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Abstract. We give explicit isoperimetric upper bounds for all
Steklov eigenvalues of a compact orientable surface with bound-
ary, in terms of the genus, the length of the boundary, and the
number of boundary components. Our estimates generalize a re-
cent result of Fraser–Schoen, as well as the classical inequalites
obtained by Hersch–Payne–Schiffer, whose approach is used in the
present paper.

1. Introduction

1.1. Steklov spectrum. Let Σ be a compact orientable surface with
boundary, and let ∆ be the Laplace–Beltrami operator associated with
a Riemannian metric on Σ. The Steklov eigenvalue problem on Σ is
given by:

∆u = 0 in Σ, ∂nu = σu on ∂Σ,

where ∂n denotes the outward normal derivative. The spectrum of the
Steklov problem is discrete and its eigenvalues form a sequence

0 = σ0 < σ1 ≤ σ2 ≤ σ3 ≤ · · · ↗ ∞,

where each eigenvalue is repeated according to its multiplicity [2]. The
eigenfunctions φk, k = 0, 1, 2 . . . can be chosen to form an orthogo-
nal basis of L2(∂Σ). Note that the eigenfunction φ0 corresponding to
σ0 = 0 is constant.

The Steklov eigenvalues coincide with the eigenvalues of the Dirichlet-
to-Neumann map Λ. If the boundary ∂Σ is smooth, it is a pseudo-
differential elliptic operator Λ : C∞(∂Σ)→ C∞(∂Σ) of order one [20],
defined by

Λ(f) = ∂nHf,
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where Hf is the harmonic extension of f to the interior of Σ (i.e.
∆(Hf) = 0 on Σ). The Dirichlet-to-Neumann map has important
applications to inverse problems [6, 19].

1.2. Main results. Isoperimetric inequalities for Steklov eigenvalues
have been actively studied for more than fifty years [21, 22, 3, 15, 12]. In
particular, a number of recent papers are concerned with the Steklov
spectrum on manifolds with boundary [9, 10, 14, 7]. The following
estimate on the first nontrivial Steklov eigenvalue on a surface with
boundary was proved by Fraser and Schoen [10]:

(1.1) σ1 L ≤ 2π(γ + l).

Here L is the length of the boundary, γ is the genus of the surface and
l the number of boundary components. For simply connected planar
domains, inequality (1.1) is sharp and was proved by Weinstock in [21].

The goal of this note is to generalize (1.1) to higher eigenvalues. We
prove

Theorem 1.2. Let Σ be a compact orientable surface of genus γ, such
that the boundary ∂Σ has l connected components of total length L.
Then

σk L ≤ 2π(γ + l) k(1.3)

for any integer k ≥ 1.

In fact, Theorem 1.2 is a special case (set p = q below) of the fol-
lowing result:

Theorem 1.4. Under the assumptions of Theorem 1.2,

σpσq L
2 ≤

{
π2(γ + l)2(p+ q)2 if p+ q is even,

π2(γ + l)2(p+ q − 1)2 if p+ q is odd,
(1.5)

for any pair of integers p, q ≥ 1.

1.3. Discussion. It follows from Weyl’s law for eigenvalues of the
Dirichlet-to-Neumann operator that the linear dependence on k in (1.3)
is optimal. For simply connected planar domains, the inequalities (1.5)
were obtained by Hersch, Payne, and Schiffer in [16]. In [12] we proved
that in this case (here γ = 0, l = 1) the estimates (1.3) are sharp for
all k ≥ 1. We do not expect (1.3) to be sharp for other values of γ and
l (cf. [10, Theorem 2.5]); see also Question 1.8 below.

The proof of Theorem 1.4 combines the methods of [10] and [16].
Following [10], we use a version of Ahlfors Theorem [1] proved by
Gabard [11], according to which any Riemannian surface of genus γ
with l boundary components can be represented as a proper conformal
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branched cover of a disk D with degree at most γ+ l. Properness of the
covering map implies that the boundary ∂Σ is mapped to the circle S1.
It is essential in this proof since the test functions for the variational
characterization of the eigenvalues σk are built from the eigenfunctions
of a certain one–dimensional problem on S1. This approach was sug-
gested by Hersch, Payne and Schiffer in [16].

The analogue of the estimate (1.1) for the first nonzero Laplace eigen-
value λ1 on a closed surface Σ (without boundary) is the Yang–Yau
inequality [23] :

(1.6) λ1 Area(Σ) ≤ 8πd,

where d is the degree of a conformal branch covering of Σ over a sphere.
It was observed in [8] that one could take d ≤ [γ+3

2
], where [·] denotes

the integer part.
For higher eigenvalues of the Laplacian on surfaces, no explcit esti-

mates like (1.3) are known. However, with an implicit constant such a
bound was proved by Korevaar in [18] using a different approach. The
analogue of Korevaar’s result for Steklov eigenvalues on surfaces was
obtained in [7] (see also [13, Section 5.3] and [17, Example 1.3]): there
exists a universal constant C such that

σkL ≤ C (γ + 1)k, k = 1, 2, 3, . . .(1.7)

Note that the bound (1.7) does not depend on the number of boundary
components of ∂Σ, which makes it a sharper estimate than (1.3) for l
large enough. Another interesting development of Korevaar’s method
for both Laplace and Steklov eigenvalues can be found in [14] where λk
and σk are bounded by a linear combination of k and γ (instead of its
product). However, the constants in [14] are also implicit.

Let us conclude by an open question. It was proved in [5] that there
exists a sequence of closed surfaces Σn of genera γn →∞ such that

lim
n→∞

λ1(Σn) Area(Σn) =∞.

Moreover, it was subsequently shown in [4] that one can choose a se-
quence of surfaces with γn = n and λ1(Σn) Area(Σn) growing linearly
as n↗∞. Therefore, the dependence on the genus γ in the Yang–Yau
inequality (1.6) is optimal up to a multiplicative constant.

Question 1.8. Is there a sequence Σn of surfaces with boundary of
genera γn →∞ such that σ1(Σn)L(∂Σn)→∞ as n→∞? If yes, is it
possible to achieve linear growth?
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2. Proof of Theorem 1.4

2.1. Reduction to the circle. Let (φk)
∞
k=0 ⊂ L2(∂Σ) be a complete

orthonormal system of eigenfunctions of the Dirichlet–to–Neumann
map. It is well known that if a function f ∈ C∞(Σ) satisfies∫

∂Σ

fφj for j = 0, 1, 2 . . . , k − 1,(2.1)

then

σk ≤ RΣ(f) :=

∫
Σ
|∇f |2∫
∂Σ
f 2

.(2.2)

The proof of Theorem 1.4 is based on the approach of [16]. We
construct test functions using linear combinations of harmonic oscil-
lators on S1, extend them harmonically to the disk and then lift to
a branched cover representation of Σ. Using sufficiently many har-
monic oscillators, one can ensure the existence of a linear combination
satisfying the orthogonality conditions (2.1).

As was shown in [11], there exists a proper conformal branched cover

ψ : Σ→ D

of degree d ≤ γ + l. Because ψ is proper, it takes the boundary ∂Σ to
the circle S1 = ∂D. The restriction of ψ to each connected component
of ∂Σ is a covering map of S1. Let ds be the Riemannian measure on
∂Σ. We define the push-forward measure dµ = ψ∗ds on the circle S1,
and introduce the “mass parameter”

m(θ) =

∫ θ

0

dµ(θ).

In particular, dµ = m′(θ)dθ is absolutely continuous with respect to
the Lebesgue measure dθ, and the length of the boundary ∂Σ is given
by

L = m(2π) =

∫
S1

dµ.

Given a smooth periodic function h : R → R with period L, define
f : S1 → R by

f(θ) = h(m(θ)).
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The function f admits a unique harmonic extension u to the disk D.
Because the disk is simply connected, this function has a unique har-
monic conjugate v normalized in such a way that∫

S1

v dµ = 0.(2.3)

Let the functions α, β : Σ→ R be defined by

α = u ◦ ψ and β = v ◦ ψ.
Recall that the map ψ is a d-fold conformal branched covering of D.
It follows from conformal invariance of the Dirichlet energy in two
dimensions (see also [23]) that∫

Σ

|∇α|2 = d

∫
D
|∇u|2,

∫
Σ

|∇β|2 = d

∫
D
|∇v|2.(2.4)

Moreover, the Cauchy–Riemann equations imply that these two quan-
tities are equal. Integration by parts gives∫

D
|∇u|2 =

∫
D
|∇v|2 =

∫
S1

v ∂rv.(2.5)

Multiplying the two equations in (2.4) and using (2.5), we get∫
Σ

|∇α|2
∫

Σ

|∇β|2 = d2

(∫
S1

v∂rv

)2

.(2.6)

The Cauchy–Riemann equations also imply the pointwise equality

∂rv = −∂θu = −f ′(θ) = −h′(m(θ))m′(θ).

Applying the Cauchy–Schwarz inequality to the measure dµ = m′(θ)dθ
leads to :

(2.7)

(∫
S1

v∂rv

)2

=

∫
S1

v(θ)h′(m(θ))

dµ(θ)︷ ︸︸ ︷
m′(θ))dθ


2

≤
∫
S1

v2(θ) dµ(θ)

∫
S1

h′(m(θ))2 dµ(θ).

At the same time,∫
∂Σ

α2 d∂Σ =

∫
S1

f 2 dµ and

∫
∂Σ

β2 d∂Σ =

∫
S1

v2 dµ.(2.8)

Estimating the product of the Rayleigh quotients Rα := RΣ(α) and
Rβ := RΣ(β) using the relations (2.6), (2.7) and (2.8), we notice that∫
S1 v

2(θ) dµ(θ) cancels out on the right–hand side. This is the key trick
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in the method introduced in [16]. Namely, we obtain the following
bound:

R(α)R(β) ≤ d2

∫
S1 h

′(m(θ))2 dµ(θ)∫
S1 h(m(θ)2 dµ(θ)

= d2RL(h).

Here

RL(h) :=

∫ L
0
h′(m)2 dm∫ L

0
h(m)2 dm

is the Rayleigh quotient of a uniform circular string of length L. Its
eigenmodes are well known. Let hk : R→ R, k = 0, 1, 2 . . . , be defined
by h0 = 1 and

hk(m) =

{
cos
(

2nπm
L

)
if k = 2n− 1,

sin
(

2nπm)
L

)
if k = 2n.

for k ≥ 1. Clearly,

RL(hk) =

(
2πn

L

)2

for k = 2n or k = 2n− 1.

This leads to

R(α)R(β) ≤
(
πd

L

)2
{
k2 if k = 2n,

(k + 1)2 if k = 2n− 1.
(2.9)

2.2. Construction of test-functions. The rest of the argument is
almost exactly the same as in [16]. We present it below for the sake of
completeness. Let N = p+ q − 1. Consider a function

f =
N∑
k=1

ckfk, (ck ∈ R),(2.10)

where the functions fk : S1 → R are defined by fk(θ) = hk(m(θ).
The functions fk are dµ–orthogonal to each other, and hence linearly
independent. The harmonic extensions uk of fk are also linearly inde-
pendent, because taking the harmonic extension is a linear and injective
operation. For the same reason, the harmonic conjugates vk are linearly
independent as well. Moreover, since by definition f0 = 1, fk are dµ–
orthogonal to constants for all k = 1, 2, 3, . . . , and hence

∫
∂Σ
αk = 0 for

all k ≥ 1, where αk = uk ◦ ψ. At the same time, by the normalization
(2.3),

∫
∂Σ
βk = 0 for all k ≥ 1, where βk = vk ◦ ψ. Let

u =
N∑
k=1

ckuk and v =
N∑
k=1

ckvk.
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As before, these functions are lifted to α = u ◦ ψ and β = v ◦ ψ.
In order to use u and v in the variational characterization (2.2) for

σp and σq respectiveley, they have to satisfy the orthogonality condi-
tions (2.1) : ∫

∂Σ

αφk = 0 for k = 1, · · · , p− 1∫
∂Σ

βφk = 0 for k = 1, · · · , q − 1

These N − 1 linear constraints can be resolved for some choice of N
constants c1, . . . , cN . It follows from (2.9) that

σpσq ≤ R(α)R(β) ≤ d2RL(h),

where h =
∑N

k=1 ckhk. We conclude by observing that

RL(h) ≤ RL(hN) =

(
πd

L

)2
{
N2 if N is even,

(N + 1)2 if N is odd.

=

(
πd

L

)2
{

(p+ q − 1)2 if p+ q is odd,

(p+ q)2 if p+ q is even.

Recalling that d ≤ γ + l completes the proof of Theorem 1.4. �
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