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Abstract. We give an overview of results on shape optimization
for low eigenvalues of the Laplacian on bounded planar domains
with Neumann and Steklov boundary conditions. These results
share a common feature: they are proved using methods of complex
analysis. In particular, we present modernized proofs of the clas-
sical inequalities due to Szegö and Weinstock for the first nonzero
Neumann and Steklov eigenvalues. We also extend the inequal-
ity for the second nonzero Neumann eigenvalue, obtained recently
by Nadirashvili and the authors, to non-homogeneous membranes
with log-subharmonic densities. In the homogeneous case, we show
that this inequality is strict, which implies that the maximum of
the second nonzero Neumann eigenvalue is not attained in the class
of simply-connected membranes of a given mass. The same is true
for the second nonzero Steklov eigenvalue, as follows from our re-
sults on the Hersch–Payne–Schiffer inequalities.

1. Introduction and main results

1.1. Neumann and Steklov eigenvalue problems. Let Ω be a
simply-connected bounded planar domain with Lipschitz boundary.
Consider the Neumann and Steklov eigenvalue problems on Ω:

(1.1.1) −∆u = µu in Ω and
∂u

∂n
= 0 on ∂Ω,

(1.1.2) ∆u = 0 in Ω and
∂u

∂n
= σu on ∂Ω.

Here ∆ = ∂2
x +∂2

y is the Laplace operator and ∂
∂n

is the outward normal
derivative. Both problems have discrete spectra (see [1, p. 7 and p. 113])

0 = µ0 < µ1(Ω) ≤ µ2(Ω) ≤ µ3(Ω) ≤ · · · ր ∞,

0 = σ0 < σ1(Ω) ≤ σ2(Ω) ≤ σ3(Ω) ≤ · · · ր ∞,

2000 Mathematics Subject Classification. 35P15, 35J25.
Key words and phrases. Laplacian, eigenvalue, Neumann problem, Steklov prob-

lem, shape optimization, complex analysis.
The second author is supported by NSERC and FQRNT.

1



2 ALEXANDRE GIROUARD AND IOSIF POLTEROVICH

starting with the simple eigenvalues µ0 = 0 and σ0 = 0, which corre-
spond to constant eigenfunctions. The eigenvalues µk and σk satisfy
the following variational characterizations:

µk(Ω) = inf
Uk

sup
06=u∈Uk

∫
Ω
|∇u|2 dz∫
Ω
u2 dz

, k = 1, 2, . . .(1.1.3)

σk(Ω) = inf
Ek

sup
06=u∈Ek

∫
Ω
|∇u|2 dz∫
∂Ω
u2 ds

, k = 1, 2, . . .(1.1.4)

The infima are taken over all k–dimensional subspaces Uk and Ek of
the Sobolev space H1(Ω) which are orthogonal to constants on Ω and
∂Ω, respectively.

Remark 1.1.5. Here and further on we identify R2 with the complex
plane C and set z = (x, y). We write dz = dx dy for the Lebesgue
measure.

1.2. Shape optimization. Both Neumann and Steklov eigenvalue prob-
lems describe the vibration of a free membrane. In the Neumann case
the membrane is homogeneous, while in the Steklov case the whole
mass of the membrane is uniformly distributed on ∂Ω. Therefore, we
may define the mass of the membrane Ω by setting

(1.2.1) M(Ω) =

{
Area(Ω) in the Neumann case,

Length(∂Ω) in the Steklov case.

In this survey we focus on the following shape optimization problem.

Question 1.2.2. How large can µk and σk be on a membrane of a
given mass?

In 1954, this problem was solved by G. Szegö for µ1 and by R. We-
instock for σ1. Let D = {z ∈ C | |z| < 1} be the open unit disk.

Theorem 1.2.3. ([2]) Let Ω be a simply-connected bounded planar
domain with Lipschitz boundary. Then

µ1(Ω)M(Ω) ≤ µ1(D)π ≈ 3.39π,(1.2.4)

with equality if and only if Ω is a disk.

Szegö’s inequality was later generalized by H. Weinberger [3] to ar-
bitrary (not necessarily simply–connected) domains in any dimension.

Theorem 1.2.5. ([4]) Let Ω be a simply-connected bounded planar
domain with Lipschitz boundary. Then

(1.2.6) σ1(Ω)M(Ω) ≤ 2π,

with equality if and only if Ω is a disk.
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Many results were motivated by Weinstock’s inequality: see, for in-
stance, [5—11].

Recently, analogues of Theorems 1.2.3 and 1.2.5 for the second nonzero
Neumann and Steklov eigenvalues were proved in [12] and [13].

Theorem 1.2.7. ([12]) (i) Let Ω be a simply-connected bounded planar
domain with Lipschitz boundary. Then

(1.2.8) µ2(Ω)M(Ω) < 2µ1(D) π ≈ 6.78π.

(ii) There exists a family of simply-connected bounded Lipschitz do-
mains Ωε ⊂ R2, degenerating to the disjoint union of two identical
disks as ε → 0+, such that

lim
ε→0+

µ2(Ωε)M(Ωε) = 2µ1(D) π.

Note that inequality (1.2.8) is strict, and hence Theorem 1.2.7 is a
slight improvement upon [12, Theorem 1.1.3].

Theorem 1.2.7 implies the Pólya conjecture [14] for the second nonzero
Neumann eigenvalue of a simply-connected bounded planar domain:

µ2(Ω)Area(Ω) ≤ 8π.

The best previous estimate on µ2 was obtained in [15]:

µ2(Ω)Area(Ω) ≤ 16π.

Theorem 1.2.9. ([13]) (i) Let Ω be a simply-connected bounded planar
domain with Lipschitz boundary. Then

(1.2.10) σ2(Ω)M(Ω) < 4π.

(ii) There exists a family of simply-connected bounded Lipschitz do-
mains Ωε ⊂ R2, degenerating to the disjoint union of two identical
disks as ε → 0+, such that

lim
ε→0+

σ2(Ωε)M(Ωε) = 4π.

The proofs of Theorems 1.2.7 and 1.2.9 use similar techniques. In-
equality (1.2.10) is a slight sharpening in the case k = 2 of the estimate

(1.2.11) σk(Ω)M(Ω) ≤ 2πk, k = 1, 2, . . .

obtained earlier by Hersch–Payne–Schiffer [10, p. 102] by a completely
different method. Our approach allows to show that (1.2.11) is strict
for k = 2, similarly to (1.2.8). Note that this contrasts with estimates
(1.2.4) and (1.2.6). In particular, we have the following

Corollary 1.2.12. The maximal values of the second nonzero Neu-
mann and Steklov eigenvalues are not attained in the class of simply–
connected Lipschitz domains of a given mass.
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Remark 1.2.13. Theorems 1.2.3 and 1.2.5 are analogues of the Faber–
Krahn inequality for the first Dirichlet eigenvalue ([16, 17], [1, section
3.2]), while Theorems 1.2.7 and 1.2.9 are similar to Krahn’s inequality
for the second Dirichlet eigenvalue ([18], [1, section 4.1]). Note that the
equalities in the estimates of Faber–Krahn and Krahn are also attained
for the disk and the disjoint union of two identical disks, respectively.

1.3. Higher eigenvalues. One could ask whether µk and σk are max-
imized in the limit by the disjoint union of k identical disks for all
k ≥ 1. In [13] we show that this is indeed true for all Steklov eigen-
values, and that the Hersch–Payne–Schiffer inequality (1.2.11) is sharp
for all k ≥ 1. This gives an almost complete answer to Question 1.2.2
in the Steklov case. It remains to check whether (1.2.11) is always a
strict inequality.

For Neumann eigenvalues the situation is more complicated. Indeed,
if all µk are maximized in the limit by the disjoint union of k identical
disks, then for any simply-connected domain Ω and each integer k ≥ 1,

µk(Ω)M(Ω) ≤ k µ1(D) π ≈ 3.39kπ.

However, this is false for any domain Ω, because

µk(Ω)M(Ω) ∼ 4kπ as k → ∞

according to Weyl’s law [19, p. 31].

1.4. Non-homogeneous membranes.

Neumann problem. Let ρ ∈ L∞(Ω) be a positive function representing
the density of a non-homogeneous membrane Ω of mass

M(Ω) =

∫

Ω

ρ(z) dz.

In this context, the Neumann eigenvalue problem becomes

(1.4.1) −∆u = µ ρ u in Ω and
∂u

∂n
= 0 on ∂Ω.

It also has a discrete spectrum

0 = µ0 < µ1(Ω, ρ) ≤ µ2(Ω, ρ) ≤ µ3(Ω, ρ) ≤ · · · ր ∞.

The following result shows that inequalities (1.2.4) and (1.2.8) can be
generalized to this setting.

Theorem 1.4.2. Let Ω be a simply-connected domain with Lipschitz
boundary and density ρ ∈ C2(Ω). If ∆ log ρ ≥ 0, then

(1.4.3) µ1(Ω, ρ)M(Ω) ≤ µ1(D)π,

(1.4.4) µ2(Ω, ρ)M(Ω) ≤ 2µ1(D) π.
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Inequality (1.4.3) was proved by C. Bandle ([20], [21, p. 121-128]).
To the best of our knowledge, estimate (1.4.4) is new. Its proof is very
similar to that of (1.2.8). We believe that inequality (1.4.4) is strict,
and it would be interesting to establish this fact.

Remark 1.4.5. Recall that the Gaussian curvature of the Riemannian
metric g = ρ(x, y)(dx2 + dy2) is given by the well known formula [22,
Theorem 13.1.3]:

Kg = −
1

2ρ
∆ log ρ.(1.4.6)

It follows that the condition ∆ log ρ ≥ 0 is equivalent to Kg ≤ 0.
In other words, log-subharmonic densities correspond to nonpositively
curved membranes.

Remark 1.4.7. If we impose no restriction on the density ρ, then it
is easy to see that maximizing µk for simply–connected membranes is
equivalent to finding a Riemannian metric on the sphere that maximizes
the k-th Laplace-Beltrami eigenvalue. It follows from [23, Corollary 1]
that

sup
Ω,ρ

µk(Ω, ρ)M(Ω) ≥ 8kπ for each k ≥ 1.(1.4.8)

For k = 1, 2 this is an equality, as was shown in [24] and [25]. In-
terestingly enough, extremal metrics for the first two eigenvalues on
the sphere resemble the extremal domains described in section 1.2: the
first eigenvalue is maximized by the round sphere, and the supremum
for the second eigenvalue is attained in the limit by a sequence of met-
rics converging to the disjoint union of two identical round spheres. In
fact, in [25] it is conjectured that (1.4.8) is an equality for each k ≥ 1,
and that the supremum is attained in the limit by the densities corre-
sponding to a family of surfaces degenerating to the disjoint union of
k identical round spheres. If true, this would be similar to the case of
higher Steklov eigenvalues, see section 1.3.

Steklov problem. Let ρ ∈ L∞(∂Ω) be a positive function representing
the boundary density of the membrane Ω of total mass

M(Ω) =

∫

∂Ω

ρ(s) ds.

The non-homogeneous Steklov eigenvalue problem is given by

(1.4.9) ∆u = 0 in Ω and
∂u

∂n
= σρu on ∂Ω.
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It has discrete spectrum

0 = σ0 < σ1(Ω, ρ) ≤ σ2(Ω, ρ) ≤ σ3(Ω, ρ) ≤ · · · ր ∞.

Estimates (1.2.6) and (1.2.10) can be generalized to this setting.

Theorem 1.4.10. Let Ω be a simply-connected bounded Lipschitz pla-
nar domain with the density ρ on the boundary. Then

(1.4.11) σ1(Ω, ρ)M(Ω) ≤ 2π.

(1.4.12) σ2(Ω, ρ)M(Ω) < 4π.

Inequality (1.4.11) was proved in [4] similarly to (1.2.6). Estimate
(1.4.12) was proved in [13], and we refer to this paper for the details
of the proof. In fact, it is almost identical to that of (1.2.10). Let us
also note that the estimate for higher eigenvalues (1.2.11) is valid in
the non-homogeneous case as well [10].

1.5. Structure of the paper. In section 2.1, the Riemann mapping
theorem is used to transplant the Neumann and Steklov problems to
the disk. In section 2.2, we describe Hersch’s renormalization ([24],
see also [26, p. 144]), which is applied in section 2.3 to prove Theo-
rem 1.2.5. Theorem 1.2.3 and the first part of Theorem 1.4.2 are proved
in section 2.5 using some results on subharmonic functions presented
in section 2.4.

In the remaining part of the paper we prove estimates on the second
non-zero eigenvalues µ2 and σ2. In section 3.1 some additional results
on Hersch’s renormalization are presented. In sections 3.2–3.3 we intro-
duce hyperbolic caps and folded measures (this idea goes back to [25]),
which are used to define test functions in section 3.4. In section 3.5
we apply a topological argument to prove the existence of a suitable
two-dimensional space of test functions. We use this argument in sec-
tion 3.6 to prove the first part of Theorem 1.2.9, and in section 3.7 to
prove inequality (1.2.8) and the second part of Theorem 1.4.2. Finally,
in section 3.8 we show that inequalities (1.2.8) and (1.2.10) are sharp.

2. Shape optimization for µ1 and σ1

2.1. Application of the Riemann mapping theorem. The results
presented in the introduction share a common feature: they are proved
using methods of complex analysis. The following application of the
Riemann mapping theorem plays a key role in the proofs. We formulate
it in such a way that it works for both Neumann and Steklov eigenvalue
problems simultaneously.
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Let Ω be a simply-connected bounded planar domain with Lipschitz
boundary. Consider a conformal diffeomorphism φ : D → Ω. Here
and further on we denote a conformal map and its extension to the
boundary by the same symbol. Let dz be the Lebesgue measure on Ω,
ds be the arc-length measure on ∂Ω and let ν = φ∗(dz) or ν = φ∗(ds)
be the pullback of either of these measures to D.

Remark 2.1.1. To simplify notation, we write ν instead of dν unless
we integrate over this measure. The same convention applies to other
measures defined later on.

Set

λk(ν) = inf
E

sup
06=f∈E

∫
D
|∇f |2 dz∫
D
f 2 dν

, k = 1, 2, . . .(2.1.2)

The infimum is taken over all k-dimensional subspaces E of the Sobolev
space H1(D) such that

∫

D

f dν = 0 for all f ∈ E.(2.1.3)

Proposition 2.1.4.
– For ν = φ∗(dz), λk(ν) = µk(Ω) is the k-th eigenvalue of the

Neumann problem.
– For ν = φ∗(ds), λk(ν) = σk(Ω) is the k-th eigenvalue of the

Steklov problem.

Proof. It is well known that the Dirichlet energy of a function f is a
conformal invariant in dimension two. The result then follows from
the variational characterizations of µk and σk given by (1.1.3) and
(1.1.4). �

The eigenvalue problems themselves can be pulled back to the disk.
The Neumann and Steklov problems on Ω are, respectively, equivalent
to the following ones:

(2.1.5) −∆u = µ |φ′(z)|2 u in D and
∂u

∂r

∣∣∣∣
S1

= 0,

(2.1.6) ∆u = 0 in D and
∂u

∂r
= σ|φ′(z)|u on S1.

This will be useful when treating the case of equality in Szego’s and
Weinstock’s inequalities.
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Subharmonic functions. Recall that a function δ : Ω → R is called
subharmonic if ∆δ ≥ 0, and log-subharmonic if ∆ log δ ≥ 0. We state
here some simple facts about subharmonic functions that will be used
repeatedly.

Lemma 2.1.7. Let δ ∈ C2(Ω) be a positive function.

(i) If δ is log-subharmonic, then it is subharmonic.

(ii) If δ is log–subharmonic and ∆δ ≤ 0, then δ is constant.

Proof. (i) It follows from

∆ log δ =
δ∆δ − |∇δ|2

δ2
(2.1.8)

that ∆δ = δ∆ log δ + |∇δ|2

δ
≥ 0.

(ii) From |∇δ|2 = δ∆δ − δ2 ∆ log δ ≤ 0 it follows that |∇δ| = 0, and
hence δ is constant. �

Lemma 2.1.9. Let ρ ∈ C2(Ω) be a positive function and φ : D → Ω
be a conformal map. Consider the density ρ(z) on Ω, and let

δ(z) = ρ(φ(z))|φ′(z)|2

be its pullback to the unit disk. Then the function log δ is (sub)harmonic
iff the function log ρ is (sub)harmonic.

In particular, if ρ is constant then log δ is harmonic.

Proof. The Gaussian curvature of the Riemannian metric ds2 = ρ(dx2+
dy2) is given by (1.4.6). The pullback of g by φ is δ(dx2 + dy2) where
δ(z) = ρ(φ(z))|φ′(z)|2. Therefore, Kφ∗g(z) = − 1

2δ
∆ log δ. The result

now follows from the formula Kφ∗g(z) = Kg(φ(z)). �

2.2. Hersch’s renormalization. Let Ψ : D → D be a diffeomor-
phism such that Ψ(z) = z for each z ∈ ∂D = S1. The center of mass
relative to Ψ of a finite measure ν on the closed disk D is defined by

D ∋ C(ν) =
1

M(ν)

∫

D

z dΨ∗ν

where M(ν) =
∫
D
dν is the mass of the measure ν. Note that for

ν = φ∗(dz) and ν = φ∗(ds) the mass of ν coincides with the mass of Ω
defined by (1.2.1). For example, the center of mass of the Dirac mass
δp (where p ∈ D) is C(δp) = Ψ(p). Given t ∈ R2, define Xt : D → R
by

Xt(z) = 〈Ψ(z), t〉.(2.2.1)
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Note that:

– For Ψ = id, the functions Xt are the eigenfunctions correspond-
ing to the double eigenvalue σ1(D) = σ2(D) = 1 of the Steklov
problem.

– Let J1 be the first Bessel function of the first kind, and let
ζ ≈ 1.84 be the smallest positive zero of the derivative J ′

1. Set

f(r) = J1(ζr)/J1(ζ).

For Ψ(reiθ) = f(r)eiθ, the functions Xt are the eigenfunctions
corresponding to the double eigenvalue µ1(D) = µ2(D) of the
Neumann problem.

Given ξ ∈ D, define the automorphism dξ of D by

dξ(z) =
z + ξ

ξz + 1
.

Observe that for any p ∈ ∂D and −p 6= z ∈ D, we have limξ→p dξ(z) =
p. Then for any point p ∈ ∂D,

lim
ξ→p

(dξ)∗ν = δp,(2.2.2)

if the measure ν is absolutely continuous with respect to the Lebesgue
measure on D and with respect to the arc–length measure on ∂D. Note
that both measures defined in the beginning of section 2.1 satisfy these
conditions.

Remark 2.2.3. We use the weak topology on the space of measures: a
sequence of measure (νk) converges to ν iff for each continuous function
f

lim
k→∞

∫

D

f dνk =

∫

D

f dν.

In particular, (2.2.2) means that

lim
ξ→p

∫

D

f (dξ)∗ν = f(p) for each f ∈ C0(D).

Proposition 2.2.4. (cf. [24, 26, 27, 12]) Let ν be a finite measure on
the closed disk D satisfying (2.2.2). Then there exists a point ξ ∈ D
such that ∫

D

Xt ◦ dξ dν = 0 for each t ∈ R2.

Proof. Define the map Γ : D → D by

Γ(ξ) =

{
C

(
(dξ)∗ν

)
for ξ ∈ D,

ξ for ξ ∈ ∂D.
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It follows from (2.2.2) that for p ∈ ∂D,

lim
ξ→p

C
(
(dξ)∗ν

)
= C(δp) = Ψ(p) = p,

so that Γ is continuous. Moreover, its restriction to ∂D is the identity
map. It follows by the standard topological argument that Γ is onto:
there exists ξ ∈ D such that

C
(
(dξ)∗ν

)
= 0.

Therefore, for any t ∈ R2,
∫

D

Xt ◦ dξ dν =

∫

D

〈Ψ ◦ dξ(z), t〉 dν = M(ν)
〈
C

(
(dξ)∗ν

)
, t

〉
= 0.

�

2.3. Proof of Weinstock’s theorem. The goal of this section is to
prove Theorem 1.2.5. Let φ : D → Ω be a conformal equivalence.
We will use the variational characterization (2.1.2) with the measure
ν = φ∗(ds). This measure is supported on S1. We use the test functions
Xt introduced in (2.2.1) with Ψ(z) = z, that is Xt(z) = 〈z, t〉. Applying
Proposition 2.2.4, we may assume that

∫

S1

Xt dν = 0 for all t ∈ R2.

Choose s, t ∈ S1 such that 〈s, t〉 = 0. Observe that for any z ∈ S1,

X2
s (z) +X2

t (z) = 1.

Switching s and t if necessary, we may assume that
∫

S1

X2
t dν ≥

1

2

∫

S1

dν =
M(Ω)

2
.(2.3.1)

Recall that Xt is a Steklov eigenfunction corresponding to the double
eigenvalue σ1(D) = 1. Therefore,

∫

D

|∇Xt|
2 dz =

∫

S1

X2
t ds = π.

Inequality (1.2.6) then follows from the variational characterization (2.1.2).

Case of equality. Let Ω be such that σ1(Ω)M(Ω) = 2π. We may
assume wihout loss of generality that M(Ω) = 2π (this can always be
achieved using a dilation). For t satisfying (2.3.1) we have

1 = σ1(Ω) ≤

∫
D
|∇Xt|

2 dz∫
S1 X

2
t dν

≤ 1 = σ1(D).
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It follows that Xt is an eigenfunction of problem (2.1.6) with eigen-
value 1:

(2.3.2) ∆Xt = 0 in D and
∂Xt

∂r
= |φ′(z)|Xt on S1.

However, by definition, Xt also satisfies ∂rXt = Xt so that |φ′(z)| = 1
for each z ∈ S1. By Lemma 2.1.9 the function log |φ′(z)| is harmonic.
Because log |φ′(z)| = 0 on S1, it is also identically 0 on D. Therefore,
|φ′(z)| = 1 for each z ∈ D. It follows that φ : D → Ω is an isometry.

2.4. Growth of subharmonic functions. Given a measure ν =
δ(z)dz on D, define

(2.4.1) G(r) =

∫

B(0,r)

dν.

Lemma 2.4.2. i) Let δ be a positive subharmonic function on D such
that G(1) = π. Then

G(r) ≤ πr2

for each r ∈ [0, 1].

ii) The function δ is harmonic iff G(r) = πr2 for each r ∈ [0, 1].

Remark 2.4.3. Let φ : D → Ω and δ(z) = |φ′(z)|2. Then Lemma 2.4.2
states that

Area(φ(Br(0))) ≤ Area(Br(0)).

Proof. i) Let us write

G(r) =

∫

B(0,r)

δ(z) dz =

∫ r

0

W (ρ)ρ dρ,

where

W (ρ) =

∫ 2π

0

δ(ρeiθ) dθ.

The function W is non-decreasing on [0, 1] (see [28]). Indeed, define

W̃ : D → R by

W̃ (z) =

∫ 2π

0

δ(zeiθ) dθ.

This function is subharmonic and satisfies W̃ (z) = W (|z|). It follows
from the maximum principle that for any z with |z| = ρ,

W (ρ) = W̃ (z) ≥ max
|z|≤ρ

W̃ (z) = max
s≤ρ

W (s).
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Therefore,

G(r) = r2

∫ 1

0

W (r ρ)ρ dρ ≤ r2

∫ 1

0

W (ρ) ρ dρ = G(1)r2 = πr2.

ii) If δ is harmonic, then the value of δ at zero is equal to the average
over any circle centered at zero:

δ(0) =
1

2π
W (ρ).

Hence, G(r) =
∫ r

0
W (ρ)ρ dρ = π δ(0) r2, and since G(1) = π, we get

δ(0) = 1 and G(r) = πr2.
In the opposite direction, if G(r) = πr2, then 2πr = G′(r) = W (r)r,

so that the function W is constant:

2π = W (r) =

∫ 2π

0

δ(reiθ) dθ.

Using a version of Jensen’s formula (see [28, p.47]) we get:

δ(0) +

∫

D

log

(
1

|z|

)
∆δ(z) dz =

W (r)

2π
= 1.

Since the right–hand side is the average of δ over a circle of radius r,
we get

δ(0) = lim
r→0

W (r)

2π
= 1.

It follows that ∫

D

log

(
1

|z|

)
∆δ(z) dz = 0.

Since log
(

1
|z|

)
> 0 and ∆ δ ≥ 0, this implies ∆ δ = 0. �

Lemma 2.4.4. Let δ(z) be a subharmonic function on D, ν = δ(z)dz
be the corresponding measure, and h : [0, 1] → R be a smooth strictly
increasing function with h(0) = 0. Suppose that G(1) = π, where G(r)
is given by (2.4.1). Then

∫

D

h(|z|) dν ≥

∫

D

h(|z|) dz.

Moreover, equality holds iff δ is harmonic.
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Proof. Using Lemma 2.4.2 and integration by parts we obtain:
∫

D

h(|z|) dν =

∫

D

h(|z|)δ(z) dz =

∫ 1

0

h(r)G′(r) dr

= h(1)G(1) −

∫ 1

0

d

dr

(
h(r)

)
G(r) dr

≥ h(1)G(1) − π

∫ 1

0

d

dr

(
h(r)

)
r2 dr

= 2π

∫ 1

0

h(r)r dr =

∫

D

h(|z|) dz.

If
∫
D
h(|z|) dν =

∫
D
h(|z|) dz, then from the computation above we

deduce that ∫ 1

0

d

dr

(
h(r)

) (
G(r) − πr2

)
dr = 0.

By Lemma 2.4.2 (i), we have G(r) ≤ πr2. Since h is strictly in-
creasing, we get G(r) = πr2, which implies that δ is harmonic by
Lemma 2.4.2 (ii). �

2.5. Proof of Szegö’s theorem. The goal of this section is to prove
Theorem 1.2.3. Let φ : D → Ω be a conformal equivalence. Let
δ(z) = |φ′(z)|2. It follows from Lemma 2.1.9 that log δ is harmonic,
and hence δ is subharmonic. Applying a rescaling if necessary, we may
assume without loss of generality that M(Ω) = π. We will use the
variational characterization (2.1.2) with the measure ν = φ∗(dz) = δdz
and with the test functions

Xt(z) = 〈Ψ(z), t〉,

where Ψ(reiθ) = f(r)eiθ, with f(r) = J1(ζr)
J1(ζ)

. By Proposition 2.2.4, we
may assume

∫

D

Xt dν = 0 for all t ∈ R2.

Choose s, t ∈ S1 such that 〈s, t〉 = 0. Observe that for any z ∈ D,

X2
s (z) +X2

t (z) = f 2(|z|).

Switching s and t if necessary, we may assume that
∫

D

X2
t dν ≥

1

2

∫

D

f 2(|z|) dν(z) ≥
1

2

∫

D

f 2(|z|) dz,(2.5.1)
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where the last inequality follows from Lemma 2.4.4, because f(r) is
strictly increasing on [0, 1]. Recall that the functions Xt are the Neu-
mann eigenfunctions corresponding to the eigenvalue µ1(D). Therefore,

∫

D

|∇Xt|
2 dz = µ1(D)

∫

D

X2
t dz =

µ1(D)

2

∫

D

f 2(|z|) dz(2.5.2)

The proof of inequality (1.2.4) now follows from (2.5.1), (2.5.2) and the
variational characterization (2.1.2).

Remark 2.5.3. This argument is motivated by [12, section 2.7] and
is a modification of the proof given in [26, p. 138]. As indicated in
[12, Remark 2.7.12], the novelty of our approach is that it uses the
properties of subharmonic functions.

Remark 2.5.4. The first part of Theorem 1.4.2 is proved in a simi-
lar way. To obtain inequality (1.4.3), we take ν = φ∗(ρdz). By
Lemma 2.1.9 this measure is also of the form δ dz, where ∆ log δ ≥ 0.
It follows from Lemma 2.1.7 that δ is subharmonic. The rest of the
proof is unchanged.

Case of equality. Let us show that the equality in (1.2.4) implies that
Ω is a disk. We will give two proofs of this fact.

First proof. Suppose that µ1(Ω) = µ1(D) and M(Ω) = π. For the
specific choice of t made in (2.5.1) we have

µ1(D) = µ1(Ω) ≤

∫
D
|∇Xt|

2 dz∫
D
X2

t dν
≤ µ1(D)

It follows that the functionXt is a first eigenfunction of problem (2.1.5):

(2.5.5) −∆Xt = δµ1(D)Xt in D.

Because −∆Xt = µ1(D)Xt, we deduce that 1 = δ = |φ′(z)|2, so that
the conformal equivalence φ : D → Ω is an isometry. �

Our second proof is a bit more involved, but it can be adapted to the
case of µ2: in section 3.7 we use a similar idea to prove that inequality
(1.2.8) is strict.

Second proof. Suppose that µ1(Ω) = µ1(D) and M(Ω) = π. For each
t ∈ S1 we have

µ1(D) ≤

∫
D
|∇Xt|

2 dz∫
D
X2

t dν
= µ1(D)

∫
D
X2

t dz∫
D
X2

t dν
.

It follows that for each t∫

D

X2
t dν ≤

∫

D

X2
t dz
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Let s, t ∈ S1 be such that 〈s, t〉 = 0. It follows from X2
t (z) +X2

s (z) =
f 2(|z|) and the above inequality that
∫

D

f 2(|z|) dν =

∫

D

(X2
t +X2

s ) dν ≤

∫

D

(X2
t +X2

s ) dz =

∫

D

f 2(|z|) dz.

From Lemma 2.4.4 we get
∫
D
f 2(|z|) dν =

∫
D
f 2(|z|) dz and ∆δ = 0.

By construction of δ (see Lemma 2.1.9) we have ∆ log δ = 0, so that
by Lemma 2.1.7 δ is a constant. Therefore, since M(Ω) = π = M(D),
we have δ(z) = |φ′(z)|2 = 1, and hence φ : D → Ω is an isometry. �

3. Shape optimization for µ2 and σ2

3.1. Hersch’s method revisited. In order to apply the Hersch method
to the second nonzero Neumann and Steklov eigenvalues, more control
is needed on the point ξ obtained in Proposition 2.2.4.

Proposition 3.1.1. Let ν be a finite measure on the closed disk D
satisfying (2.2.2). The renormalizing point ξ is unique and depends
continuously on ν.

Proof. We give the proof for Ψ(z) = z only. For more details on the
general case, see [12]. First, suppose that C(ν) = 0 and let ξ 6= 0. Let
s = ξ

|ξ|
. An easy computation shows that 〈dξ(z), s〉 > 〈z, s〉. It follows

that
〈
C

(
(dξ)∗ν

)
, s

〉
=

1

M(ν)

∫

D

〈dξ(z), s〉 dν >
1

M(ν)

∫

D

〈z, s〉 dν =
〈
C

(
ν
)
, s

〉
.

In other words, if the center of mass of the measure ν is the origin,
then ξ = 0.

Now, let ν be an arbitrary finite measure and suppose that it is
renormalized by dξ and dη. By explicit computation one gets

dη ◦ d−ξ =
1 − ηξ̄

1 − η̄ξ
dα,

where α = d−ξ(η) and
∣∣∣ 1−ηξ̄

1−η̄ξ

∣∣∣ = 1. Moreover,

(dη)∗ν = (dη ◦ d−ξ)∗ (dξ)∗ ν =
1 − ηξ̄

1 − η̄ξ
(dα)∗ (dξ)∗ ν.

This implies that dα renormalizes the measure (dξ)∗ ν whose center of
mass is already at the origin. It follows from the previous case that
α = 0, which in turn implies η = ξ.

Let us prove continuity. Let (νk) be a sequence of measures con-
verging to the measure ν. Without loss of generality suppose that ν
is renormalized. Let ξk ∈ D ⊂ D be the unique element such that dξk
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renormalizes νk. Let (ξkj
) be a convergent subsequence, say to ξ ∈ D.

Now, by definition of ξk there holds

0 = lim
j→∞

∣∣∣∣
∫

D

z (dξkj
)∗dνkj

∣∣∣∣ =

∣∣∣∣
∫

D

z (dξ)∗dν

∣∣∣∣ ,

and hence dξ renormalizes ν. Since we assumed that ν is normalized, by
uniqueness we get ξ = 0. Therefore, 0 is the unique accumulation point
of the sequence (ξk) in D and hence by compactness we get ξk → 0. �

3.2. Hyperbolic caps. Let γ be a geodesic in the Poincaré disk model,
that is a diameter or the intersection of the disk with a circle, which
is orthogonal to S1. Each connected component of D \ γ is called a

al,p p

l

Figure 1. The hyperbolic cap al,p

hyperbolic cap [12]. Given p ∈ S1 and l ∈ (0, 2π), let al,p be the hyper-
bolic cap such that the circular segment ∂al,p ∩ S1 has length l and is
centered at p (see Figure 1). This gives an identification of the space
HC of all hyperbolic caps with the cylinder (0, 2π) × S1. Given a cap
a ∈ HC, let τa : D → D be the reflection across the hyperbolic geodesic
bounding a. That is, τa is the unique non-trivial conformal involution
of D leaving every point of the geodesic ∂a∩D fixed. In particular the
cap adjacent to a is a∗ = τa(a).
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3.3. Folded measure. The lift of a function u : a→ R is the function
ũ : D → R defined by

(3.3.1) ũ(z) =

{
u(z) if z ∈ a,

u(τaz) if z ∈ a∗.

As before, let ν be a finite measure on the closed disk D which is
absolutely continuous with respect to the Lebesgue measure on D and
with respect to the arc–length measure on ∂D. Observe that

∫

D

ũ dν =

∫

a

u dν +

∫

a∗

u ◦ τa dν

=

∫

a

u (dν + τ ∗adν).(3.3.2)

The measure

(3.3.3) dνa =

{
dν + τ ∗adν on a,

0 on a∗

is called the folded measure. Equation (3.3.2) can be rewritten as
∫

D

ũ dν =

∫

D

u dνa.

3.4. Test functions. Let a ∈ HC be a hyperbolic cap and let φa :
D → a be a conformal equivalence. For each t ∈ R2, define ut

a : a→ R
by

(3.4.1) ut
a(z) = Xt ◦ φ

−1
a (z).

For each cap a ∈ HC we will use the two-dimensional space of test
functions

Ea =
{
ũt

a : t ∈ R2
}

in the variational characterization (2.1.2). It follows from the conformal
invariance of the Dirichlet energy that

∫

D

|∇ũt
a|

2 dz =

∫

a

|∇ut
a|

2 dz +

∫

a∗

|∇(ut
a ◦ τa)|

2 dz

= 2

∫

a

|∇ut
a|

2 dz = 2

∫

D

|∇Xt|
2 dz.(3.4.2)

Observe that the denominator in (2.1.2) can be rewritten as
∫

D

(ũt
a)

2 dν =

∫

D

X2
t d φ

∗
a νa.(3.4.3)
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We call ζa = φ∗
aνa the rearranged measure. Taking (3.4.2) and (3.4.3)

into account, we obtain from the variational characterization (2.1.2)
that

λ2(ν) ≤ 2 sup
t∈S1

∫
D
|∇Xt|

2 dz∫
D
X2

t dζa
(3.4.4)

provided that the functions ũt
a satisfy the admissibility condition (2.1.3).

This condition can be rewritten in terms of the rearranged measure ζa:

∫

D

ũt
a dν =

∫

D

Xt dζa = 0.

In other words, (2.1.3) is satisfied by the function ũt
a iff the rearranged

measure ζa is renormalized.
Note that we are free to choose the conformal equivalences φa : D →

a in our construction of test functions.

Lemma 3.4.5. There exists a family of conformal equivalences {φa : D → a}a∈HC

such that the rearranged measure ζa depends continuously on the cap
a ∈ HC and satisfies

∫

D

Xt dζa = 0,(3.4.6)

lim
a→D

ζa = ν,(3.4.7)

lim
a→p

ζa = R∗
pdν,(3.4.8)

where p ∈ S1 and Rp(x) = x − 2〈x, p〉 is the reflection with respect to
the diameter orthogonal to the vector p.

From now on, we fix the family of conformal maps φa defined in
Lemma 3.4.5.

Proof of Lemma 3.4.5. Let us give an outline of the proof, for more
details, see [12, Section 2.5]. Start with any continuous family of con-
formal maps {ψa : D → a}a∈HC , such that lima→D ψa = id. The maps
φa are defined by composing the ψa’s on both sides with automorphisms
of the disk appearing in the Hersch renormalization procedure. In par-
ticular, (3.4.6) is automatically satisfied. As the cap a converges to the
full disk D, the conformal equivalences φa converge to the identity map
on D, which implies (3.4.7). Finally, setting n = 1 in [12, Lemma 4.3.2]
one gets (3.4.8). �
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3.5. Maximization of the moment of inertia. The moment of in-
ertia of a finite measure ν on the closed disk D is the quadratic form
Vν : R2 → R defined by

Vν(t) =

∫

D

X2
t dν,

where Xt is defined by (2.2.1). When Ψ = id and t ∈ S1 this corre-
sponds to the usual definition given in mechanics for the moment of
inertia of ν with respect to the axis orthogonal to t.

Let RP 1 = S1/Z2 be the projective line. We denote by [t] ∈ RP 1

the element of the projective line corresponding to the pair of points
±t ∈ S1. We say that [t] ∈ RP 1 is a maximizing direction for the
measure ν if Vν(t) ≥ Vν(s) for any s ∈ S1. The measure ν is called
simple if there is a unique maximizing direction. Otherwise, it is said
to be multiple.

Lemma 3.5.1. A measure ν is multiple if and only if Vν(t) does not
depend on t ∈ S1.

Proof. This follows from the fact that Vν is quadratic, see [12, Lemma
2.6.1]. �

Proposition 3.5.2. If the measure ν is simple, then there exists a cap
a ∈ HC such that the rearranged measure ζa is multiple.

Proposition 3.5.2 is proved by contradiction. Assume that the mea-
sure ν, as well as the rearranged measures ζa for all a ∈ HC, are
simple. Let m(ν) be the unique maximizing direction for the measure
ν, and m(ζa) ∈ RP 1 be the unique maximizing direction for the mea-
sure ζa. The next lemma describes the behavior of m(ζa) as the cap a
degenerates either to the full disk or to a point.

Lemma 3.5.3. Let the measure ν as well as the rearranged measures
ζa for all a ∈ HC be simple. Then

lim
a→D

m(ζa) = m(ν)(3.5.4)

lim
a→eiθ

m(ζa) = [e2iθ].(3.5.5)

Proof. Without loss of generality, assume m[ν] = [e1]. First, note that
formula (3.5.4) immediately follows from (3.4.7). Let us prove (3.5.5).
Set p = eiθ. Formula (3.4.8) implies

(3.5.6) lim
a→p

∫

D

X2
t dζa =

∫

D

X2
t R

∗
pdν =

∫

D

X2
t ◦Rp dν =

∫

D

X2
Rpt dν.
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Since ν is simple, m(ν) = [e1] is the unique maximizing direction for ν
and the right hand side of (3.5.6) is maximal for Rpt = ±e1. Applying
Rp on both sides we get t = ±e2iθ. �

Proof of Proposition 3.5.2. Suppose that for each hyperbolic cap a ∈
HC, the rearranged measure ζa is simple. Recall that the space HC
is identified with the open cylinder (0, 2π) × S1. Define h : (0, 2π) ×
S1 → RP 1 by h(l, p) = m(al,p). The maximizing direction depends
continuously on the cap a. Therefore, it follows from Lemma 3.5.3
that h extends to a continuous map on the closed cylinder [0, 2π]× S1

such that

h(0, eiθ) = [e1], h(2π, e
iθ) = [e2iθ].

This means that h is a homotopy between a trivial loop and a non-
contractible loop in RP 1. This is a contradiction. �

3.6. Estimate on σ2. In this section we prove Theorem 1.2.9. Con-
sider the functions Xt introduced in (2.2.1) with Ψ(z) = z, that is
Xt(z) = 〈z, t〉. The measure ν = φ∗(ds) is supported on S1. We pro-
vide details only in the case when the measure ν is simple. If the
measure ν is multiple the proof is easier, see [13].

Let a ∈ HC be a cap such that the rearranged measure ζa is mul-
tiple. Using (3.4.4) and taking into account that the functions Xt are
eigenfunctions corresponding to σ1(D) = 1, we get

σ2(Ω) ≤ 2

∫
D
|∇Xt|

2 dz∫
S1 X

2
t dζa

= 2

∫
S1 X

2
t ds∫

S1 X
2
t dζa

=
2π∫

S1 X
2
t dζa

(3.6.1)

Given t ∈ S1, choose s ∈ S1 such that 〈t, s〉 = 0. Multiplicity of the
rearranged measure ζa and X2

t +X2
s = 1 on S1 implies

∫

S1

X2
t dζa =

1

2

∫

D

(X2
t +X2

s ) dζa(z) =
1

2
M(Ω)(3.6.2)

This proves that σ2(Ω) ≤ 4π
M(Ω)

.

The inequality is strict. Let wt
a ∈ C∞(D) be the unique harmonic

extension of ũt
a

∣∣
S1

, that is
{

∆wt
a = 0 in D,

wt
a = ũt

a on S1.
(3.6.3)

These functions are smooth while the original test functions ut
a are

not smooth along the geodesic bounding the hyperbolic cap a (see [13,
Lemma 3.4.1]). Therefore, wt

a 6= ũt
a in H1(D). It is well-known that a

harmonic function, such as wt
a, is the unique minimizer of the Dirichlet
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energy among all functions with the same boundary data (see [29, p.
157]). Therefore,

∫

D

|∇wt
a|

2 dz <

∫

D

|∇ũt
a|

2 dz.(3.6.4)

Let us take the functions wt
a as test functions instead of ũt

a in sec-
tion 3.4. Their admissibility follows from (3.4.6), because wt

a = ũt
a on

S1. For the same reason, the denominator in the Rayleigh quotient
calculated in (3.6.2) remains unchanged. Together with (3.6.4) this
implies that inequality (3.6.1) is strict.

3.7. Estimate on µ2. We use the measure ν = φ∗(dz) and the func-

tions Xt(z) = 〈Ψ(z), t〉, where Ψ(reiθ) = f(r)eiθ, with f(r) = J1(ζr)
J1(ζ)

.

Lemma 3.7.1. The rearranged measure ζa on D can be represented as
ζa = δ(z)dz, where δ : D → R is a subharmonic function.

Proof. The rearranged measure ζa = φ∗
a(νa) can be rewritten as

ζa = (φ ◦ φa)
∗dz + (φ ◦ τa ◦ φa)

∗(dz) = α(z)dz + β(z)dz

where α(z) = |(φ◦φa)
′(z)|2 and β(z) = |(φ◦τa◦φa)

′(z)|2. It follows from
Lemma 2.1.9 that logα and log β are harmonic functions. Therefore,
α(z) and β(z) are subharmonic by Lemma 2.1.7. �

Proof of inequality (1.2.8). We provide details only in the case when
the measure ν is simple. If the measure ν is multiple, then the proof
is easier, see [12].

Without loss of generality, suppose that M(Ω) = π. Let a ∈ HC be
a cap such that the rearranged measure ζa is multiple. Using (3.4.4)
and taking into account that the functions Xt are eigenfunctions cor-
responding to µ1(D), we get

µ2(Ω) ≤ 2

∫
D
|∇Xt|

2 dz∫
D
X2

t dζa
= 2µ1(D)

∫
D
X2

t dz∫
D
X2

t dζa
= µ1(D)

∫
D
f 2(|z|) dz∫
D
X2

t dζa

Given t ∈ S1, choose s ∈ S1 such that 〈t, s〉 = 0. Multiplicity of the
rearranged measure ζa implies

∫

D

X2
t dζa =

1

2

∫

D

(X2
t +X2

s ) dζa =
1

2

∫

D

f 2(|z|) dζa

This leads to

µ2(Ω) ≤ 2µ1(D)

∫
D
f 2(|z|) dz∫

D
f 2(|z|) dζa

(3.7.2)
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By Lemma 3.7.1, one can apply Lemma 2.4.4 to the measure ζa. Hence,
(3.7.2) implies

(3.7.3) µ2(Ω) ≤ 2µ1(D).

Proof of Theorem 1.4.2. Inequality (1.4.3) was already proved in Re-
mark 2.5.4. The proof of inequality 1.4.4 is almost identical to the
one above. We use the measure ν = φ∗(ρdz). By Lemma 2.1.9 this
measure is also of the form δdz for some subharmonic function δ. The
rearranged measure ζa = φ∗

a(νa) can be rewritten

ζa = (φ ◦ φa)
∗(ρ dz) + (φ ◦ τa ◦ φa)

∗(ρ dz) = α(z)dz + β(z)dz

where (by Lemma 2.1.9) α(z) and β(z) are subharmonic. Hence, the
statement of Lemma 3.7.1 holds in this case as well. The rest of the
proof is unchanged. �

The inequality (3.7.3) is strict. Suppose that µ2(Ω) = 2µ1(D). Then,
by (3.7.2) we get

∫

D

f 2(|z|) dζa ≤

∫

D

f 2(|z|) dz.

Recall that according to Lemma 3.7.1, ζa = δ(z)dz for some subhar-
monic function δ. It follows from Lemma 2.4.4 that

∫
D
f 2(|z|) dζa =∫

D
f 2(|z|) dz and that ∆δ = 0. Now, by construction of δ in the proof

of Lemma 3.7.1 we have δ = α + β with ∆ logα = 0 and ∆ log β = 0.
It follows from ∆α ≥ 0, ∆β ≥ 0 and from 0 = ∆δ = ∆α + ∆β
that ∆α = 0 and ∆β = 0. Hence, by Lemma 2.1.7 (ii) the functions
α and β are constant. Now, from the proof of Lemma 3.7.1 we see
that α(z) = |(φ ◦ φa)

′(z)|2 and β(z) = |(φ ◦ τa ◦ φa)
′(z)|2. This implies

that φ ◦ φa and φ ◦ τa ◦ φa are dilations. Recall that a = φa(D) and
a∗ = τa ◦ φa(D), where a∗ is the cap adjacent to a. Hence, φ(a) and
φ(a∗) are disjoint disks. We get a contradiction, because

Ω = φ(a) ∪ φ(a∗)

is a connected set. This completes the proof of the first part of Theorem
1.2.7. �

3.8. The inequalities for µ2 and σ2 are sharp. The goal of this
section is to prove the second parts of Theorems 1.2.7 and 1.2.9.
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}
L

ε

Figure 2. The domain Ωε

Neumann boundary conditions. The family Ωε is constructed by joining
two disks using a thin passage. More precisely, let Ωε = D1 ∪ Pε ∪D2,
where D1 and D2 are two copies of the unit disk joined by a rectangular
passage Pε of length L and width ε. It follows from [30] (see also
[31, 32]) that the Neumann spectrum of Ωε converges to the disjoint
union of the Neumann spectra of D1 and D2 and the Dirichlet spectrum
of the operator − d2

dx2 acting on the interval [0, L]. The first Dirichlet

eigenvalue of [0, L] is π2

L2 . It follows that for L < 1 we have

lim
ε→0

µ0(Ωε) = 0, lim
ε→0

µ1(Ωε) = 0,

lim
ε→0

µ2(Ωε) = µ1(D).

Since limε→0M(Ωε) = 2π, this completes the proof.

Steklov boundary conditions. The details of the proof can be found
in [13]. Let us mention that simply joining two disks by a thin passage
does not work in the case of Steklov eigenvalues. In fact, it was proved
in [13] that for the domains Ωε defined above, the Steklov spectrum is
collapsing:

lim
ε→0

σk(Ωε) = 0 for each k = 1, 2, . . . .(3.8.1)

Instead, we use a family of domains Σε , ε → 0+, obtained by “pulling
two disks apart” as shown on Figure 3. Similarly, taking k disks
pulled apart, we show in [13] that the Hersch–Payne–Schiffer inequality
(1.2.11) is sharp for all k ≥ 1.
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ε

Figure 3. The domain Σε
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E-mail address : iossif@dms.umontreal.ca


