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Abstract. We announce asymptotic lower bounds for the spectral function

of the Laplacian and for the remainder in the local Weyl’s law on Riemannian
manifolds. In the negatively curved case, methods of thermodynamic formal-

ism are applied to improve the estimates. Our results develop and extend

the unpublished thesis [K]. We discuss some ideas of the proofs, for complete
proofs see [J-P].

1. Spectral function and the Weyl’s law

Let X be a compact Riemannian manifold of dimension n ≥ 2 with the metric
{gij} and the volume V . Let ∆ be the Laplacian onX with the eigenvalues 0 = λ0 <
λ1 ≤ λ2 ≤ . . . and the corresponding orthonormal basis {φi} of eigenfunctions:
∆φi = λiφi.

Given x, y ∈ X, let
Nx,y(λ) =

∑
√

λi≤λ

φi(x)φi(y)

be the spectral function of the Laplacian. On the diagonal x = y we denote it
simply Nx(λ). If N(λ) = #{

√
λi ≤ λ} is the eigenvalue counting function, then

N(λ) =
∫

X
Nx(λ)dV . Let

(1.1) σn =
2πn/2

nΓ(n/2)
be the volume of the unit ball in Rn. The asymptotic behavior of the spectral and
the counting functions is given by ([Hor], see also [Shu]):

(1.2)

Nx,y(λ) = O(λn−1), x 6= y;

Nx(λ) =
σn

(2π)n
λn +Rx(λ), Rx(λ) = O(λn−1);

N(λ) =
V σn

(2π)n
λn +R(λ), R(λ) = O(λn−1).

We refer to the asymptotics of Nx(λ) as the local Weyl’s law, the asymptotics for
N(λ) being the usual Weyl’s law for the distribution of eigenvalues. The upper
bounds for R(λ) and Rx(λ) are attained for round spheres and hence are sharp.
Both local and integrated remainder estimates for the Weyl’s law on manifolds
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under various geometric conditions were actively studied in the last forty years (see
[Ber], [CdV], [D-G], [Iv], [P-T], [Ran2], [S-V], [S-Z], [Vol] etc).

In the present paper we focus on asymptotic lower bounds for the spectral func-
tion and for the remainder in local Weyl’s law.

We recall that f1(λ) = Ω(f2(λ)) for an arbitrary function f1 and a positive
function f2 means lim supλ→∞ |f1(λ)|/f2(λ) > 0.

Theorem 1.3. Let X be a compact n-dimensional Riemannian manifold, and let
x, y ∈ X be two points that are not conjugate along any shortest geodesic joining
them. Then

(1.4) Nx,y(λ) = Ω
(
λ

n−1
2

)
.

Let us now formulate the on-diagonal counterpart of Theorem 1.3. Consider the
heat trace asymptotics as t→ 0+:

(1.5)
∑

i

e−λit ∼ 1
(4πt)n/2

∞∑
j=0

(∫
X

aj(x) d vol
)
tn,

where aj(x) are the local heat invariants of X. Let κx = min{j ≥ 1| aj(x) 6= 0}. If
aj(x) = 0 for all j ≥ 1 we set κx = ∞. We recall that a1(x) = τ(x)

6 , where τ(x) is
the scalar curvature of X at the point x.

Theorem 1.6. Let X be an n-dimensional Riemannian manifold and x ∈ X be an
arbitrary point. If n− 2κx − 1 > 0 then

(1.7) Rx(λ) = Ω(λn−2κx−1).

If X has no conjugate points, then

(1.8) Rx(λ) = Ω(λ
n−1

2 ).

Remark 1.9. If n − 4κx − 1 < 0, then the bound (1.8) is better than the bound
(1.7). If the scalar curvature τ(x) 6= 0, then (1.7) becomes Rx(λ) = Ω(λn−3).

Estimate (1.8) should be compared with the Hardy-Landau lower bound for the
remainder in the Gauss circle problem or, equivalently, for the remainder in the
Weyl’s law on a 2-dimensional flat square torus. We note that (1.8) gives the same
exponent as in the Hardy-Landau bound for any surface without conjugate points.
In dimension 3 the exponent in (1.8) is also consistent with the lower bound due to
Szegö for the error term in the sphere problem (see [Tsa]). However, for a similar
counting problem in a ball of dimension n ≥ 4, the sharp error estimate is Ω(λn−2)
which is larger than (1.8).

2. Estimates for negatively curved manifolds

Asymptotic lower bounds (1.4) (1.7) and (1.8) can be improved for manifolds
of negative curvature. We assume that for any pair of directions ξ, η the sectional
curvature K(ξ, η) satisfies

(2.1) −K2
1 ≤ K(ξ, η) ≤ −K2

2 .

Apart from the standard wave equation techniques (cf. [D-G], [Ber], [K]) our
method uses thermodynamic formalism (see, for example, [Bow], [P-P]). Let M be
the universal cover of X. Let Gt be the geodesic flow on the unit tangent bundle
SM and let Eu

ξ be the unstable subspace for Gt, ξ ∈ SM The Sinai-Ruelle-Bowen



LOWER BOUNDS FOR THE SPECTRAL FUNCTION 3

potential is a Hölder continuous function H : SM → R which for any ξ ∈ SM is
defined by the formula (see [B-R], [Sin])

(2.2) H(ξ) =
d

dt

∣∣∣∣
t=0

ln det dGt|Eu
ξ
,

For any continuous function f : SM → R one can define the topological pressure

(2.3) P (f) = sup
µ

(
hµ +

∫
fdµ

)
,

where the supremum is taken over all Gt-invariant measures µ and hµ denotes the
measure-theoretical entropy of the geodesic flow (see [Bow]). In particular P (0) = h,
where h is the topological entropy of the flow.

Theorem 2.4. The remainder in the local Weyl’s law on an n-dimensional compact
negatively curved manifold satisfies:

(2.5) Rx(λ) =

{
Ω

(
λ

n−1
2 (log λ)

P (−H/2)
h −δ

)
∀ δ > 0, n ≤ 5;

Ω(λn−3), n ≥ 6.

One can show that the P (−H/2)
h is estimated in terms of curvatures as follows:

P (−H/2)
h

≥ K2

2K1
> 0.

We note that in dimensions n ≤ 5 the main contribution to the remainder comes
from the oscillating terms corresponding to geodesic loops. At the same time, in
dimensions n ≥ 6 the contribution of the singularity at t = 0 dominates the remain-
der. This explains different bounds in Theorem 2.4 for low and high dimensions.

Away from the diagonal, we get

Theorem 2.6. On a compact n-dimensional negatively curved manifold the spectral
function Nx,y(λ) satisfies for any δ > 0 and x 6= y:

(2.7) Nx,y(λ) = Ω
(
λ

n−1
2 (log λ)

P (−H/2)
h −δ

)
.

2.1. Discussion: remainder estimates on negatively curved surfaces. Let
us compare the results of this section with some known facts and conjectures re-
garding the error term in Weyl’s law on negatively curved surfaces.

A lower bound for the local remainder Rx(λ) on negatively curved surfaces was
proved in an unpublished Princeton Ph.D. thesis [K]. On surfaces of constant
negative curvature (2.5) coincides with its analogue in [K], but the techniques of
thermodynamic formalism for hyperbolic flows allow us to improve the results of
[K] when the curvature is variable. We do not need a hypothesis K1/K2 < 2 of [K]
to get a logarithmic improvement in the estimates and, moreover, we get higher
powers of the logarithm.

For surfaces of constant negative curvature it is proved in [Ran1] that R(λ) =
Ω((log λ)

1
2−δ) for any δ > 0. In a work in progress we aim to generalize this bound

for surfaces of variable negative curvature using the methods of thermodynamic
formalism announced in the present paper.

For arithmetic hyperbolic surfaces Selberg proved a faster growth of the remain-
der: R(λ) = Ω(

√
λ

log λ ) (see [Hej]). An improvement of this bound for the modular
surface SL(2,Z)/H was recently obtained in [Li-S]; see also [Lu-S] for some related
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estimates. It is conjectured in [Ran2] that on any surface of constant negative cur-
vature R(λ) = O(λ

1
2+ε) for any ε > 0. However, the best known upper bound is

R(λ) = O(λ/ log λ) ([Ber]).
On a generic negatively curved surface it is believed that R(λ) = O(λε) for any

ε > 0. Such an estimate looks plausible in view of the results on spectral fluctu-
ations, e.g. in [Berry], [Bo-Sch] and [A-B-S]. We note the difference between the
predicted upper bound for the global error term, and the lower bound of Theorem
2.4 for the local remainder.

3. Some ideas of the proofs

Let us focus on Theorem 2.6 and indicate some key ideas that are common for
the proofs of all the main results (for complete proofs see [J-P]).

Consider the even part of the wave kernel e(t, x, y) on X. It satisfies

(3.1) e(t, x, y) =
∞∑

i=0

cos(
√
λit)φi(x)φi(y)

Take a smooth function ψ ∈ C∞0 (R) such that supp ψ ⊆ [−1, 1], it is even and
monotone decreasing on [0,1], ψ ≥ 0, ψ(0) = 1. Fix two positive parameters λ, T
and consider the function (cf. [K])

(3.2) kλ,T (x, y) =
∫ ∞

−∞

ψ(t/T )
T

cos(λt)e(t, x, y)dt

We have

Lemma 3.3. If Nx,y(λ) = o(λa(log λ)b), a, b > 0, then kλ,T (x, y) = o(λa(log λ)b).

Lemma 3.3 is used to prove Theorem 2.6 by contradiction. Assuming the con-
trary, we use a pretrace formula (3.6) to show that kλ,T (x, y) is large.

Consider the fundamental solution E(t, x, y) of the wave equation on the univer-
sal cover M of X. Then given x, y ∈ X, we have

(3.4) e(t, x, y) =
∑
ω∈Γ

E(t, x, ωy),

where the sum is taken over Γ = π1(X). LetKλ,T (x, y) be the analogue of kλ,T (x, y)
corresponding to the wave kernel E(t, x, y) on M :

(3.5) Kλ,T (x, y) =
∫ ∞

−∞

ψ(t/T )
T

cos(λt)E(t, x, y)dt

Then

(3.6) kλ,T (x, y) =
∑
ω∈Γ

Kλ,T (x, ωy).

We use the parametrix for E(t, x, y) (see [Ber],[Zel]):

(3.7) E(t, x, y) =
1

π
n−1

2

|t|
∞∑

j=0

uj(x, y)
(r2 − t2)j−n−3

2 −2
−

4jΓ(j − n−3
2 − 1)

mod C∞,

where r = d(x, y). The expression (3.7) is understood in the sense of generalized
functions [G-S]. The coefficients uj(x, y) are the solutions of the transport equations
along the geodesic joining x and y (see [Ber]). We recall that uj(x, x) = aj(x) as
defined in (1.5).
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Asymptotic analysis of the leading terms in (3.7) (cf. [Ber], [Don]) yields

Proposition 3.8. The integral Kλ,T (x, y) defined by (3.5) satisfies for any x 6=
y ∈M as λ→∞:

(3.9) Kλ,T (x, y) =
Q0λ

n−1
2 ψ(r/T )

T
√
g(x, y) rn−1

sin(λr + φn) + O(λ
n−3

2 ).

Here g =
√

det gij in geodesic normal coordinates, φn = π
4 (3− (n mod8)), Q0 is a

non-zero constant.

It follows from (3.6), (3.9), and the rate of growth for the number of lattice
points on a negatively curved manifold, that

(3.10) kλ,T (x, y) =
∑

ω:rω≤T

Qλ
n−1

2 ψ( rω

T )

T
√
g(x, ωy)rn−1

ω

sin(λrω + φn) +O(λ
n−3

2 ) exp(O(T )).

Let us now bound from below the following sum:

(3.11) Sx,y(T ) =
∑

rω≤T, ω∈Γ

1√
g(x, ωy) rn−1

ω

,

where y /∈ Γx, rω = d(x, ωy).
The sum (3.11) can be estimated by a sum over closed geodesics on X. This is

possible due to the fact that near a geodesic segment [x, ωy] there exists a closed
geodesic of comparable length (a similar idea was applied in [Bo]). Reduction to
closed geodesics requires some careful analysis of behavior of the geodesic flow.

We apply thermodynamic formalism to bound the sum over closed geodesics
from below. Namely, using the results of [Par, P-P], we get:

Theorem 3.12. There exists a constant C0 > 0 such that

(3.13) Sx,y(T ) ≥ C0e
P(−H2 )·T

as T → ∞, where P is the topological pressure (2.3) and H is the Sinai-Ruelle-
Bowen potential (2.2).

One can show that P
(
−H2

)
≥ (n−1)K2

2 , hence Sx,y(T ) grows exponentially in T.
To get a contradiction with Lemma 3.3, we consider the expression kλ,T (x, y),

and let T grow with λ. We then use Dirichlet box principle (cf. [P-R], [R-S]) to
choose λ so that λrω is very close to an integer multiple of 2π for all ω with rω ≤ T .
In order to make the Dirichlet box principle work we have to choose T of the size
1
h ln lnλ. This together with (3.13) explains the logarithmic factor in Theorem 2.6.

Assume now that n 6≡ 3(mod 4). Then all the expressions sin(λrω +φn) in (3.10)
are of the same sign and bounded away from zero by a constant. Combining this
with the estimate (3.13), we obtain a lower bound for the right-hand side of (3.10),
which leads to the desired contradiction with Lemma 3.3.

When n ≡ 3(mod 4), φn = 0 in (3.9) and the Dirichlet box principle can not
be used directly. We modify the argument in order to bound from below all the
expressions sin(λrω) in (3.10) for T/A ≤ rω ≤ T , where A is a suitably chosen
constant. This proves Theorem 2.6 in all dimensions.
Acknowledgements. The authors are deeply grateful to D. Dolgopyat for ex-
plaining them hyperbolic dynamics leading to Theorem 3.12. We would also like
to thank V. Ivrii, M. Jakobson, V. Jaksic, Y. Kannai, J. Marklof, Ya. Pesin, M.



6 D. JAKOBSON AND I. POLTEROVICH

Pollicott, L. Polterovich, A. Reznikov, P. Sarnak, R. Sharp, A. Shnirelman, M.
Shubin, J. Toth and D. Wise for useful discussions. We would also like to thank
the anonymous referee for helpful remarks. This paper was completed while the
first author visited IHES, and its hospitality is greatly appreciated.

References

[A-B-S] R. Aurich, J. Bolte, F. Steiner. Universal signatures of quantum chaos. Phys. Rev. Lett.
73 (1994), no. 10, 1356–1359.

[Ber] P. Berard. On the wave equation on a compact riemannian manifold without conjugate

points. Math. Z. 155 (1977), 249–276.
[Berry] M.V. Berry, Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond. A 400 (1985),

229–251.

[Bo] E. Bogomolny. Smoothed wavefunctions of chaotic quantum systems. Physica D 31 (1988),
169–189.

[Bo-Sch] E. Bogomolny, C Schmit. Semiclassical computations of energy levels. Nonlinearity 6
(1993), 523–547.

[Bow] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture

Notes in Math. 470. Springer, 1975.
[B-R] R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975),

no. 3, 181–202.

[CdV] Y. Colin de Verdière. Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II.
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