

A mapping f : Ω → Cm, defined on an open subset Ω of Cn, is said to be
holomorphic if each of the components f1, · · · , fm of f are holomorphic.

Problem 23. The composition of holomorphic mappings is holomorphic.
That is, if D is an open subset of Ck, Ω is an open subset of Cn, g : D → Cn

and f : Ω → C
m are holomorphic mappings, and g(D) ⊂ Ω, then the mapping

f ◦ g : D → Cm is holomorphic.

Let f : Ω → Cm be a holomorphic mapping defined in an open set Ω ⊂ Cn.
To each z ∈ Ω, we associate a unique linear transformation f ′(z) : Cn → Cm,
called the derivative of f at z, such that

f(z + h) = f(z) + f ′(z)h + r(h),

where r(h) = O(‖h‖2) as h→ 0.

Problem 24. Prove the uniqueness of the derivative.

With respect to the standard coordinates in Cn and Cm, the linear trans-
formation f ′(a) at a point a is represented by the (complex) Jacobian matrix

J(f)(a) =

(

∂fj

∂zk

(a)

)

, j = 1, · · · , m; k = 1, · · · , n.

Of course this matrix represents a linear transformation, so we need only
verify that it has the required approximation property. Since the vector r(h)
is small iff each of its components is small, it is sufficient to check the claim
for each component fj of f . Thus, it is enough to suppose that f itself is a
function rather than a mapping. From the Taylor formula,

f(z + h) = f(z) + J(f)(z)h+
∑

|α|≥2

f (α)(z)

α!
hα.

Write h = tζ, with t positive. Then,

r(h) =
∞
∑

k=2





∑

|α|=k

f (α)(z)

α!
ζα



 tk = t2
∞
∑

k=0





∑

|α|=k+2

f (α)(z)

α!
ζα



 tk.
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Since the original power series in h converges absolutely for small h, the
power series in ζ and t converges for some positive t and some ζ none of
whose coordinates are zero. It follows that the series

∞
∑

k=0





∑

|α|=k+2

f (α)(z)

α!
ζα



 tk

in ζ and t converges for all small ζ and t. Thus, for some t0 > 0 and ρ > 0,
this sum is bounded, by say M , for |t| ≤ t0 and |ζ| ≤ ρ. If ‖h‖ ≤ t0ρ, we
may write

h =

(

‖h‖

ρ

)(

h

‖h‖
ρ

)

= tζ,

with |t| ≤ t0 and |ζ| ≤ ρ. Thus, for ‖h‖ ≤ t0ρ, we have

|r(h)| ≤ t2M =

(

‖h‖

ρ

)2

M = O(‖h‖)2,

which concludes the proof that f ′ is represented by the Jacobian matrix J(f).

Problem 25. If f and g are holomorphic mappings such that f ◦g is defined,
then (f ◦g)′ = (f ′(g))g′ and J(f ◦g) = J(f)J(g). More precisely, if w = g(z),
then (f ◦ g)′(z) = f ′(w)g′(z) and J(f ◦ g)(z) = [J(f)(w)][J(g)(z)].

Let Ω be open in Cn and f : Ω → Cm be a mapping, which we may write
f(z) = w, with z ∈ Ω and w ∈ Cm. Let x and y be the real and imaginary
parts of z and let u and v be the real and imaginary parts of w. We may think
of Ω as an open subset of R

2n and we may view the complex mapping z 7→ w
as a real mapping (x, y) 7→ (u, v) of the open subset Ω of R2n into R2m. If the
complex mapping f is smooth, let JR(f) denote the (real) Jacobian matrix
of the associated (real) mapping (x, y) 7→ (u, v). If f is an equidimensional
smooth complex mapping, then the complex and real Jacobian matrices J(f)
and JR(f) are square. det J(f) is called the (complex) Jacobian determinant
of f and det JR(f) is called the real Jacobian determinant of f .

Theorem 21. If f is an equidimensional holomorphic mapping, then

det JR(f) = | det J(f)|2.

Problem 26. Verify this for n = 1.
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Proof. In this proof we shall sometimes denote the determinant of a square
matrix A by |A|. We shall write matrices as block matrices, where for ex-
ample ∂u/∂x represents the matrix (∂uj/∂xk). Since an even number of
permutations of rows and columns does not change the determinant, we may
write

det JR(f) =

∣

∣

∣

∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣

∣

∣

∣

.

Adding a constant multiple of a row to another row does not change the
determinant, so we may add i times the lower blocks to the upper blocks and
use the Cauchy-Riemann equations to obtain

det JR(f) =

∣

∣

∣

∣

∂u
∂x

+ i ∂v
∂x

i∂u
∂x

− ∂v
∂y

∂v
∂x

∂u
∂x

∣

∣

∣

∣

.

Now, if we subtract i times the left blocks from the right blocks, we have

det JR(f) =

∣

∣

∣

∣

∣

∂f
∂x

0

· · · ∂f
∂x

∣

∣

∣

∣

∣

.

We have ∂f/∂x = ∂f/∂x and, since f is holormorphic ∂f/∂x = ∂f/∂z.
Thus,

det JR(f) =

∣

∣

∣

∣

∣

∂f
∂z

0

· · · ∂f
∂z

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

= det J(f) · det J(f).

Hence,
det JR(f) = | det J(f)|2.

Theorem 22 (inverse mapping). Let f be a holomorphic mapping defined
in a neighborhood of a point a. If f ′(a) is invertible, then f is invertible in a
neighborhood of a and the inverse mapping is also holomorphic.

Proof. Since f is holomorphic it is smooth. Since f ′(a) is invertible it is
equidimensional and so the Jacobian matrix J(f)(a) is square and invertible.
Thus, det J(f)(a) 6= 0. By the previous theorem, det JR(f)(a) 6= 0. Thus,
we may invoke the real inverse mapping theorem to conclude that w = f(z)
considered as a real mapping is locally invertible at a. Let g denote the local
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inverse mapping defined in a neighborhood of b = f(a). Then, g is smooth
and, since z = (g ◦ f)(z), we have for j = 1, · · · , n and k = 1, · · · , n:

0 =
∂zj

∂zk
=
∑

ν

∂gj

∂wν

∂fν

∂zk
+
∑

ν

∂gj

∂wν

∂f ν

∂zk
=
∑

ν

∂gj

∂wν

∂f ν

∂zk
.

Since
∂f ν

∂zk
=
∂fν

∂zk
,

we have the matrix equation:

(0) =

(

∂g

∂w

)(

∂f

∂z

)

=

(

∂g

∂w

)

J(f). (2)

Now, since f ′(a) is invertible, det J(f)(a) 6= 0 and so det J(f)(z) 6= 0 for z
in a neighborhood of a. Thus, J(f) and consequently J(f) also is invertible
for z in a neighborhood of a. Multiplying equation (2) on the right by the
inverse matrix of J(f), we have

(0) =

(

∂g

∂w

)

.

That is, the components of g satisfy the Cauchy-Riemann equations in a
neighborhood of b. Therefore, the inverse mapping g is also holomorphic in
a neighborhood of b = f(a).

Next, we shall present the implicit mapping theorem. But first, we shall
try to motivate the formulation by an informal heuristic discussion, which the
student should not take too seriously. Suppose f is a holomorphic mapping
from an open set W in Cn+m to Ck and we would like the level set f−1(0)
near a point (a, b) in Cn+m where f(a, b) = 0 to look like a graph in Cn ×Cm

of a function w = g(z) defined in a neighborhood of a and taking its values
in Cm. First of all, we had better have k = m. Secondly, if we want the
level set to be a graph over a neighborhood of a we would not wish the level
set to be ’vertical’ at (a, b). In the real case with n = m = 1, we preclude
this by the condition ∂f/∂y 6= 0 at (a, b). In the multi-variable situation,
we preclude this strongly by asking that the matrix ∂f/∂y be invertible at
(a, b).
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Theorem 23 (implicit mapping). Let f(z, w) be a holomorphic mapping
from a neighborhood of a point (a, b) in Cn+m to Cm and suppose f(a, b) = 0.
If

det
∂f

∂w
(a, b) 6= 0, (3)

then, there are neighborhoods U and V of a and b respectively and a holo-
morphic mapping g : U → V such that f(z, w) = 0 in U × V iff w = g(z).

Proof. As in the proof of the inverse mapping theorem, we obtain all of the
conclusions from the real implicit mapping theorem except the holomorphy
of g. For z ∈ U , we have f(z, g(z)) = 0 and hence, for j = 1, · · · , m; k =
1, · · · , n:

0 =
∂fj

∂zk
=
∑

ν

∂fj

∂zν

∂zν

∂zk
+
∑

ν

∂fj

∂wν

∂gν

∂zk
=
∑

ν

∂fj

∂wν

∂gν

∂zk
.

Fix z ∈ U and define fz(w) = f(z, w) for w ∈ V . Then, the preceding
equations can be written as the matrix equation

(0) =

(

∂fz

∂w

)(

∂g

∂z

)

. (4)

By continuity, we may assume that (4) holds not only at (a, b), but also at
all points (z, w) ∈ U × V . Thus, for all z ∈ U , the Jacobian matrix ∂fz/∂w
is invertible at all points w ∈ V . Now, if we multiply both members of (4)
on the left by the inverse of the matrix ∂fz/∂w, we obtain that the matrix
∂g/∂z is the zero matrix. Thus, g satisfies the Cauchy-Riemann equations
and is therefore holomorphic.

The following Rank Theorem is taken from Kaup’s book. In the Rank
Theorem, we assume we are given a holomorphic mapping f such that the
rank of f ′ is a constant r near a point a. The simplest example would be
when f is a linear transformation of rank r, for then f ′(x) = f , for each
x. The simplest example of a linear transforation of rank r from Cn to
Cm is the mapping (z1, · · · , zn) 7→ (z1, · · · , zr, 0, · · · , 0). The Rank Theorem
asserts that near a the mapping f can be put in this form by a biholomorphic
change of coordinates.
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Theorem 24 (Rank). Let f be a holomorphic mapping from a neighborhood
of a point a in Cn to Cm and suppose f ′ has constant rank r near a. Then,
there are neighborhoods U and V of a and b = f(a), polydiscs Dn ⊂ Cn and
Dm ⊂ Cm, each centered at 0, and biholomorphic mappings ϕ : Dn → U and
ψ : V → Dm with ϕ(0) = a and ψ(b) = 0 such that, with χ(z1, · · · , zn) =
(z1, · · · , zr, 0, · · · , 0), we have χ = ψ ◦ f ◦ ϕ.

Proof. Without loss of generality, set a = b = 0; moreover, let the coordi-
nates of C

n and C
m be chosen in such a manner that f ′(0) has the matrix

representation

f ′(0) =

(

Ir 0
0 0

)

.

Then, for the mapping

g(z) = (f1(z), · · · , fr(z), zr+1, · · · , zn),

we obviously have that g′(0) = In. By the inverse mapping theorem, there
exists an open neighborhood U of 0 in Cn that is mapped biholomorphically
by g onto a polydisc Dn; set ϕ := (g|U)−1. For w ∈ Dn and z := ϕ(w), we
have, for j = 1, · · · , r,

(f ◦ ϕ)j(w) = fj(ϕ(w)) = fj(z) = wj,

and hence,

(f1, · · · , fm)(z) = f(z) = (f ◦ ϕ)(w) =: (w1, · · · , wr, hr+1(w), · · · , hm(w)),

where, in addition to f and ϕ, every hj is holomorphic. The mapping f ◦ ϕ
satisfies rank (f ◦ ϕ)′ ≥ r on Dn. We may assume that rank f ′ = r on Dn;
thus, by the chain rule, rank (f ◦ ϕ)′ = r, so

∂hj

∂wk

= 0, for all j, k ≥ r + 1.

Hence, the hj’s do not depend on the variables wr+1, · · · , wn; their restrictions
to the first r components determine a mapping h : Dr → Cm−r. For the
bijective mapping

γ : Dr × C
m−r → Dr × C

m−r

(u, v) 7→ (u, v − h(u)),
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the derivative γ′ has the following matrix

(

Ir 0
∗ Im−r

)

;

by the inverse mapping theorem, γ is biholomorphic. Now choose a suffi-
ciently large polydisc Dm−r in C

m−r such that

(γ ◦ f ◦ ϕ)(Dn) ⊂ Dr ×Dm−r =: Dm;

for V := γ−1(Dm) and ψ := γ|V , we conclude that

(ψ ◦ f ◦ ϕ)(w) = γ(w1, · · · , wr, hr+1(w), · · · , hm(w)) =
= (w1, · · · , wr, 0, · · · , 0) = χ(w).

The rank theorem has a real version for smooth mappings (see [4], Theo-
rem 9.32 and comments following), which we shall call the real rank theorem
and we shall refer to the holomorphic version which we have just proved as
the complex rank theorem.

6 Pluriharmonic functions

Problem 27. If f is a holomorphic function of several complex variables,
then the real part of f is harmonic.

Recall that in one complex variable, there is a sort of converse. If u(x, y)
is a harmonic function of two real variables, then u is locally the real part of
a holomorphic function f(z) = u(x, y) + iv(x, y.

In several variables, there is no such converse. Consider the function
u(x1, y1, x2, y2) = x2

1 − x2
2, where z1 = x1 + iy1 and z2 = x2 + iy2. Then, u

is harmonic, but suppose there were locally a holomorphic function f(z1, z2)
such that f = u + iv. Then, for fixed z2, the function f1(z1) = f(z1, z2)
would be holomorphic and hence the real part u1(x1, y1) = x2

1 − x2
2 would be

harmonic in (x1, y1) which it is not.
A complex line in Cn is a set of the form ` = {z : z = a + λb, λ ∈ C},

where a and b are fixed points in C
n, with b 6= 0. Let us say that ` is the

complex line through a in the ’direction’ b. Let e1, · · · , en be the standard
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basis of Cn. Thus, the coordinates of ej are given by the Kronecker delta δj
k.

The complex line through a in the direction of ej is called the complex line
through a in direction of the j-th coordinate.

If Ω is an open set in Cn, we defined f to be holomorphic in Ω if f ∈ C1(Ω)
and f is holomorphic in each variable. That is, if the restriction of f to `∩Ω
is holomorphic for each complex line ` in the direction of a coordinate. A
much stronger result holds.

Theorem 25. Let Ω be open in Cn and f ∈ C1(Ω). Then, f ∈ O(Ω) if and
only if the restriction of f to ` ∩ Ω is holomorphic, for each complex line `.

Proof. The restriction of f to a complex line {z = a + λb : λ ∈ C} is the
function f(a + λb). It follows from Theorem 23 that if f ∈ O(Ω), then the
restriction of f to ` ∩ Ω is holomorphic, for each complex line `.

A real-valued function u defined in an open subset Ω of Cn, is said to
be pluriharmonic in Ω if u ∈ C2(Ω) and the restriction of u to ` ∩ Ω is
harmonic for each complex line `. Unlike the holomorphic situation, this is
not equivalent to being harmonic in each coordinate direction.

Let Ω be an open set in Cn. For u ∈ C2(Ω), the Hermitian matrix

Lu =

(

∂2u

∂zj∂zk

)

is called the complex Hessian matrix of u. We use the letter L for the complex
Hessian, because the letter H is already being used for the real Hessian and
because the quadratic form associated to the complex Hessian is usually
called the Levy form.

A direct calculation shows that a real function u ∈ C2(Ω) is pluriharmonic
in Ω if and only if it’s complex Hessian matrix vanishes identically, Lu = 0,
that is if and only u satisfies the system of differential equations

∂2u

∂zj∂zk

(z) = 0, ∀z ∈ Ω.

In real form this system of equations becomes

∂2u

∂xj∂xk
+

∂2u

∂yj∂yk
= 0,

∂2u

∂xj∂yk
−

∂2u

∂xk∂yj
= 0. (5)

We may now characterize real parts of holomorphic functions.
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Theorem 26. The real part of any holomorphic function is pluriharmonic.
Conversely, every pluriharmonic function is locally the real part of a holo-
morphic function.

Proof. It is an immediate consequence of Theorem 24 that the real part of a
holomorphic function is pluriharmonic.

To show the converse, it is sufficient to show that any function u pluri-
harmonic in a polydisc Dn is the real part of a holomorphic function therein.

We shall use the Poincaré lemma which asserts that in a convex domain,
every closed form is exact (see, for example [4, Theorem 10.39]).

We wish to show that there exists a function v such that f = u + iv is
holomorphic. If u did have such a conjugate function v, we could write

v(z) − v(a) =

∫ z

a

dv.

Since conjugate functions are only determined up to additive imaginary con-
stants, we could even assume that v(a) = 0. From the Cauchy-Riemann
equations, we would have

dv =
∑

k

(

∂v

∂xk
dxk +

∂v

∂yk
dyk

)

=
∑

k

(

−
∂u

∂yk
dxk +

∂u

∂xk
dyk

)

= ∗dv.

Now dv is undefined, since we are trying to prove the existence of v, but
the conjugate differential ∗dv of u is well defined by the last equality. Set
ω = ∗dv. If we can show that ω is an exact differential, that is, that there
is in fact a C1-function v such that dv = ω, then u and v will satisfy the
Cauchy-Riemann equations and so f = u+ iv will indeed be holomorphic.

Since we are working in a polydisc, which is thus a convex domain, we
need only check that the differential form ω is closed. By the Poincaré lemma
it will then be exact.

dω = −
∑

j,k

∂2u

∂xj∂xk
dxj ∧ dxk +

∑

j,k

∂2u

∂yj∂xk
dyj ∧ dyk+

+
∑

j,k

(

∂2u

∂xj∂xk
+

∂2u

∂yj∂yk

)

dxj ∧ dyk.

The first sum is zero because

∂2u

∂xj∂xk
=

∂2u

∂xk∂xj
while dxj ∧ dxk = −dxk ∧ dxj.
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The second sum is zero for a similar reason. The third sum is zero because
by (5) the terms are zero . Thus dω = 0 and the proof is complete.

7 Plurisubharmonic functions

A function u defined in an open subset Ω of Cn, and taking values in
[−∞,+∞) is said to be plurisubharmonic in Ω if u is upper semi-continuous,
u is not identically −∞ in any component of Ω and, for each complex line `,
the restriction of u to each component of `∩Ω is subharmonic or identically
−∞. For the definition of a subharmonic function, see for example [1].

Similarly, one can define plurisuperharmonic functions, and it is easy to
see that a function u is plurisuperharmonic if and only if −u is plurisubhar-
monic.

Problem 28. If f is holomorphic, then |f | is plurisubharmonic.

Subharmonicity and plurisubharmonicity resemble convexity in some ways.
We present an example of this resemblence by first characterizing convex C2-
functions and then giving a similar characterization for plurisubharmonic
C2-functions.

Our discussion of convex functions is taken from Fleming.
Recall that a real valued function u defined on a convex open set Ω in R

n

is said to be convex if for each a, b ∈ Ω,

u

(

a+ b

2

)

≤
u(a) + u(b)

2
.

Theorem 27. Let u be a real-valued function defined on a convex subset Ω
of Rn. If u is continuous, then u is convex if and only if

u(ta+ (1 − t)b) ≤ tu(a) + (1 − t)u(b), (6)

for every x, y ∈ Ω and for each t ∈ (0, 1).

Proof. From the symmetry between a and b and between t and 1 − t, it is
sufficient to prove (6) for t ∈ (0, 1/2). Moreover, (6) is equivalent to

u(x+ t(y − x)) ≤ u(x) + t(u(y) − u(x)), (7)
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First of all, we show (7) for all t of the form

t = j2−n, j = 0, · · · , 2n. (8)

We proceed by induction on n. For n = 0, this is trivial and for n = 1 it is
just the definition of convexity. Suppose then that we have established (7)
for n. Let t = j2−(n+1). Then, setting w = 2−1(x+ y), we have

u(x+ j2−(n+1)(y − x)) = u(x+ j2−ny − x

2
) ≤ u(x+ j2−n(w − x)) ≤

u(x) + j2−n(u(w) − u(x)) = u(x) + j2−n(u(
x+ y

2
) − u(x)) ≤

≤ u(x) + j2−(n+1)(u(y)− u(x)),

by the inductive hypothesis, which is legitimate provided j2−n ≤ 1. If j =
2n + 1, · · · , 2n+1, we set k = 2n+1 − j. Then,

x+ j2n+1(y − x) = y + k2n+1(x− y)

and we are back in the justifiable situation. By induction, we have established
(7) for all t of the form (8). Now fix x, y ∈ Ω and set

ϕ(t) = u(x+ t(y − x)) − u(x) − t(u(y)− u(x)),

for t ∈ (0, 1). By hypothesis, ϕ is continuous and we have shown that
ϕ(t) ≤ 0, for the dense set of t of the form (8). It follows that ϕ(t) ≤ 0, for
all t ∈ (0, 1) which proves (7) and concludes the proof.

Corollary 28. Let u be a real-valued function defined on a convex subset Ω
of R

n. If u is continuous, then u is convex if and only if

u(p1x1 + · · · + pmxm) ≤ p1u(x1) + · · ·+ pmu(xm), (9)

whenever x1, · · · , xm ∈ Ω and 0 ≤ pj ≤ 1, with p1 + · · · + pm = 1.

Proof. We proceed by induction. The assertion for m = 1 is trivial and
for m = 2 is the theorem. Suppose the assertion is true for m and let xj

and pj be as in the theorem with j = 1, · · · , m + 1. We may assume that
0 < pm+1 < 1. Note that

p1x1 + · · ·+ pmxm = (1 − pm+1)y,
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where

y =
p1x1 + · · · pmxm

1 − pm+1

=
m
∑

j=1

pj

1 − pm+1

xj,

and
m
∑

j=1

pj

1 − pm+1

= 1.

Thus, since Ω is convex, y ∈ Ω. From the theorem,

u(p1x1 + · · · + pmxm) =

u ((1 − pm+1)y + pm+1xm+1)) ≤ (1 − pm+1)u(y) + pm+1u(xm+1) =

(1 − pm+1)u

(

m
∑

j=1

pj

1 − pm+1
xj

)

+ pm+1u(xm+1) ≤

(1 − pm+1)
m
∑

j=1

pj

1 − pm+1
u(xj) = p1u(x1) + · · ·+ pmu(xm+1),

where the inequality preceding the last equality is by the induction hypoth-
esis.

Having characterized continuous convex functions, we now characterize
differentiable convex functions.

Theorem 29. Let u be a real-valued function defined on a convex open subset
Ω of Rn. If u is differentiable, then u is convex if and only if

u(y) ≥ u(x) + ∇u(x) · (y − x), (10)

for every x, y ∈ Ω.

Proof. The condition in the theorem certainly corresponds to the intuitive
notion of a function being convex if its graph {(y, u(y)) : y ∈ Ω} in Rn+1 is
concave, for the condition says that the graph lies above the tangent space
to the graph at (x, u(x)), for each x ∈ Ω.

Suppose u is convex in Ω and let x, y ∈ Ω. Let h = y − x and t ∈ (0, 1).
By the convexity of u,

u(x+ th) ≤ tu(x + h) + (1 − t)u(x).
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This inequality may be rewritten as

u(x+ th) − u(x) ≤ t[u(x + h) − u(x)].

Subtracting t∇u(x) · h from both sides and dividing by t,

u(x+ th) − u(x) − t∇u(x) · h

t
≤ u(x+ h) − u(x) −∇u(x) · h.

Since u is differentiable, the left-hand side tends to 0 as t → 0+. Thus we
have the inequality (10).

Conversely, assume that (10) holds for every x, y ∈ Ω. Let x1, x2 ∈
Ω, x1 6= x2. Let

x =
x1 + x2

2
, h = x1 − x.

Then x2 = x− h. By (10) we have

u(x1) ≥ u(x) + ∇u(x) · h,

u(x2) ≥ u(x) + ∇u(x) · (−h).

Adding the inequalities, we get

u(x1) + u(x2) ≥ 2u(x) or
u(x1) + u(x2)

2
≥ u

(

x1 + x2

2

)

.

Thus, u is convex.

For a real-valued C2-function u, we denote the Hessian matrix by Hu.
We write Hu ≥ 0 to mean that the associated quadratic form is positive
semi-definite. Having characterized differentiable convex functions, we now
characterize C2-convex functions.

Theorem 30. Let u be a real-valued function defined on a convex open subset
Ω of Rn. If u ∈ C2(Ω), then u is convex if and only if Hu ≥ 0, that is,

(

∂2u

∂xj∂xk

)

≥ 0. (11)
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Proof. We must prove that u is convex if and only if

n
∑

j,k=1

∂2u

∂xj∂xk

(x)hjhk ≥ 0, for all h ∈ R
n, x ∈ Ω.

Since Ω is convex, we may use Taylor’s formula for any pair of points x, y ∈ Ω:

u(y) = u(x) + ∇u(x) · h+
∑

|α|=2

1

α!

∂2u

∂xα
(x + sh)hα = (12)

u(x) + ∇u(x) · h +
∑

j=k

1

2

∂2u

∂x2
j

(x+ sh)h2
j +

∑

j<k

∂2u

∂xj∂xk
(x + sh)hjhk =

u(x) + ∇u(x) · h+
1

2

n
∑

j,k=1

∂2u

∂xj∂xk
(x + sh)hjhk,

where s ∈ (0, 1) and h = y − x. Thus, if Qu(x, h) is the quadratic form
associated to the Hessian Hu(x), we have

u(y) = u(x) + ∇u(x) · h+
1

2
Qu(x + sh, h). (13)

To prove the theorem, suppose we have (11) for each z ∈ Ω. Then, in
particular, for z = x+ sh, we conclude from (13) that

u(y) ≥ u(x) + ∇u(x) · h.

Thus, u satisfies (6) and so u is convex.
On the other hand, if it is not true that (11) holds at every point x ∈ Ω,

then Qu(x0, h0) < 0 for some x0 ∈ Ω and some h0 6= 0. Since u ∈ C2(Ω), the
function Qu(·, h0) is continuous in Ω. Hence, there exists a δ > 0 such that
Qu(y, h0) < 0 for every y in the δ-neighborhood of x0. Let h = ch0, where c
is small enough that |h| < δ, and set x = x0 + h. Fix any s ∈ (0, 1). Since
Q(x0 + sh, ·) is quadratic,

Q(x0 + sh, h) = c2Q(x0 + sh, h0) < 0.

From (12)
u(x) < u(x0) + ∇u(x0) · h.

By (6), u is not convex in Ω.
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We now state an analogous characterization of plurisubharmonic func-
tions.

Theorem 31. Let Ω be an open set in Cn. A real valued function u ∈ C2(Ω)
is plurisubharmonic in Ω if and only if Lu ≥ 0, that is,

(

∂2u

∂zj∂zk

)

≥ 0.

Since a real function in C2(Ω) is pluriharmonic if and only if Lu = 0 on
Ω, it follows that a real C2-function is pluriharmonic if and only if it is both
plurisubharmonic and plurisuperharmonic.

8 The Dirichlet problem

The classical Dirichlet problem is the following. Given a bounded open sub-
set Ω of Rn and a continuous function ϕ on the boundary ∂Ω, find a harmonic
function u in Ω having boundary values ϕ. That is, find a function u continu-
ous on Ω such that ∆u = 0 in Ω and u = ϕ on ∂Ω. One way of attacking the
Dirichlet problem is via the method of Perron using subharmonic functions.

Harmonic functions in Cn have the serious drawback that harmonicity
is not preserved by biholomorphic change of coordinates. That is, if u is
harmonic and L is a linear change of coordinates in Cn, then u◦L need not be
harmonic. For the purposes of complex analysis in several variables, it would
seem more appropriate to find a solution to the Dirichlet problem which is
pluriharmonic. The class of pluriharmonic functions is a more restricted class
than the class of harmonic functions. For the Dirichlet problem, the class
of pluriharmonic functions is in fact too restricted. There exist continuous
functions ϕ on the boundary of such smooth domains as the ball, for which
there is no solution to the Dirichlet problem in the class of pluriharmonic
functions. We seek to enlarge the class of pluriharmonic functions sufficiently
to solve the Dirichlet problem, while retaining the property that this larger
class will be preserved by complex change of coordinates. A solution is
provided in terms of the complex Monge-Ampère equation.

The complex Monge-Ampère equation is the non-linear partial differential
equation

detH(u) = 0.
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Since H(u) = 0 for pluriharmonic functions, it is trivial that the class of
solutions to the complex Monge-Ampère equation contains the pluriharmonic
functions.

Problem 29. The class of solutions to the complex Monge-Ampère equation
is preserved by linear change of coordinates.

Just as the Perron method uses subharmonic functions to find a harmonic
solution h to the Dirichlet problem, it is possible in the ball to use the Perron
method with plurisubharmonic functions to find a solution u to the Dirichlet
problem which is plurisubharmonic and satisfies the complex Monge-Ampère
equation.

Theorem 32. The Dirichlet problem for the complex Monge-Ampère equa-
tion has a solution in the ball.

Proof. Let B be a ball in Cn and ϕ ∈ ∂B. Denote by U the family of all
plurisubharmonic functions v in B which are dominated by ϕ at the boundary
∂B. That is,

lim sup v(z)z→ζ ≤ ϕ(ζ) ∀ζ ∈ ∂B.

Now set
ω(z) = sup

v∈U
v(z).

The regularization ω∗ of ω is defined as follows:

ω∗(z) = lim sup
w→z

ω(w) ∀z ∈ B.

One can show that ω∗ is plurisubharmonic in B, continuous in B and satisfies

detH(ω∗) = 0 and ω∗ |∂B= ϕ.

This Monge-Ampère solution is smaller than the harmonic solution, since
both solutions are obtained by taking suprema over classes of functions and
the harmonic solution is the supremum over a larger class of functions. Sim-
ilarly, one can use the Perron method with plurisuperharmonic rather than
plurisubhamonic functions to obtain a solution which is plurisuperharmonic
and satisfies the Monge-Ampère equation. This solution is greater than the
harmonic solution. The Perron method thus yields a plurisubharmonic so-
lution u and a plurisuperharmonic solution v both satisfying the Monge-
Ampère equation such that u ≤ h ≤ v, where h is the harmonic solution.

32



9 Complex manifolds

Complex manifolds are higher dimensional analogs of Riemann surfaces. A
manifold is, loosely speaking, a topological space which is locally Euclidean.

Let M be a connected, Hausdorff, space having a countable base of open
sets. Suppose we are given a covering U = {Uα} of M by open sets and
homeomorphisms ϕα : Uα → Vα, where each Vα is an open set in real Euclid-
ean space Rn. A pair (Uα, ϕα) is called a chart and the family of charts
A = {(Uα, ϕα)}α is called an atlas. The open sets Uα are called coordinate
neighborhoods and the variable xα = ϕα(p), where p ∈ Uα, is called a local
coordinate corresponding to Uα.

If Uα ∩ Uβ 6= ∅, then we have a homeomorphism

ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ).

Such a homeomorphism is called a change of coordinates for the atlas A. We
say that an atlas A is of smoothness k if each change of coordinates ϕαβ is
of smoothness k.

Two atlases A and A′ of smoothness k, corresponding respectively to
coverings U and U ′, are said to be equivalent if their union A∪A′ is again an
atlas of smoothness k. A real manifold of smoothness k is a topological space
M as above, together with an equivalence class of atlases of smoothness k.
The (real) dimension of M is the dimension n of the open sets Vα to which
the coordinate neighborhoods Uα are homeomorphic. If k = 0, we say that
M is a topological manifold.

Loosely speaking, a real manifold is a topological space which is locally
real Euclidean. We shall now introduce complex manifolds, which are, loosely
speaking, locally complex Euclidean. Indeed, to define a complex manifold
of (complex) dimension n, we copy the definition of a real manifold of (real)
dimension n. The only difference is that, instead of requiring that the Vα be
open sets in real Euclidean space Rn, we require that they be open sets in
complex Euclidean space Cn. We may speak of complex coordinates, charts,
atlases etc. Thus, a complex manifold of complex dimension n can be con-
sidered as a real manifold of real dimension 2n. Thus, it would seem that
the study of complex manifolds is merely the study of real manifolds in even
real dimensions. If we consider only topological manifolds, this point of view
is plausible. However, when considering complex manifolds, we usually re-
quire a very high level of smoothness. A complex atlas A is said to be a
holomorphic atlas if the changes of coordinates ϕαβ are biholomorphic. A
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holomorphic structure on M is an equivalence class of holomorphic atlases
on M . Often, we shall, as elsewhere in mathematics, merely give a holo-
morphic atlas U for a manifold and think of it as the equivalence class of all
structures which are (biholomorphically) compatible with it. Of course we
shall associate the same holomorphic structure to two holomorphic atlases
U and V if and only if the two atlases are compatible. Since the union of
compatible holomorphic atlases is a holomorphic atlas, for any holomorphic
atlas A, there is a maximal holomorphic atlas compatible with A. This is
merely the union of all holomorphic atlases compatible with A. Thus, we
may think of a holomorphic structure on M as a maximal holomorphic atlas.
It seems we have now defined a holomorphic structure on M in three ways:
as an equivalence class of holomorphic atlases, as a holomorphic atlas which
is maximal with respect to equivalence or simply as a holomorphic atlas U ,
meaning the equivalence class of U or the maximal holomorphic atlas equiv-
alent with U . All that matters at this point is to be able to tell whether two
holomorphic structures on M are the same or not. No matter which defin-
ition we use, we shall always come up with the same answer. That is two
structures will be considered different with respect to one of the definitions if
and only if they are considered different with respect to the other definitions.

A complex holomorphic manifold is a topological space M as above, to-
gether with a holomorphic structure. Since complex manifolds of dimension
n of smoothness less than holomorphic are merely real manifolds of dimen-
sion 2n, we shall consider only holomorphic complex manifolds. Thus, for
brevity, when we speak of a complex structure, we shall mean a holomorphic
structure and when we speak of a complex manifold, we shall always mean
a manifold endowed with a complex (holomorphic) structure. A Riemann
surface is a complex manifold of dimension one. Thus, complex manifolds
are higher dimensional analogs of Riemann surfaces.

Example. Let M = R
2 = {(s, t) : s, t ∈ R}. We shall consider two

atlases U and V on M . Each of these atlases will consist of a single chart.

U = {(R2, ϕ)}, ϕ : R
2 → C,

where ϕ(s, t) = z = x + iy, with x = s, y = t and

V = {(R2, ψ)}, ψ : R
2 → C,

where ψ(s, t) = w = u + iv, with u = s, v = −t. Since the change of charts
z 7→ w is given by w = z̄, these two charts are not compatible. Hence the
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two atlases U and V are not compatible, that is, are not equivalent. Thus,
the atlases U and V define two different complex structures on R2.

The preceding example is an instance of the following fact which the
student should verify. Let U and V be two holomorphic atlases on the same
topological manifoldM . The atlases U and V are compatible if and only if the
identity mapping p 7→ p from the complex manifold (M,U) to the complex
manifold (M,V) is biholomorphic. In other words, two complex structures
on the same topological manifold are the same if and only if the identity
mapping is biholomorphic with respect to these two complex structures.

Since holomorphy, pluriharmonicity and plurisubharmonicity of functions
are invariant under biholomorphic mappings, these notions may be well de-
fined on complex manifolds. Namely, we define a function f on a complex
manifold M to be holomorphic, pluriharmonic or plurisubharmonic if it is
so in each coordinate. More precisely, f is said to be holomorphic, plurihar-
monic or plurisubharmonic on an open set U ⊂ M , if for each coordinate
neighborhood Uα which meets U , the composition f ◦ ϕ−1

α is respectively
holomorphic, pluriharmonic or plurisubharmonic on ϕα(U ∩ Uα). Similarly,
we define a mapping between manifolds to be holomorphic if it is holomor-
phic in the coordinates. More precisely, a mapping f : U →M from an open
subset U of a complex manifold M of dimension m to a complex manifold
N of dimension n is said to be holomorphic if, for each chart (Uα, ϕα) for
which Uα meets U and each chart (Vβ, ψβ) for which Vβ meets f(U ∩ Uα),
the composition ψβ ◦ f ◦ϕ

−1
α is a holomorphic mapping from the open subset

ϕα(f−1(Vβ)∩Uα) of Cm into Cn. It is easily verified that holomorphy, pluri-
harmonicity and plurisubharmonicity are preserved by holomorphic map-
pings between manifolds. That is, if g is a holomorphic mapping from an
open subset U of a complex manifold M to a complex manifold N and if f
is a function defined in a neighborhood of g(U), which is holomorphic, pluri-
harmonic or plurisubharmonic, then the composition f ◦ g is respectively
holomorphic, pluriharmonic or plurisubharmonic on U . It also follows that
the composition of holomorphic mappings between manifolds is holomorphic.

10 Examples of manifolds

In this section we give several examples of complex manifolds.
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10.1 Domains

Problem 30. Let M be a complex manifold and Ω be a domain in M , that
is, an open connected subset. Then, the complex structure of M induces a
complex structure on Ω making Ω a complex manifold. The holomorphic
and plurisubharmonic functions on Ω considered as a complex manifold are
precisely the holomorphic and plurisubharmonic functions on Ω considered
as an open subset of M .

In particular, if Ω is a domain in C
n, then the holomorphic and plurisub-

harmonic functions on Ω considered as a complex manifold are precisely the
holomorphic and plurisubharmonic functions on Ω considered as an open sub-
set of Cn. This shows that complex analysis on manifolds is a generalization
of complex analysis on domains in Cn.

10.2 Submanifolds

A connected subset M of Rn is said to be a submanifold of Rn of smoothness
C` if for each p ∈ M there is an open neighborhood Up of p, a number
k ∈ {0, · · · , n} and a C`-diffeomorphism f = (f1, · · · , fn) of Up onto an open
neighborhood V0 of the origin such that

M ∩ Up = {t ∈ Up : fk+1(t) = · · · fn(t) = 0}.

If we write s = f(t) and N = f(M ∩ Up), then in the local coordinates
s1, · · · , sn,

N ∩ V0 = {s ∈ V0 : sk+1 = · · · sn = 0}.

The number k is called the dimension of the submanifold M at the point p.
We shall say that a subset M of Cn is a real submanifold of Cn of di-

mension k if M a submanifold of dimension k of the space R2n underlying
Cn.

Analogously, a connected subset M of Cn is said to be a complex sub-
manifold of Cn if for each p ∈ M there is an open neighborhood Up of p, a
number k ∈ {0, · · · , n} and f = (f1, · · · , fn) mapping Up biholomorphically
onto an open neighborhood V0 of the origin such that

M ∩ Up = {z ∈ Up : fk+1(z) = · · ·fn(z) = 0}.

If we write ζ = f(z) and N = f(M∩Up), then in the holomorphic coordinates
ζ1, · · · , ζn,

N ∩ V0 = {ζ ∈ V0 : ζk+1 = · · · ζn = 0}.
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The number k is called the dimension of the complex submanifold M at the
point p. Obviously, every submanifold of Cn of dimension k can be thought
of as a real submanifold of dimension 2k (but not conversely).

Problem 31. Show that a complex submanifold M of Cn is indeed a complex
manifold and if a function u is holomorphic, pluriharmonic or plurisubhar-
monic on the subset M , then, u is respectively holomorphic, pluriharmonic
or plurisubharmonic on the submanifold M .

Manifolds can be thought of as higher dimensional analogs of curves. The
level curves of a function f(x, y) are familiar examples of curves in R2 and
the level surfaces of a function f(x, y, z) are familiar examples of surfaces in
R

3. In fact, we shall characterize submanifolds as level sets of mappings or,
equivalently, as zero sets of mappings, or equivalently, as the common zero
set of finitely many functions.

We have defined submanifolds of Rn and Cn. Let D be a domain in Rn

or Cn. It is obvious how to define a submanifold of D. A submanifold M of
a domain D is said to be a closed submanifold of D if M is a closed subset of
D. For example the open intervals (0, 1) and (−1,+1) are both submanifolds
of the open unit disc D. The first is not a closed submanifold of D, whereas
the second is. Henceforth, when we speak of a submanifold of a domain D,
we shall mean a closed submanifold. By a smooth manifold, we shall mean
one such that the changes of coordinates are smooth mappings, by which we
mean C1-mappings.

Theorem 33. Let M be a closed subset of a domain D in Rn. Then M is
a smooth submanifold of D if and only if, for each a ∈ M , there exists a
neighborhood U ⊂ D and a smooth mapping f : U → Rm such that

U ∩M = {t ∈ U : f(t) = 0}

and

rank

(

∂f

∂t

)

= constant, on U.

Proof. SupposeM is a smooth submanifold ofD and let k be the dimension of
M . Fix a ∈M . From the definition of submanifold, there is a diffeomorphism
g of a neighborhood U of a onto an open neighborhood V of the origin in
Rn, such that

U ∩M = {t ∈ U : gk+1(t) = · · · = gn(t) = 0}.
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Let π : Rn → Rn−k be the projection (s1, · · · , sn) 7→ (sk+1, · · · , sn). Set
f = π ◦ f . Then, f has the properties required of the theorem.

Suppose conversely thatM is a closed subset ofD and f a mapping having
the properties stated in the theorem. Then, by the real rank theorem, there
are neighborhoods U and V of a and of 0 = f(a), polydiscs Dn and Dm

in Rn and Rm containing the origin, and diffeomorphisms ϕ : U → Dn and
ψ : V → Dm, such that the mapping ψ ◦f ◦ϕ−1 has the form (x1, · · · , xn) 7→
(x1, · · · , xr, 0, · · · , 0). We may assume that U ∩M = {t ∈ U : f(t) = 0}.
Thus, if N = ϕ(M ∩ U), we have

N = {x ∈ Dn : ψ ◦ f ◦ ϕ−1(x) = 0} = {x ∈ Dn : x1 = · · · = xr = 0}.

Thus, the pair (U, ϕ) is a smooth chart for M at a and M is a smooth
submanifold of D.

As an application of the above theorem, let f : D → R be a smooth
function which is nonsingular, that is ∇f(t) 6= 0, for each t ∈ D. Then, for
each c ∈ R, each component of the level set f(t) = c is a smooth submanifold
of D. For example, the unit sphere

Sn−1 = {t ∈ R
n : t21 + · · ·+ t2n = 1}

is a smooth compact submanifold of dimension n− 1 in Rn.
The preceding results on smooth submanifolds of domains in Rn have

analogs for (complex) submanifolds of domains in Cn.

Theorem 34. Let M be a closed subset of a domain D in C
n. Then M is

a complex submanifold of D if and only if, for each a ∈ M , there exists a
neighborhood U ⊂ D and a holomorphic mapping f : U → Cm such that

U ∩M = {z ∈ U : f(z) = 0}

and

rank

(

∂f

∂z

)

= constant, on U.

Proof. The proof is the same as for the real version using the complex rank
theorem rather than the real rank theorem.

As an application of the above theorem, let f : D → C be a holomorphic
function which is nonsingular, that is (∂f/∂z)(z) 6= 0, for each z ∈ D. Then,
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for each c ∈ C, each component of the level set f(z) = c is a complex
submanifold of D. For example, each component of the complex sphere

{z ∈ C
n : z2

1 + · · · + z2
n = 1}

is a complex submanifold of dimension n− 1 in Cn. Note that the complex
sphere is unbounded!

Fermat’s last theorem (Wiles’ Theorem), asserts that the equation

xn + yn = zn, n > 2,

has no integer solutions with xyz 6= 0. Note that, by the above theorem,
each component of the intersection of the set

{(x, y, z) ∈ C
3 : xn + xn − zn = 0}

with the open set xyz 6= 0 is a complex submanifold of the open set xyz 6= 0.
Weils’ theorem asserts that this submanifold does not intersect any points
with integer coordinates.

10.3 Projective space

Before introducing projective spaces, we first recall the notion of a quotient
topological space.

Let X be a topological space, Y a set and f : X → Y . The quotient
topology induced by f is the largest topology on Y such that f is continuous.
The open sets in Y for the quotient topology are precisely those sets V ⊂ Y
such that f−1(V ) is open.

To each equivalence relation on a set X, we associate the partition of
X consisting of equivalence classes. Conversely, to each partition of X, we
may associate the equivalence relation defined by saying that two elements
of X are equivalent if they belong to the same member of the partition. This
gives a one-to-one correspondence between equivalence relations ∼ on X and
partitions P of X. A quotient set of X is defined as a set X/ ∼ of equivalence
classes with respect to an equivalence relation ∼ on X. There is a natural
projection of X onto a quotient set X/ ∼ denoted p : X → X/ ∼ defined by
sending a point x to its equivalence class [x]. Let us say that a function f on
X is ∼-invariant if f(x) − f(y), whenever x ∼ y. The projection induces a
natural bijection between ∼-invariant functions on X and functions on X/ ∼.
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Let X be a topological space and ∼ an equivalence relation on X. The
quotient topological space induced by an equivalence relation ∼ on X is
the quotient set X/ ∼ endowed with the quotient topology induced by the
natural projection p : X → X/ ∼. We sometimes speak of the quotient
topology induced by an equivalence relation (partition) as the identification
topology, since we identify points in the same equivalence class (member of
the partition).

As an example, let X be the closed unit interval [0, 1] with the usual
topology and let P be the partition which identifies 0 and 1. That is, the
members of the partition are the set {0, 1} and the singletons {t}, 0 < t < 1.
The quotient space [0, 1]/P is then the circle with its usual topology.

If a topological space X is connected and has a countable base for its
topology, then any quotient space of X is also connected and has a countable
base for its topology. However, a quotient space of a Hausdorff space need
not be Hausdorff.

Lemma 35. Let X/ ∼ be a quotient space of a Hausdorff space X with
respect to an equivalence relation ∼ on X. Then, X/ ∼ is also Hausdorff if
and only if for each [x] 6= [y] in X/ ∼, there are disjoint open subsets U and
V of X, both of which are unions of equivalence classes, such that [x] ⊂ U
and [y] ⊂ V .

There is a general notion of a quotient manifold, which we shall not de-
fine in this section. We do present, however, the most important example,
complex projective space Pn of dimension n, which we think of as a compact-
ification of the complex Euclidean space Cn obtained by adding ’points at
infinity’ to Cn. For n = 1 we obtain the Riemann sphere C1 = C. Projective
space C

n is the most fundamental space for algebraic geometry.
We define projective space Pn as the set of all complex lines in Cn+1

which pass through the origin. Let us denote a point ω 6= 0 in Cn+1 by
(ω0, · · · , ωn). Two points ω and and ω′ both different from zero lie on the
same line through the origin if and only if ω = λω′ for some λ ∈ C. This
is an equivalence relation, ∼ on Cn+1 \ {0}. Projective space is the quotient
space

C
n+1 \ {0}/ ∼ .

Since C
n+1 \ {0} is connected and has a countable base for its topology, the

same is true of the quotient space Pn.
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Let us show that Pn is Hausdorff. We invoke Lemma 35. Suppose then
that [ω] and [ω′] represent two distinct complex lines in Cn+1 passing through
the origin. For any subset E of the unit sphere S in Cn+1, we denote

C(E) = {eiθw : w ∈ E, θ ∈ [0, 2π]}.

We may assume that the points ω and ω′ lie on the sphere S. Let uj and vj be
sequences of open subsets of S decreasing respectively to ω and ω ′. Suppose,
for j = 1, · · · , there is a point pj ∈ C(uj)∩C(vj). Since this sequence lies on
the sphere S which is compact, we may assume that the sequence converges.
The limit point must lie on both of the circles C(ω) and C(ω′), which however
are disjoint. This contradiction shows that there exist open neighborhoods
u and v of ω and ω′ respectively in S such that C(u) ∩ C(v) = ∅. Set

U = {[w] : w ∈ C(u)}, V = {[w] : w ∈ C(v)}.

Then, U and V are disjoint open subsets of Cn+1 \ {0} which contain [ω]
and [ω′] respectively and which are both unions of equivalence classes. By
Lemma 35, the quotient space Pn is Hausdorff.

Let us denote the equivalence class (the line passing through ω) by the
’homogeneous coordinates’ [ω] = [ω0, · · · , ωn]. Let

Uj = {[ω0, · · · , ωn] : ωj 6= 0}, j = 0, · · · , n,

and define a mapping ϕj : Uj → C
n by

ϕj([ω0, · · · , ωn]) =

(

ω0

ωj
· · · ,

ωj−1

ωj
,
ωj+1

ωj
· · · ,

ωn

ωj

)

.

The family Uj, j = 0, · · · , n is a finite cover of Pn by open sets and the map-
pings ϕj are homeomorphisms from Uj onto C

n. Thus, P
n has a countable

base, since it has a finite cover by open sets each of which has a count-
able base. We have shown that Pn is a connected Hausdorff space whose
topology has a countable base and we have exhibited a topological atlas
A = {(Uj, ϕj) : j = 0, · · · , n}. Thus, Pn is a topological manifold of complex
dimension n.

Problem 32. The atlas A = {(Uj, ϕj) : j = 0, · · · , n} is a holomorphic atlas
giving projective space Pn the structure of a complex manifold.
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We may express projective space Pn as the disjoint union of U0 which is
biholomorphic to Cn and the set {[ω] = [0, ω1, · · · , ωn] : ω 6= 0} which is in
one-to-one correspondence with the points of Pn−1 in homogeneous coordi-
nates. Thus,

P
n = C

n ∪ P
n−1.

Thus, we may think of projective space as a compactification of Euclidean
space obtained by adding ’points at infinity’.

In view of our definition of projective space, it is natural to define P
0

to be the space of complex lines through the origin in C. Thus, P0 is a
singleton which we may think of as a zero-dimensional complex manifold.
Let us denote this ideal point by ∞. The preceding formula in this case
becomes

P = C ∪ {∞},

the one-point compactification of C. The complex projective space of dimen-
sion one is therefore the Riemann sphere.

10.4 Tori

In this section, we shall present, as and example of a complex manifold, the
complex n-torus. But first we present the real n-torus.

In R
n, let ω1, · · · , ωn be linearly independent. Let L be the lattice gen-

erated by these vectors:

L = {k1ω1 + · · · + knωn : kj ∈ Z} = Zω1 + · · ·+ Zωn.

Two points x and y in Rn are said to be equivalent mod L if and only if
y = x + ω, for some ω ∈ L. The real n-torus induced by L is the quotient
space with respect to this equivalence relation and we denote it by Rn/L. If
L′ is the lattice on Rn by another set of independent vectors ω′

1, · · · , ω
′
n, let

f : Rn → Rn be a linear change of basis in Rn mapping the basis ω1, · · · , ωn

to the basis ω′
1, · · · , ω

′
n. This is a homeomorphism which maps the lattice L

to the lattice L′ and two vectors are equivalent mod L if and only if there
images are equivalent mod L′. Thus, f induces a homeomorphism of the
quotient spaces Rn/L and Rn/L′. All real n-tori are thus homeomorphic to
the standard real n-torus arising from the standard basis e1, · · · , en of Rn.

It can be shown that any real n-torus is homeomorphic to (S1)n, the
n-fold product of the circle.
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Problem 33. Verify this for the case n = 1.

Clearly, (S1)n is a compact real manifold of dimension n and so the same
is true of any real n-torus.

We shall now construct complex tori. In Cn, let ω1, · · · , ω2n be R-
independent and let L be the associated lattice:

L = {k1ω1 + · · · + k2nω2n : kj ∈ Z} = Zω1 + · · · + Zω2n.

Two points z and ζ in Cn are said to be equivalent mod L if and only if
ζ = z + ω, for some ω ∈ L. The complex n-torus induced by L is the
quotient space with respect to this equivalence relation and we denote it by
Cn/L. If we think of the real Euclidean space R2n underlying the complex
Euclidean space Cn, then we see that the complex n-torus Cn/L can be
(topologically) identified with the real 2n-torus R2n/L. Thus, the complex
n-torus is a compact real manifold of (real) dimension 2n and hence with
(S1)2n. We shall endow the complex n-torus with a complex structure with
respect to which it is a complex manifold of (complex) dimension n.

For z ∈ Cn, let B(z, r) be the ball of center z and radius r and set

[B(z, r)] =
⋃

ζ∼z

B(ζ, r) =
⋃

w∈B(z,r)

[w]

U([z], r) = {[w] : w ∈ B(z, r)}.

By abuse of notation, [w] denotes the equivalence class of w as subset of
Cn in the first equation and denotes the corresponding point of Cn/L in the
second equation. If p is the natural projection from Cn onto Cn/L, then
p([B(z, r)]) = U([z], r). Thus, U([z], r) is an open neighborhood of the point
[z] in the complex n-torus C

n/L.
We claim that |ω| is bounded below for ω ∈ L. Consider first the lattice

L0 generated by the standard basis e1, · · · , e2n of the underlying real vector
space R2n. If ω ∈ L0, then ω = k1e1 + · · ·+ k2ne2n. Thus,

min{|ω| : ω ∈ L0, ω 6= 0} = 1. (14)

Now the R-linearly independent vectors ω1, · · · , ω2n generating the lattice L
can be obtained from the standard basis e1, · · · , e2n by isomorphism of R2n

and this isomorphism also maps the lattice L0 to the lattice L. Since this
isomorphism is bilipschitz, it follows from (6) that for some rL > 0,

inf{|ω| : ω ∈ L, ω 6= 0} ≥ rL. (15)
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From (7) we see that if |z − ζ| > rL, then z and ζ are not equivalent. From
(7) we also see that [z] is a discrete set, since |a−b| ≥ rL, for any two distinct
points in [z]. Thus, if ζ is not equivalent to z, it follows that ζ is at a positive
distance from [z], since ζ is not in the discrete set [z]. Further, we claim that
if [z] 6= [ζ], then these two sets are at a positive distance from one another.
Suppose not. Then, there are zj ∼ z and ζj ∼ ζ with |zj − ζj| → 0. We
have zj = z + αj for some αj ∈ L. Thus, ζj − αj is a sequence of points in
[ζ] which converges to z. This contradicts the fact that [ζ] is at a positive
distance from z. We have established that if [z] 6= [ζ], then [z] and [ζ] are at
a positive distance 2r > 0 from each other. Thus, the open sets [B(z, r)] and
[B(ζ, r)] in Cn are disjoint. Let us now show that the complex n-torus Cn/L
carries a natural structure of a complex manifold of dimension n which is
induced by the projection. Notice that the distance between any two points
in the same equivalence class [z] is bounded below by rL. Choose r < rL/2
and for each point [z] ∈ Cn/L, denote by Vz the open ball B(z, r) in Cn. Set

U[z] = p(Vz) and ϕ[z] = (p |Vz
)−1.

Then U[z] is an open neighborhood of the point [z] in the complex n-torus
Cn/L. The family {(U[z], ϕ[z])} is an atlas for the complex n-torus Cn/L.
Indeed, the projection is both open and continuous from the definition of the
quotient topology. Moreover, no two points in Vz = B(z, r) are equivalent,
since 2r < rL. Thus, p restricted to Vz is a homeomorphism of Vz onto U[z].
The changes of coordinates are holomorphic since ϕ[z] ◦ϕ

−1
[ζ] is the identity if

Vz∩Vζ 6= ∅. Thus, the complex n-torus Cn/L is a compact complex manifold
of dimension n.

11 Automorphic functions and forms

11.1 The quotient manifold with respect to an auto-

morphism group

Let M be a complex manifold. We denote by Aut(M) the group of biholo-
morphic mappings of M onto itself. Aut(M) is called the automorphism
group of M . Let G be a subgroup of Aut(M). We say that G acts on M .
If p ∈ M , the G-orbit of p is [p] = gp : g ∈ G. Let M/G be the space of
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G− orbits with the quotient topology induced by the projection

M → M/G
p 7→ [p] = Gp.

A group G of automorphisms of M acts properly discontinuously if for
each compact K ⊂M ,

g(K) ∩K 6= ∅,

for at most finitely many g ∈ G.

Lemma 36. If G acts properly discontinuously on M , then M/G is Haus-
dorff.

Proof. Let p1 6= p2 in M and let (ϕ1, U1) and (ϕ2, U2) be disjoint charts for
p1 and p2. We may suppose that ϕj(Uj) ⊃ (|z| < 1). Set Kj = ϕ−1

j (|z| ≤ 1)
and

An = {p ∈ U1 : |ϕ1(p)| < 1/n}, Bn = {p ∈ U2 : |ϕ1(p)| < 1/n}.

Denote by π the projection of M onto M/G. Suppose π(An) ∩ π(Bn) 6= ∅,
for each n. Then, there is a bn ∈ Bn such that

bn ∈ π−1πAn =
⋃

g∈G

g(An).

Thus, there is a gn ∈ G and a point an ∈ An such that gn(an) = bn. Thus,
gn(K) ∩ K 6= ∅, where K = K1 ∪ K2. Since G is properly discontinuous,
{g1, g2, · · · } is finite. For a subsequence, which we continue to denote {gn},
we have gn = g, n = 1, 2, · · · .

g(p1) = lim g(an) = lim gn(an) = p2.

Thus, p1 and p2 are G-equivalent.
To show that M/G is Hausdorff, suppose [p1] and [p2] are distinct. Thus,

by the previous paragraph, there is an n such that π(An)∩π(Bn) = ∅. Since,
π is open, π(An) and π(Bn) are disjoint open neighborhoods of [p1] and [p2].
Thus, M/G is Hausdorff.

A group G ⊂ Aut(M) is said to act freely on M is the only g ∈ G having
a fixed point is idM .
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Theorem 37. Let M be a complex manifold and G a subgroup of Aut(M).
If G acts freely and properly discontinuously on M , then the projection π :
M → M/G induces on M/G the structure of a complex manifold and the
projection is holomorphic.

Proof. The quotient space M/G is connected and second countable and from
the lemma it is Hausdorff. We need only show that π induces a holomorphic
atlas.

Fix p ∈ M ; let (ϕp, U) be a chart at p such that ϕp(U) ⊃ (|z| < 1) and
let K = ϕ−1

p (|z| ≤ 1) and An be defined as in the proof of the lemma. We
show that π|An

is injective for sufficiently large n. Suppose not. Then, there
are points an 6= bn in An with π(an) = π(bn). Hence, for some gn ∈ G, we
have gn(an) = bn. Since an 6= bn, no gn 6= idM . We have bn ∈ K ∩ gn(K).
Since G is properly discontinuous, it follows that {g1, g2, · · · } is finite. Some
subsequence, which we continue to denote {gn} is constant, gn = g. We
continue to denote the corresponding subsequences of {an} and {bn} as {an}
and {bn}. Then g(an) = bn. Now an, bn → p and so by continuity, g(p) = p.
Since G acts freely and g 6= idM , this is a contradiction. Hence, for each p
there is a An which we denote by Ap on which π is a homeomorphism. Thus,
M/G is a manifold if we take as charts the family (ϕp ◦π |−1

Ap
, π(Ap)), p ∈M .

It is easy to check that the change of charts is biholomorphic so that M/G
is in fact a complex manifold.

The complex n-torus Cn/L is an example of a quotient manifold of this
type. If L is a lattice

L = {k1ω1 + · · · + k2nω2n : kj ∈ Z} = Zω1 + · · · + Zω2n.

Write k = (k1, · · · , k2n) and let gk be the automorphism of Cn given by

z 7→ gk(z) = k1ω1 + · · ·+ k2nω2n.

We may identify the lattice L with the group of all such automorphisms
gk, k ∈ Z2n. The group L acts freely and properly discontinuously on Cn.

11.2 Automorphic functions

Let M be a complex manifold and Γ ⊂ Aut(M) a subgroup of the group of
automorphisms of M . A family of (zero free) holomorphic functions on M ,

{jγ(p) : γ ∈ Γ},
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is a factor of automorphy if

jγγ′(p) = jγ(γ
′(p))jγ′(p), ∀γ, γ′ ∈ Γ, p ∈M.

A function f meromorphic on M is called an automorphic function with
respect to the factor of automorphy {jγ}γ∈Γ if

f ◦ γ = fjγ, ∀γ ∈ Γ.

If all of the jγ are 1, that is, when f is Γ-invariant, we simply say that f is
automorphic with respect to Γ:

f ◦ γ = f, ∀γ ∈ Γ.

Example M = C, Γ = {γn : n ∈ Z} the group of translations γn(z) =
z + n. Then, the automorphic functions with respect to Γ are the periodic
meromorphic functions with period 1:

f(z + 1) = f(z).

For example, f(z) = sin(2πz) is such an automorphic function. So is f(z) =
tan(2πz).

Example In Cn, let ω1, . . . , ω2n be R-independent; let

L = {k1ω1 + · · ·+ k2nω2n : kj ∈ Z}

be the associated lattice and consider L as a group of translations L ⊂
Aut(Cn). The L-automorphic functions on Cn then correspond to the mero-
morphic functions on the complex torus Cn/L.

If n = 1, the L-automorphic functions are the doubly periodic meromor-
phic functions (elliptic functions) with periods ω1 and ω2.

Warning. The student may have noticed that in defining automorphic
functions we have slipped in meromorphic functions for the first time. In
one variable, a meromorphic function f is merely the quotient f = g/h of
holomorphic functions g and h, with h 6= 0. In several variables, meromorphic
functions are rather more complicated to define and we shall avoid doing so
for the present. The student could simply restrict his or her attention to
automorphic functions which are holomorphic, but this would exclude one
of the most interesting examples, elliptic functions. We therefore invite the
student to accept that there are ’things’ called meromorphic functions of
several complex variables. We shall define meromorphic functions later.
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Example. If A is a ring, we denote the general linear group and the
special linear group, of degree 2 over A respectively

GL(2, A) =

{(

a b
c d

)

: a, b, c, d ∈ A, ad− bc 6= 0

}

SL(2, A) =

{(

a b
c d

)

: a, b, c, d ∈ A, ad− bc = 1

}

.

To any

γ =

(

a b
c d

)

∈ GL(2,C),

we associate an automorphism of the Riemann sphere C

z 7→ γz =
az + b

cz + d
.

Every automorphism of C is of this form and if we multiply all four of
the coefficients by the same constant, we obtain the same automorphism.
Thus we may assume that ad − bc = 1. Moreover, if we replace a, b, c, d by
−a,−b,−c,−d we still obtain the same automorphism. The representation
is now unique. Thus,

Aut(C) = SL(2,C)/{I,−I},

where {I,−I} is the subgroup of GL(2,C) consisting of the identity I and
−I.

Let H be the half-plane

H = {z ∈ C : =z > 0}.

Then
Aut(H) = SL(2,R)/{I,−I}.

The special linear group of degree 2 over Z,

SL(2,Z) =

{(

a b
c d

)

: a, b, c, d ∈ Z, ad− bc = 1

}

,

is the famous modular group. It acts properly discontinuously and freely on
H. An (elliptic) modular function is a function automorphic with respect to
the modular group.
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11.3 Automorphic forms

Let Γ ⊂ Aut(X), and denote Jγ(p) the Jacobian determinant of γ, where
X ⊂ Cn is open. Then {J−m

γ } is a factor of automorphy, for

Jγγ′(z) = Jγ(γ
′(z))Jγ′(z)

and hence
Jγγ′(z)−m = Jγ(γ

′(z))−mJγ′(z)−m.

A function f which is automorphic with respect to {J−m
γ } is called an auto-

morphic form of weight m. Thus,

f(γ(z)) = f(z)Jγ(z)
−m.

Notice that if f and g are automorphic forms of weight m, then f/g is an
automorphic function,

f(γ(z))

g(γ(z))
=
f(z)Jγ(z)

−m

g(z)Jγ(z)−m
=
f(z)

g(z)
.

The above considerations can be used to prove the existence of meromor-
phic functions on a Riemann surface S. There exists a simply connected
covering S̃ → S, the universal covering of S. By the uniformization theorem,
S̃ is biholomorphic to the Riemann sphere C, the complex plane C, or the
unit disc D. Thus, Aut(S̃) can be considered as a group of Moebius transfor-
mations. Let Γ be the subgroup of Aut(S̃) which preserves the ’fibers’ π−1(p).
Then, S̃/Γ ' S and so Mer(S) ' Mer(S̃/Γ), which may be thought of as
the set of Γ-automorphic functions on the domain S̃ of C. Thus, to show the
existence of a meromorphic function on S, it is sufficient to construct two
automorphic forms of the same weight m on the unit disque, complex plane
or Riemann sphere.

11.4 Modular forms

These are automorphic forms with respect to the modular group SL(2,Z).
Modular forms are important for Wiles’ theorem (Fermat’s last theorem).
Modular forms are also important for the theory of everything, by which

we mean the unification of quantum theory and general relativity. The key
is string theory which has the following prerequisites: Riemann surfaces,
modular forms, representations.
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12 The Riemann manifold of a function

12.1 Holomorphic continuation

The notion of holomorphic continuation is familiar from the study of func-
tions of a single complex variable and was defined in the introduction for
functions of several complex variables. We repeat the remarks made in the
introduction. Let fj be holomorphic in a domain Dj, j = 1, 2 and suppose
If f1 = f2 in some component G of D1 ∩ D2, then f2 is said to be a direct
holomorphic continuation of f1 through G. In shorthand, we also say (f2, D2)
is a direct holomorphic continuation of (f1, D1).

In one variable, holomorphic continuation is usually done from one disc
to another using power series. We can do the same with polydiscs. Recall
that if a power series converges in a polydisc, we have shown that the sum
is holomorphic in that polydisc.

Problem 34. Let f1 be the sum of a power series converging in a polydisc
D1 centered at a1 and let a2 ∈ D1. Let f2 be the sum of the Taylor series of f1

about a2. Then, f2 converges in any polydisc centered at a2 and contained in
D1. If D2 is any polydisc centered at a2 in which f2 converges, then (f2,D2)
is a direct holomorphic continuation of f1,D1).

Problem 35. Let f be holomorphic in a domain D, let Ω be a domain which
meets D and let G be a component of the intersection. Show that, if there is
a direct holomorphic continuation of f to Ω through G, then it is unique.

Let f be holomorphic in a domain D and let p ∈ ∂D. We say that f has a
direct holomorphic continuation to p if there is a holomorphic function fp in a
neighborhood Dp of p such that (fp, Dp) is a direct holomorphic continuation
of (f,D) through some component G of D ∩Dp with p ∈ ∂G.

A domain D is a domain of holomorphy if it is the ’natural’ domain for
some holomorphic function. That is, if there is a function f holomorphic
in D which cannot be directly holomorphically continued to any boundary
point of D. In particular, f cannot be directly holomorphicaly continued to
any domain which contains D.

In the introduction, it was left as an exercise to show that in C, each
domain is a domain of holomorphy.

An important difference between complex analysis in one variable and
in several variables is the existence of domains which are not domains of
holomorphy in Cn, n > 1.
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The following fundamental example was discovered by Hartogs. In study-
ing this example, the student should draw the absolute value diagram asso-
ciated to this figure. This can be found in any book on several complex
variables, in particular in Kaplan. This diagram will also be drawn in class.

Theorem 38. . In C2, consider the domain

H = {z : |z1| < 1/2, |z2| < 1} ∪ {z : |z1| < 1, 1/2 < |z2| < 1}.

Every function holomorphic in the domain H extends to the unit polydisc
D = {z : |zj| < 1, j = 1, 2}.

Proof. Let f be holomorphic in H. Fix 1/2 < δ < 1. Then,

F (z1, z2) =
1

2πi

∫

|ζ|=δ

f(z1, ζ)

ζ − z2

dζ (16)

defines a holomorphic function in the polydisc

Dδ = {z : |z1| < 1, |z2| < δ}.

The proof that F is holomorphic is the same as that of Theorem 12, using
the Leibniz formula, noting that F (z) =

∫

K(z, ζ)dζ, where the kernel K is
continuous and holomorphic in z in the domain |z1| < 1, |z2| 6= δ. Since for
|z1| < 1/2 the function f(z1, ·) is holomorphic on |z2| < 1, formula (2) implies
that F (z1, z2) = f(z1, z2) in the polydisc |z1| < 1/2, |z2| < δ. The uniqueness
property of holomorphic functions implies that F = f on the intersection of
H and this polydisc. Thus, F is a direct holomorphic continuation of f from
H to the polydisc Dδ. Since the union of H and this polydisc is the unit
polydisc D, this concludes the proof.

Having considered direct holomorphic continuation, we now introduce
indirect holomorphic continuation. By holomorphic continuation along a
chain of elements, we understand a sequence (f1, D1), (f2, D2), · · · , (fm, Dm)
of holomorphic elements, with given components Gj of successive intersec-
tions, such that (fj+1, Dj+1) is a direct holomorphic continuation of (fj, Dj)
through Gj, for j = 1, · · · , m−1. We say that there is a holomorphic contin-
uation along a chain of elements from an element (f,D) to an element (h,Ω)
if there is a holomorphic continuation along a chain whose first element is
(f,D) and whose last element is (h,Ω). We say that a holomorphic element
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(h,Ω) is a holomorphic continuation of a holomorphic element (f,D) if there
is a holomorphic continuation along a chain of elements from the element
(f,D) to the element (h,Ω). We say that (h,Ω) is an indirect holomorphic
continuation of (f,D) if (h,Ω) is a holomorphic continuation of (f,D) but is
not a direct holomorphic continuation of (f,D).

Problem 36. Give an example of an indirect holomorphic continuation.

Problem 37. Holomorphic continuation along a given chain of domains
through a given sequence of components of the respective intersections is
unique. That is, if (f1, D1), · · · , (fm, Dm) and (g1, D1), · · · , (gm, Dm) are
holomorphic continuations along the same chain of domains D1, · · · , Dm

through the same components Gj of successive intersections with same initial
functions f1 = g1, then the terminal functions are the same fm = gm.

Later, we shall construct the Riemann manifold of a holomorphic element
(f,D) by considering all holomorphic continuations along chains (fj, Dj)
through components Gj of succesive intersections with initial element (f,D)
equal to (f1, D1) and by ’gluing’ successive domains along the sets Gj. In the
case of one variable, this is the familiar construction of the Riemann surface
of a holomorphic element. For functions of several variables, the procedure
is the same. The term Riemannian domain of f is often used rather than
Riemann manifold of f . The Riemann manifold of a function f is a concrete
instance of a complex manifold. Before explaining this gluing process used
to construct the Riemann manifold of a function, we shall in the next section
introduce the general notion of a spread manifold.

Problem 38. Describe the Riemann surface of the logarithm.

12.2 Spread manifolds

In this subsection we introduce the notion of a manifold N spread (or étalé)
over a manifold M .

Suppose X and Y are topological spaces and let ϕ : Y −→ X. We shall
say that Y is spread over X by ϕ if ϕ is a local homeomorphism, i.e. each
y ∈ Y has an open neighborhood Vy so that the restriction of ϕ to Vy is a
continuous bijection onto its image with a continuous inverse.

Example 1. Take X to be the unit circle C in C with the usual topology, let
Y be an open interval −∞ ≤ a < t < b ≤ +∞, and define ϕ : (a, b) −→ C
by ϕ(t) = eit. Then, (a, b) is spread over C by the mapping ϕ.
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From this example, we see that if ϕ : Y → X is a spread of Y over X,
then ϕ need not be surjective. Moreover, for those who know what a covering
space is, this example shows that a spread over X need not be a covering
space, even if it is surjective. However, a covering space is always a spread.

Problem 39. If Y is a connected Hausdorff space with countable base spread
over a complex manifold X, then there is a unique complex structure on Y
with respect to which Y is a complex manifold and the projection is holomor-
phic.

Under these circumstances, we say that Y is a (complex) manifold spread
over the (complex) manifold X. We also say that Y is a spread manifold over
X. The quotient M/G of a manifold with respect to a properly discontinuous
automorphism group G which acts freely is an example. That is, M is a
manifold spread over M/G by the natural projection. In the next section,
we give another example, the Riemann manifold of a holomorphic function.

12.3 Riemann manifolds

In this subsection we introduce the notion of the Riemann manifold of a
holomorphic function of several complex variables. Our nomenclature is not
standard. What we shall call a Riemann manifold is usually called a Riemann
domain, but we have chosen to call it a Riemann manifold because it is the
higher dimensional analog of the Riemann surface of a function of a single
complex variable. A Riemann manifold is a special case of a spread manifold.
It is natural to confuse the notion of a Riemmann manifold with that of a
Riemannian manifold, especially in translating from one language to another.
However, these two notions are quite different. Riemannian manifolds belong
to real analysis, not complex analysis, and we shall perhaps define them later.
Our purpose in this subsection is to define Riemann manifolds.

Since we have already aluded to the dangers of translation and since this
course is likely to be given in French, I should at this point introduce French
terms for the preceding notions. The French term for manifold is variété. A
Riemannian manifold is une variété riemannienne. The Riemann surface of
a function of one complex variable is la surface de Riemann de la fonction.
The Riemann manifold of a function of several complex variables is la variété
de riemann de la fonction.

Let f ∈ O(Ω), where Ω is a domain in Cn. Let π : M → Cn be a manifold
spread over Cn. We shall say that M contains Ω if there is a domain Ω̃ in M
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such that π maps Ω̃ biholomorphically onto Ω. By the Riemann manifold of
f we mean the maximal complex manifold spread over Cn containing Ω to
which f extends holomorphically. Let us denote the Riemann manifold of f
by Mf . Thus, Mf is the natural domain of f (over Cn).

Problem 40. Let Ω is a domain of holomorphy. Then there exists f ∈ O(Ω)
such that Mf = Ω.

At this point, it would be good for the student to reconsider the earlier
problem of describing the Riemann surface of the logarithm. Fix a branch f
of ln z in some domain D of C. Describe the Riemann surface Mf .

Let us now return to the task of describing the Riemann manifold Mf of
a holomorphic function f ∈ O(Ω), where Ω is a domain in Cn. Since Mf will
be associated to all possible holomorphic continuations of f , the end result
will be the same if we construct the Riemann manifold of the restriction of
f to some ball B contained in Ω, for the direct holomorphic continuation of
f from B to Ω is unique. We thus assume from the outset that we are given
an (holomorphic) element (f, B). By this we mean that B is a ball in Cn

and f ∈ O(B). We shall construct the Riemann manifold Mf of the element
(f, B). Let

F =
⊔

{(f, B) : B ⊂ C
n, f ∈ O(B)}

be the disjoint union of all elements (f, B) for all balls B in Cn. We consider
F as a topological space by putting the topology of the ball B on each (f, B).
It may help to think of f as a mere index on the ball B. Thus, the topological
space F is a disjoint union of balls (f, B). The ball (f, B) can be considered
to be over the ball B. We merely map the point (f, z) of (f, B) to the point
z ∈ B. Thus, the topological space F is spread over Cn. Note that F is not
connected. All of the balls (f, B) are disjoint from each other and are in fact
distinct components of F .

Let us now introduce an equivalence relation on F . Let (fα, zα) ∈ (f, Bα)
and (fβ, zβ) ∈ (fβ, Bβ) be any two points in F . We write (fα, zα) ∼ (fβ, zβ)
if zα = zβ and fα = fβ on Bα ∩Bβ.

Problem 41. This is an equivalence relation on F .

Let us denote the quotient space O = F/ ∼. We describe the preceding
construction by saying that the space O is obtained by gluing two balls
(fα, Bα) and (fβ, Bβ) in F together along the intersection Bα ∩ Bβ if and
only if fα = fβ on this intersection. Let us denote an element of O by
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[f, z], where [f, z] is the equivalence class of the element (f, z) in F . An
element [f, z] is called a germ of a holomorphic function at z and O is called
the space of germs of holomorphic functions. We claim that the space O
is Hausdorff. Let [fα, zα] and [fβ, zβ] be distinct points of O representing
respectively equivalence classes of points (fα, zα) and (fβ, zβ) in F . Since
[fα, zα] 6= [fβ, zβ], either zα 6= zβ or zα = zβ but fα and fβ are distinct
holomorphic functions in some neighborhood B of zα = zβ.

In the first case, we may choose disjoint small balls Dα and Dβ containing
zα and zβ and contained in the domains Bα and Bβ of fα and fβ respectively.
Since, Dα and Dβ are disjoint, the disjoint open sets (fα, Dα) and (fβ, Dβ)
in F are remain disjoint in O. These yield disjoint neighborhoods of [fα, zα]
and [fβ, zβ].

In the second case, no points of (fα, B) and (fβ, B) are identified, for this
would imply that fα = fβ in B, which is not the case. Thus, (fα, B) and
(fβ, B) are disjoint neighborhoods of [fα, zα] and [fβ, zβ]. We have shown
that O is Hausdorff.

At last, we may define the Riemann manifold Mf of an arbitrary holo-
morphic element (f,Ω), that is, of an arbitrary holomorphic function defined
on a domain Ω in Cn. Let B be a ball in Ω and define the Riemann manifold
Mf of f (more precisely, of (f,Ω)) to be the component of ′ containing the
element (f, B).

It can be verified that the Riemann manifoldMf of a holomorphic element
(f, B) is indeed a manifold. Since Mf is spread over Cn, we have only to
check that Mf is Hausdorff, connected and has a countable base. First of all
Mf is connected by definition, since it is a component of O. To check that
Mf is Hausdorff, it is sufficient to note that O is Hausdorff, since Mf is a
subspace of O, which we have shown to be Hausdorff.

To show that the Riemann manifold Mf of a holomorphic element (f, B)
is second countable is not so simple. We shall merely sketch the proof. It
will be sufficient to construct a second countable subset Xf of Mf which is
both open and closed. Since Mf is connected it will follow that Xf = Mf so
Mf second countable.

We shall define the Riemann manifold associated to holomorphic continu-
ation along a chain as in one complex variable. Let (f1, B1), · · · , (fm, Bm) be
a holomorphic continuation along a chain of balls B1, · · · , Bm. We construct
the Riemann manifold associated to this holomorphic continuation by gluing
two balls (fj, Bj) and (fk, Bk) along their intersection if and only if their
intersection is non empty and fj = fk on this intersection. The resulting
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space is connected since in this process any two successive balls are glued
together. This yields a complex manifold spread over Cn. Using the same
gluing rule, we may construct a complex manifold from any two holomorphic
continuations along balls (f1, B1), · · · , (fm, Bm) and (g1, K1), · · · , (fm, Km)
having the same initial element (f1, B1). That is, the balls B1 and K1 are
the same and the holomorphic functions f1 and g1 coincide thereon. We can
do the same with any finite collection of holomorphic continuations having
the same initial element (f, B). The result will always be connected and
hence a complex manifold spread over Cn.

Now let us perform such holomorphic continuations in a more systematic
manner. Fix an initial holomorphic element (f, B). Let Mj,k be the complex
manifold spread Cn obtained by holomorphic continuation along chains of
at most k balls of radius 1/j whose centers are obtained, starting from the
center of B by taking (at most k) steps of length 1/j in the directions of
the coordinate axes. Now we glue to such manifolds together along the
intersection of two of their balls according to the usual rule. If we do this
simultaneously to the whole family Mj,k, where j, k = 1, 2, 3, · · · , the result is
connected and yields a second countable Hausdorff space Xf spread over Cn.
Now, if Mf is the Riemann manifold of a holomorphic element (f, B) and
Xf is the manifold associated to holomorphic continuation of the element
(f, B) constructed in the manner we have just described, it is not difficult
to see that Xf is an open and closed subset of Mf . Since Mf is connected,
Mf = Xf . Since Xf is by construction second countable, we have that Mf

is second countable. Thus, the Riemann manifold of a holomorphic element
(f, B) is indeed a manifold.

Holomorphic continuation of a holomorphic element (f, B) usually leads
to a multiple-valued ’function’. That is, if by continuation along a chain we
return to a former point, the new function may differ from the former function
at that point. The Riemann manifold Mf of a holomorphic element (f, B)
is constructed to remove this ambiguity. That is, there is a holomorphic
function f̃ on Mf such that f̃ = f on the initial B. The function f̃ is
defined on any (fα, Bα) arising in the definition of Mf , by setting f = fα.
The equivalence relation used in defining Mf is designed precisely to assure
that f̃ is well defined, that is, f̃ is a (single-valued) function on Mf . We
recapitulate by once again saying that the Riemann manifold Mf of the
holomorphic element (f, B) is the natural domain of f , that is the maximal
domain over Cn to which f extends holomorphically.
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13 The tangent space

Here is a short definition which we shall explain after. The tangent space
T (X) of a real manifold X of dimension n is the set of formal expressions

T (X) = {a1
∂

∂x1

+ · · · + an
∂

∂xn

: aj ∈ C1(X)},

which is the space of smooth vector fields on X. We shall define the tangent
space Tp(X) of X at a point p ∈ X and we shall set

T (X) =
⋃

p∈X

Tp(X).

There remains to define Tp(X).
Let X be a smooth (real) manifold. If U is an open subset of X, we

denote by E(U) the set of smooth functions on U . If p ∈ X, let us say that
f is a smooth function at p if f ∈ E(U) for some open neighborhood U of
p. Two smooth functions f and g at p are said to be equivalent if f = g in
some neighborhood of p. This is an equivalence relation and the equivalence
classes are called germs of smooth functions at p. For simplicity, we shall
denote the germ of a smooth function f at p also by f . Denote by Ep the set
of germs of smooth functions at p. The set Ep is an R-algebra.

A derivation of the algebra Ep is a vector space homomorphism

D : Ep → R

such that
D(fg) = D(f) · g(p) + f(p) ·D(g),

where g(p) and f(p) are the evaluations at p of the germs g and f at p.
The tangent space of X at p, denoted Tp(X), is the vector space of deriva-

tions of the algebra Ep.
Since X is a smooth manifold, there is a diffeomorphism h of an open

neighborhood U of p onto an open set U ′ ⊂ Rn:

h : U → U ′,

and if we set h∗f(x) = f ◦ h(x), then h has the property that, for open
V ⊂ U ′,

h∗ : E(V ) → E(h−1(V ))
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is an algebra isomorphism. Thus h∗ induces an algebra isomorphism on
germs:

h∗ : Eh(p) → Ep,

and hence induces an isomorphism on derivations:

h∗Tp(X) → Th(p)(R
n).

Indeed, if D ∈ Tp(X) we define h∗(D) ∈ Th(p)(R
n) as follows: if f ∈ Eh(p), we

set h∗(D)f ≡ D(h∗f).

Problem 42. Fix a ∈ Rn. Then,
i) ∂

∂x1
, · · · , ∂

∂xn
are derivations of Ea(R

n) and
ii) form a basis of Ta(R

n).

Applying this to the point a = h(p), we see that the vector space Tp(X)
is of dimension n, for each p ∈ X. The derivations given in the previous
problem are the directional derivatives evaluated at the point h(p).

Let f : M → N be a smooth mapping between smooth manifolds. Then,
there is a natural mapping:

f ∗ : Ef(p) → Ep,

which in turn induces a natural mapping

dfp : Tp(M) → Tf(p)(N)

given by dfp(Dp) = Dp ◦ f
∗. The mapping dfp is linear.

In local coordinates x for p and y for q = f(p), consider the case Dp = ∂
∂xi

.
Let g ∈ Eq.

dfp(
∂

∂xi

(g) =
∂

∂xi

◦ f ∗(g) =
∂

∂xi

(g ◦ f) =
m
∑

j=1

∂g

∂yj

∂fj

∂xi

=

(

m
∑

j=1

∂fi

∂xi

∂

∂yj

g

)

.

Thus

dfp(
∂

∂xi

=
m
∑

j=1

∂fj

∂xi

∂

∂yj

.

This maps a basis element of Tp(M) to a basis element of Tf(p)(N). Hence,
in local coordinates, the linear transformation

dfp : Tp(M) → Tf(p)(N)
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is represented by the matrix:

dfp =













∂f1

∂x1
· · · ∂f1

∂xn

· · · · ·
· · · · ·
· · · · ·

∂fm

∂x1
· · · ∂fm

∂xn













.

The coefficients
∂fj

∂xi
are smooth functions of the local coordinate x. The map-

ping dfp has the following names: the derivative mapping, the differential,
the tangent mapping, the Jacobian of f at a. The tangent mapping at p is
the linear approximation of the smooth mapping f .

I would like our definition of the tangent space Tp(M) at a point p of a
smooth manifold M to correspond to my intuitive notion of what it should
be. The only situation in which I do have an inutitive notion is when I have
an intuitive notion of M itself, that is, when M is a smooth submanifold
of some Euclidean space. In this case, I think of Tp(M) as the space of all
vectors with base point p which are tangent to M at p. For our definition, it is
preferable to think of these vectors as having the origin as base point, so that
Tp(M) is a vector subspace of the ambient Euclidean space. Tangent vectors
generally are not contained in M , even if the base point p is. To obtain
an intrinsic definition of Tp(M), we note that there is a bijection between
vectors a at the origin and derivatives

∑

aj
∂

∂xj
with respect to a. Moreover,

this correspondence is preserved by smooth mappings, and in particular, by
smooth change of charts. Namely, if f is a smooth mapping, σ is a smooth
curve passing through p, and the vector a is tangent to σ at p, then since
dfp is the linear approximation of f at p, the vector dfp(a) is tangent to the
curve f ◦ σ at f(p).

Having discussed the tangent space to a smooth (real) manifold, we now
introduce the (complex) tangent space to a complex manifold. Let p be a
point of a complex manifold M and let Op be the C-algebra of germs of
holomorphic functions at p. The complex (or holomorphic) tangent space
Tp(M) to M at p is the complex vector space of all derivations of the C-
algebra Op, hence the complex vector space homomorphisms D : Op → C

such that
D(fg) = f(p) ·D(g) +D(f) · g(p).

In local coordinates, we note that Tp(M) = Tz(C
n) and that the partial

derivatives { ∂
∂z1
, · · · , ∂

∂zn
} form a basis of Tz(C

n). If M is a submanifold of
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some complex Euclidean space, then the complex tangent space to M at p is
the largest complex vector subspace contained in the real tangent space to
M at p. Having defined the (complex) tangent space Tp(M) to a complex
manifold at a point p ∈ M , we define the (complex) tangent space T (M) of
M :

T (M) =
⋃

p∈M

Tp(M).

14 Runge domains

A domain G in a complex manifold M is called a Runge domain in M if every
function holomorphic in G can be approximated by functions holomorphic
on all of M . For example, a domain G in C is a Runge domain in C if and
only if G is simply connected.

Theorem 39. If G1, · · · , Gn are Runge domains in C, then G = G1×· · ·×Gn

is a Runge domain in Cn.

It is easy to see that the property of being a Runge domain in M is invari-
ant under biholomorphic mappings of M . That is, if ϕ is an automorphism
of M , then it maps Runge domains in M to Runge domains in M . However,
it is not invariant under biholomorphic mappings of the domains themselves.
That is, if G is a Runge domain in M and ϕ maps G biholomorphically onto a
domain W in M , then W need not be a Runge domain in M . Wermer gives
an example of polynomial mapping ϕ of C

3 into C
3 which maps a Runge

domain of C3 biholomorphically onto a non Runge domain in C3.

15 Meromorphic functions

It is not so simple to define a meromorphic function on a complex manifold
M . For one thing, it is not quite a function on M . But at least it turns out
to be a function on ’most of’ M . In one variable, meromorphic functions are
quotients of holomorphic functions. In several variables, this is too restrictive,
so we shall define them to be locally quotients of holormorphic functions.

If p is a point of a complex manifold M , the ring Op of germs of holomor-
phic functions at p, is an integral domain and so we may form the quotient
field, which we denote by Mp. This field is called the field of germs of mero-
morphic functions at p. Thus, a meromorphic germ fp at p can be represented
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as a quotient fp = gp/hp, where gp, hp ∈ Op, and hp 6= 0. We now define a
meromorphic function f on M as a mapping f which assigns to each p ∈M
a meromorphic germ fp at p. We impose the following compatibility between
these germs. For every p ∈M , there is a connected neighborhood U of p and
holomorphic functions g, h ∈ O(U) with h 6= 0, such that fq = gq/hq for all
q ∈ U . It turns out that we can (and shall) assume the following coherence
property: for each q ∈ U , gq and hq are relatively prime.

Now we would like a meromorphic function to indeed be a function, that
is, taking complex values. Let p ∈ M and U , g and h be as in the above
definition. We set

f(p) =







g(p)/h(p) if h(p) 6= 0,
∞ if h(p) = 0, g(p) 6= 0,
0/0 if h(p) = g(p) = 0.

The point p is called a point of holomorphy in the first case, a pole in the
second case and a point of indetermination in the third case. This trichotomy
is well defined, that is, does not depend on the choice of U , g and h. Moreover,
the value f(p) is also well defined in the first two cases. The first two cases
form an open dense set G of M . In this sense, a meromorphic function is a
well defined function on most of M . In a neighborhood of each point of G,
either f or 1/f is holomorphic. Note that f is being considered as a mapping
in two ways. First of all, f was originally defined as a mapping which assigns
to each p ∈ M , a germ fp, with a compatibility condition between germs.
Now we are also considering f as a mapping which assigns to each p ∈ G
a finite or infinite value f(p), which may be considered as the value of the
germ fp at p. If p is a point of indetermination, then, for each complex value
ζ, there are points of holomorphy q arbitrarily close to p such that f(q) = ζ.
For proofs of these claims, see [2].

16 Compact Riemann surfaces and algebraic

curves
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