ON THE NUMBER OF INTEGERS IN A GENERALIZED
MULTIPLICATION TABLE

DIMITRIS KOUKOULOPOULOS

ABSTRACT. Motivated by the Erdés multiplication table problem we study the following
question: Given numbers Ni, ..., Nx41, how many distinct products of the form nj - - - ngy1
with 1 <n; < N; for i € {1,...,k+ 1} are there? Call Agy1(Ny,..., Npt1) the quantity in
question. Ford established the order of magnitude of A3(N7, N2) and the author the one of
Ap+1(N,...,N) forall k > 2. In the present paper we generalize these results by establishing
the order of magnitude of Ap41(N1,..., Ngy1) for arbitrary choices of Ny, ..., Ni; when
2 < k < 5. Moreover, we obtain a partial answer to our question when k£ > 6. Lastly, we
develop a heuristic argument which explains why the limitation of our method is &k = 5 in
general and we suggest ways of improving the results of this paper.
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1. INTRODUCTION

1.1. The Erdds multiplication table problem and its generalizations. In 1955 Erdés
posed the so-called multiplication table problem [E55]: Given a large number N, how many
integers can be written as a product ab with a < N and b < N7 Erdos gave the first estimates
of this quantity [E55, E60], which were subsequently sharpened by Tenenbaum [T84]. The
problem of establishing the order of magnitude of the size of the N x N multiplication table
was completely solved by Ford in [Fo08a, FoO8b], where he showed that

N2

Az(N) = |{ab - a S N and b S N}| = (IOgN)Q(l/logQ)(loglog N)3/2

(N >3),

where
Q(u) ::/ logtdt = ulogu —u+1 (u>0).
1

More generally, we may ask the same question about higher dimensional analogues of the
multiplication table problem, that is to say, we may ask for estimates of

In [K10a] the author determined the order of Ay, 1(N) for every fixed k > 2: we have that

Nk+1

(log N) @&/ 105(+D) (log log N )3/2 (N >3).

A (N) =4,

In the present paper we broaden our scope and study the number of integers that appear
in a (k+ 1)-dimensional multiplication table when the side lengths of the table are different.
More precisely, given numbers Ny, ..., Ny, we seek uniform bounds on

Appr(Niy oo Ngr) = {na - npq s SN (1 <e < k+ 1)}

Instead of studying Ay, 1(Ny, ..., Ngi1) directly, we focus on a closely related function: given
r>1,9y=(y,...,u) €ERF and z = (21,...,2;) € R¥, define

H* D (g 4 2) = [{n <x:3d;---din such that y; < d; < 2 (1 <i <k}

We then have the following theorem, which establishes the expected quantitative relation
between Ay, (N, ..., Npy1) and H*D(z, y, 2); its proof will be given in Subsection 3.4.
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Theorem 1.1. Let k> 1 and 3 < Ny < Ny <--- < Npy1. Then

App1(N1, o Nigga) =< HEHY (Nl---NkH, (%%) ,(Nl,...,Nw) :

In light of the above theorem, it suffices to restrict ourselves to the study of H*+1)(x, y, 2y),
which is slightly easier technically. What is more, bounds on H®**V(z,y,2y) have appli-
cations beyond the multiplication table problem (for example, see [Fo08b] for several such
applications when k& = 1). Before we state the results of this paper, we summarize some al-
ready known estimates on H*+V(z,y, 2y) in the theorem below. Briefly, this theorem gives
the order of magnitude of H*+Y(z y,2y) when the numbers logy,--- ,logy; are roughly
of the same size. In particular, it establishes the order of magnitude of H® (z,y,2y) for all
2 <y < /z. For a proof of it we refer the reader to [Fo08a, FoO8b] and [K10al; the first two
papers handle the case k = 1 and the latter the case k > 2.

Theorem 1.2 (Ford [Fo08a, Fo08b], Koukoulopoulos [K10a]). Let k > 1, ¢ > 1 and § > 0.
Consider numbers x > 3 and 3 <y < - <y < yf with 2k+1y1 ey < x/y‘f Then

H*+D 2Y) =, < .
(8 28) Sk (Lo ) ek g og 1)

In this paper we extend Theorem 1.2 to a broader range of the parameters yq, ..., Y.
In particular, when 2 < k < 5 we establish the order of H**V(z,y,2y) for any choice of
the parameters yq,...,y,. In order to state our results we introduce some notation. Given
numbers 3 =y < y; < -+ < Y, set

3log y; 4
0 =log 2BV (1 << k).
log yi—1

Also, let i; be the smallest element of {1,...,k} such that
l;, =max{l; : 1 <i<k}

1

and define 8 = B(k;y) by
f = min {1 A+b+---+06,0)A+ b+ + )
) Eil '
Lastly, define o = a(k; y) implicitly, via the equation
i k

> (k—i+2)log(k —i+2)t; =Y (k—i+1)l.

i=1 i=1

Note that
1 E—i+1 1 1
> min ———— 1 —_— | = ——1 —— | = 0.528766373. ..
4= 25 log(k — i+ 2) ©8 <log(k — i+ 2)) log 2 o8 (log 2)

as well as

a<maX;lo boitl = ! lo i <1
~ 1<i<k log(k — i+ 2) & log(k —i+2)/)  log(k+1) & log(k + 1)

(here we used Lemma 2.2, which will be stated and proven in Section 2).
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Theorem 1.3. Let k € {2,3,4,5}, x > 3 and 3 < y; < -+ < yp be such that 2%y, -+ -y, <
x/yk. Then
H* (. 2y) _ log i

T Y log log yi H (log Yi1

As we shall see later, the hypothesis that k € {2,3,4,5} in the above theorem is necessary:
when k > 6 there are choices of the parameters y1,. ..,y for which H*+Y(z y, 2y) has
genuinely smaller order than what Theorem 1.3 predicts. However, if logy; is not much
bigger than logy;, then the conlcusion of Theorem 1.3 is valid. More precisely, we have the
following result, which extends Theorem 1.2.

Theorem 1.4. Let k > 6, 2 > 3 and 3 < y; < --- < yp such that 28y, -- -y, < 2/yp and
log yr < (logy,)'*° for a suﬁ‘lczently small posztwe (5 = 0(k). Then

H* ) (2,9, 2y) _ log Sllolgyyf H log y; ~QUk=i+2)%)
x " (loglogy)*2 14 \log y; 4 '

)—Q((k—i+2)a)

1.2. Main results. Both Theorems 1.3 and 1.4 are consequences of a more general estimate
on H* 1) (z y, 2y), which is the main result of this paper.

Theorem 1.5. Let k > 2, 2 > 3 and 3 < y; < --- < yi be such that 2Fy, - - -y, < x /Y.

Then ,
H(k+1)(g;7y,2y) - H( log yi )Q((kwr?) )
T ¥ Voglogyi ++ \log y; 1 '

If we also assume that

1 (k+1)log(k+1) —2log2
1.1 >1 — 1
(11) T ek 1) Og( k1
for some fixed € > 0, then
H* Y (z,y,2y) _ log yi

—Q((k—i+2)%)
x \/log log yi H (log yH)

Condition (1.1) is essentially optimal in the sense that for every fixed ~ that satisfies

1 1 1 (k+1)log(k+1) —2log2
1.2 1
(1.2) log2 8 <log2> ST gkt D) Og( k1

there is a choice of y; < --- < gy, such that o = «a(k;y) = v and for which the order of
H**) (g gy, 2y) is genuinely smaller than the one stated above. We shall discuss this further
in the next section using some heuristic arguments. In relation to our comments following
the statement of Theorem 1.3, note that the smallest value of & for which the range (1.2) is
non-empty is k = 6.

Despite its optimality, condition (1.1) is not very easy to work with due to the implicit
definition of or. Below we state a weaker version of Theorem 1.5, whose hypotheses are easier
to verify.
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Corollary 1.6. Let k > 2, h € {1,...,k}, © > 3 and 3 < y; < --- < y, such that
k1 -y </,

1 o k—h+1 B 1 o (k+1)log(k +1) —2log2
log(k — h +2) & log(k — h + 2) log(k + 1) & k-1 '

and logy, < (logyn)*™? for a sufficiently small positive § = §(k). Then

k

H*D(z,y,2y) log y;

e 1
x F log log yy, -7 logy;—1

) —Q((k—i+2)%)

Proof. We consider for the moment & to be a free parameter. Since logy;, < (logys)'™?, we
have that
h h
D (k—i+2)*log(k —i+2)t; =Y (14 04(0))(k — i+ 1)¢;.
i=1 =1
Therefore
1 k—i+41
> min ——————1 ——————— | — Ok(0
“= S gk —it2) ° (log(k —it 2)) ¢(9)
1 k—h+1
log(k — h +2) ©8 <log(k—h+2)) #(9),
by Lemma 2.2. So if we choose ¢ small enough, then (1.1) holds and hence the desired result
follows. O

Applying the above corollary with A = k < 5 gives us Theorem 1.3 immediately. Similarly,
Theorem 1.4 follows by Corollary 1.6 with h = 1; we only need to check that

1 k 1 (k+1)log(k+1) —2log2
(L3 etk 1) @ <1og(k n 1)) > e D) © ( K1 )

or, equivalently, that

(k+1)log(k+1) > klog4
for k > 2, which is indeed true.

The main tool we shall use in order to prove Theorems 1.1 and 1.5 is a result that reduces
the counting in H*+Y(z, y,2y), which contains information about the local distribution of
factorizations of integers, to the estimation of a certain sum which contains information about

the global distribution of factorizations of integers. More precisely, for a = (ay, ..., a;) € NF
define
LEVa)= | [log(di/2),logdy) x -+ x [log(dy/2),log dy) ,
Bl
and

L*(a) = Vol(£**D(a)),
where “Vol” denotes the k-dimensional Lebesgue measure. Also, for 1 <y < z set

Py, z) ={neN:p’(n) =1,pln=y <p <z}
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and for t = (t1,...,tg) with tx > tp1 > --- >t > 1 =:tg set
PEt) = {(ar,...,ax) € NF 1 a; € Po(tis1, 1) (1 <i < k)}.
Then we have the following estimate.
Theorem 1.7. Let k> 1, 2> 1 and 3 <y, <--- <y, with 2%y, -y, < x/yg. Then

H*D(2,y,2y) H logy; \ ¥t 3 L¥(a)
z o log yi—1 .

al-..a/k:

i=1 acPt(y)

When k£ = 1, the above theorem is an immediate consequence of the results and the meth-
ods in [Fo08al: see Lemmas 2.1 and 3.2 there. As an immediate consequence of Theorem 1.7,
we have the following result.

Corollary 1.8. Let k > 1 be an integer and for i € {1,2} consider z; > 1 and y, =
(Yias - Yik) € [1,+00)*. Assume that 2%y, 1 - -yir < x/yix for i € {1,2} and that there
exist constants ¢ and C' such that yf ; < yo; < yfj forallj € {1,...,k}. Then

H(k+1)($lay172yl) - H(k+1)(x27y2a2y2)

~k,c,C .

X1 T2

Proof. The result follows by Theorem 1.7, Lemma 2.1(a) and the standard estimate

(1.4) S Tme)z I1 <1+%) =npl (t>1),

a€Px(t,t5) t<p<tB

where
Tm@) = Y 1= > 1 (meN, aeN).
di--dm—1la dy--dm=a

O

When k = 1, a stronger version of the above corollary is known to be true: see Corollary
1 in [FoO8b].

1.3. Outline of the paper. The paper is organized in the following way: In Section 2 we
demonstrate a heuristic argument in support of Theorem 1.5 and the optimality of condition
(1.1). The first three subsections of Section 3 are devoted to establishing Theorem 1.7,
whereas in the last one we prove Theorem 1.1. In Section 4 we develop some estimates
related to the probability that a multidimensional Poisson random variable lies close to
a hyperplane. Such estimates play a crucial role in the proof of Theorem 1.5. Also, in
combination with the heuristic arguments of Section 2, they explain how the parameter «
makes its appearance in the statements of our results. In Section 5 we give the proof of the
upper bound in Theorem 1.5. The main steps of the proof are described in Subsection 5.1
and proven in Subsection 5.2. The proof of the lower bound in Theorem 1.5 is divided in
three sections: in Section 6 we describe the main steps of our argument. The first major
such step is then carried out in Section 7. Finally, Section 8 contains the last piece of our
argument and completes the proof of Theorem 1.5.
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1.4. Notation. We make use of some standard notation. For n € N we use P*(n) and
P~(n) to denote the largest and smallest prime factor of n, respectively, with the notational
conventions that PT(1) = 1 and P~(1) = +o0. Also, w(n) denotes the number of distinct
prime factors of n. Constants implied by <, > and < are absolute unless otherwise specified,
e.g. by a subscript. Also, we use the letters ¢ and C' to denote constants, not necessarily the
same ones in every place, possibly depending on certain parameters that will be specified by
subscripts and other means. Also, bold letters always denote vectors whose coordinates are
indexed by the same letter with subscripts, e.g. @ = (ay,...,ax) and & = (&,...,&.). The
dimension of the vectors will not be explicitly specified if it is clear by the context. Finally,
we give a table of some basic non-standard notation that we will be using with references to
page numbers for its definition.

Symbol  Page Symbol Page Symbol Page
Q(u) 2 a 3 a; 7
6] 3 1 3 10 7
Pm 33 €k, €k 18 Tm(a) 6
T’H—l(a’) 7 Tk+1(a’y7z) 7 P*(y,Z) 5
PE(t) 6 HED (2 y, 2) 2 Api1(Ny, .o  Nij1) 2
LE (@) 5 L*(a) 5 S+ (1) 15

Acknowledgement. I would like to thank Kevin Ford for many valuable suggestions as
well as for discussions that led to an earlier version of Lemma 2.3.

2. HEURISTIC ARGUMENTS

In this section we develop a heuristic argument in support of Theorem 1.5. Its main
part is given in Subsection 2.1 and it is a generalization of an argument developed by Ford
in [Fo08a] for the case k = 1 and subsequently by the author in [K10a] for the case k > 2. In
Subsection 2.2 we introduce some new ideas in order to explain the appearance of condition
(1.1) in the statement of Theorem 1.5.

Before we delve into the details of this argument, we introduce some additional notation
and state two elementary but basic results we will be using throughout the entire paper. For
a=(ay,...,a;) € NFand y,z € R¥ let

Tiri(a) = [{(dy,...,dy) €NV dy - difay---a; (1 <i < k)}
and
Ter1(a,y, z) = {(dy,...,dg) € NF . d; - dilaycag, Y < di <z (1 <0 < k)}.
Finally, set

1 1
i = 1 '
“T oglir1) 8 (log(i n 1)) (i€ N)
and let ip be the minimum element of {1,... k} such that

| — ag—jg 1| = min{|a — 1] : 1 < i < k}.
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Lemma 2.1. The following assertions hold:
(a) For a € N* we have

k
L** (@) < min {Tk+1(a>(log 2)", H(log ap + -+ +loga; + log 2)} :

i=1
(b) If (a1 ---ag,by---by) =1, then
L** D (a1by, ... aghy) < T (@) LEYD(B).
Proof. The proof is similar to the proof of Lemma 3.1 in [Fo08a]. O
Lemma 2.2. The sequence {«;}ien is strictly increasing.

Proof. The function
1

w0 ()

is easily seen to be strictly increasing for x > 15. Finally, we check numerically that a; <
g < -+ < (15. O

2.1. Basic set-up and development of the main argument. Our goal is to understand
when an integer n < x is counted by H®**V(z,y,2y). We write n = a; - - - azb, where

o= [ » (<i<h).

p”[n
2y;i—1<p=<2y;

For simplicity, we assume that the numbers aq, ..., a, are square-free and satisfy loga; =<
logy; for all i € {1,...,k}. Observe that if d = (dy,...,dx) € N* N[5, (v, 2u), then
all prime factors of d; are at most 2y; for all ¢ € {1,...,k}. Hence d satisfies the relation

dy -+ -dg|n if, and only if, dy ---d;|ay - - - a; for all i € {1,... k}. Therefore the integer n is
counted by H®* 1 (z,y,2y) precisely when 75,11 (a,y,2y) > 1. Consider now the set

Dk+1(a) = {(10gd1, . ,logdk) . d1 - 'di|(l1 sy (1 < 1 < k)}

Assume for the moment that Dy;(a) is well-distributed in []\_,[0,log(a; - - - a;)]. Then we
should have that

k

log 2)*
Tir1(a,Y,2y) = | Disa(@) N | [(log yi, log y; + log 2]| ~ 741 (a) —; (log 2)
(2 1) i=1 Hi:l log(al T ai)
H?:l(k —i+ 2>w(ai)
ITi-1 log i

The right hand side of (2.1) is at least 1 when

k

k k
> log(k — i+ 2w(a;) > > loglogy; + Ok(1) = > (k—i+ 1)f; + Ox(1).
=1 =1

=1
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Since we expect that
. el gt
logyp (r1 — )t--- (e — 1)!
(for example, see [T95, Theorem 4, p. 205]), summing the above relation over all vectors
r € (NU {0})* that satisfy
k k

(2.2) > rilog(k —i+2) > > Lk —i+1)+ Ox(1)

i=1 =1

Hn <z:w(a)=r,(1<i<k)} =

leads to the estimate

(k+1) z 3 et
(2.3) H (x,y,2y) ~ :
—1)!... — 1)
ogue,_ 22 -l (e 1)
(2.2)
Using Stirling’s formula and Lagrange multipliers, we find that the maximum of HZ O (i
1)! under condition (2.2) occurs when r; ~ (k — i+ 2)*¢; (see Section 4 and, in particular,

Remark 4.1 and the proof of Lemma 4.3(a)). In fact, Lemma 4.3(a) implies that
> —Q((k—i+2)%)

Z ot o log y, H ( log y;
ey (ri =Dt (=117 Vioglogyy, 7 \logyi—1 ’
(2.2)

so that (2.3) becomes

log y;

V log log yr - H (log Yi1

~QU(k-i+2)%)
(2.4 HO (2, y,2) ) .

If now 6 > 1, then (2.4) agrees with the conclusion of Theorem 1.5. However, if g =
041 00(1), then relation (2.4) overestimates H**V)(z, y, 2y) slightly. The problem lies in our
assumption that Dyyq(a) is well-distributed. Actually, if 5 = 0y, ,00(1), then with high
probability the elements of Dyq(a) form large clumps. In order to measure the amount of
clustering in Djy1(a), we use the function L*+(a), which we introduced in Section 1. We
will show that, unless the prime factors of aq, ..., a, satisfy certain constraints, the measure
of L**V(a) is small and, as a consequence, the set Dy, 1(a) cannot be well-distributed.

Fix a vector » € N¥ such that

k
(2.5) 0§Z7ﬂog(k5—i+2 Zﬁ —i+1) <log(k+1)
=1
and r; ~ (k —i+42)*; as {; — oo, for all i € {1, ..., k}, since most of the contribution to

the sum in the right hand side of (2.3) comes from such vectors. Consider n with w(a;) = r;
for all 7 € {1,...,k} and write a; = p;1 - - piy, With 2y;_1 <pi1 <+ < piy, < 2y;. Set

i—1 i—1
Up=2log(k+ 1)+ Y ln(k—m+1)=> ryloglk—m+2) (1<i<k).
m=1

m=1
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Note that
(b —m+1) —rp log(k —m +2)
=k—-—m+1—(k—m+2)%log(k—m+2)+o0(1))l,
= log(k — m+2)((k —m + 2)% 1 — (k —m+ 2)* + 0(1))l,,.
So Lemma 2.2 and the definition of ¢y imply that

L+b+- -+ i1 <id<q,
(2.6) U, = + 6 + + 1 %._Z_Z(.)
1+40;+---+ 4 ifig+1<i:<k+1,
where in the latter case we used (2.5). Assume that there are integers i € {1,...,k} and

jeA{l,...,r;} and a large number C' such that

log(k—i+2)j—U;, —C

kE—i+1 ‘
We claim that this causes clustering among the elements of Dy,i(a). Indeed, if we set
by, = ap, for 1 <m <4, b; = p;1---pi; and by, = 1 for © < m < k, then a double application
of Lemma 2.1 implies that

L** (@) < 7mpiq(ay /by, . . . ax/bp) LED ()

g(%—i+mW7II(k m+2)" )(Ilbg%l )

m=i+1

<<k(k;—z'+2)_j(H(k; m+2)" )(Hlogym>

m=1

0 < loglogp;; —loglogy;—1 <

x (logyi—1 + log(pi1 - - 'pij))k s

k
< <H(k¢ m+2)" )(Hlogym> (logy;—1)* " Hle Vi€

m=1

k
e [k —i+2)
=1

The right hand side of (2.7) is much less than 7,41(a) = Hf;zl(k’ —m+2)™ if C — oo,
in which case there must be many elements of Dy.(a) that are close together. The above
argument suggests that we should focus on numbers n for which

log(k—i+2)j —U; —O(1)
kE—i+1
The number of integers n that satisfy conditions similar to (2.8) was studied by Ford in

[Fo07]. Using similar considerations, we find that the probability that an integer n satisfies
(2.8) is about

14/ el (10 R/
Hmm{ UzUZH}Xk mm{L( + 0+ 4l 12( +ligr1+ -+ k)}’
0

(2.8) loglogp;; —loglogy;—1 >
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by (2.6). Thus we are led to the refined estimate

: I+l +-F b)) L+ b + -+ )
HED (g 2y) L l
(29) > ~ 0 '
T k O\ QUE—i+2)?)
V/loglog ka( log ys )
il log yi—1
Finally, we claim that
Tl e V(140 ceef
(2.10) min{l,( ot 12( Tl ’“>} =, B.
20

To see this, fix a small parameter § = d(k) and observe that if

D 4 <66, = 6 max 4,

- 1<i<k
i#i1

then
(k—i14+2)%log(k — i1 + 2)4;, = (1 + O(0))(k — iy + 1)y,

by the definition of .. This implies that | — ag_i, +1| < 0. So if § = d(k) is small enough,
then i; = ip and (2.10) follows immediately. Consider now the case when »_,; £; > d0;,.
We may also assume that i; # io; else, (2.10) holds trivially. Under these assumptions we
have that

0
@zmm{l,z;%}zé

11

and

L+ b+ + L)1+ 4 R , l;
min{1,< Ot by ) (L b + +k)}2mm{,—l}:1,
gio gio
which together prove (2.10) in this last case too. By (2.10), we see that (2.9) agrees with
the conclusion of Theorem 1.5.

2.2. Further analysis and optimality of condition (1.1). Even though the argument
given in Subsection 2.1 gives us Theorem 1.5 heuristically, it does not explain the presence
of condition (1.1) in the statement of the theorem. This deficiency stems from the fact that
the only piece of information we used about £%*+Y(a) is Lemma 2.1. In order to understand
condition (1.1), we need to pay closer attention to the structure of L*+Y(a). It turns out
that when k£ is large, the rich multiplicative structure and the high dimension of the set
L*+D(a) lead to many more bounds on its volume L**!(a) than just those included in the
statement of Lemma 2.1.
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Lemma 2.3. Consider integers 0 = zo < 2y < -+ < 2 < 2301 = k with z; > i — 1 for all
i€{l,....k}. Let a = (ay,...,a;) € N* such that y*(ay ---ay) = 1. Then we have that

k
LF(@) < Y (H(zj —j+ 1>w<dj>>

dj|aj j:1
1<5<k

k k
X min {H log™*' ™% (2ay - - - a;), (log 2)"

j=0 J

(k— 2z + 1)W(aj/dj)} ’

1
with the convention that 0° = 1.

Proof. Given a k-tuple (dy, . ..,dy) € N* withd; - - d;|ay - - - a; for 1 <i < k, we may uniquely
write dz = dz"ldﬁg cee dm‘, 1 S 7 S k?, with dj7jdj+1,j cee dk,j|aj for 1 S] S k. Thus

k
LE) (@) = U H[log(dmdi,z cod;ii)2),log(d;1d;o - - dyy)).
djjdjt1,5dk,jlaz i=1
1<5<k

For i € {1,...,k} define m; as the unique element of {0, 1, ..., k} such that z,,, <i < z;,,41.
Note that ¢ > z,,, > m; — 1 and thus m; <. Set

T={(i,j): 1<j<kj<i<z}={(,§):1<i<km<j<i}.

Given numbers d;j, (,7) € Z, with d;;---d., ;la;, 1 < j <k, we define the set

k
L({d;;: (i,j) €TL}) = U H[l()g(di,l dii/2),log(d - - - dig))
di,j7 (%])%I i=1
1<5<i<k
deyi1,gedp gl gt
3,3z 5,5

k
= U [[og(dis -+ - dim, /2), Jog(dis - - dim,))

dzjv+1,j"'dk,j|dj7jflzlzv,j =1

1<j<k

+ (1Og(d1,m1+1 -ody), log(damytr - - dag), - 710g(dk,mk+1 cdig))
The above identity implies that

Vd(ﬁqdm:(Lj)EZ}»f§Hml{Ilbg@a1~~mm%(bgmkIIGr—m—kww<%;@w)}.

i1 i=1
Since

@)= U L(dy ) e T,
di,ja (7'7.7)61
djjedsy glag Vi
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we find that

k k
L**(q) < Z min {Hlog(2a1 ), (log 2)F H(k -z + 1)°J(‘”/D")}
i=1

d;j, (4,5)€L i=1
Dj=dj j-dz; jlaj Vj

=) <H(zi — i+ 1)W<Di>>

Djla;  \i=1
1<j<k

k k
X min {H log(2ay - - - Gy, ), (log 2)* H(kz — 2z + 1)‘”(“"/[)")} .

i=1 i=1

To complete the proof of the lemma note that

k k
H log(2a; - - ;) = H log®*+' 7% (2ay - - - a;).
i=1

§=0
O

Using the above lemma, we show that condition (1.1) is optimal, that is to say, for every
fixed ~ such that

1 (k+1)log(k +1) —2log2
2.11 log — <y <1—
(2.11) log 2 o8 log 2 7 log(k + 1) og( k—1 ’
there are choices of y; < yo < -+ -y such that a = a(k;y) = v and
k —Q((k—i+2)%)
log v;
2.12 HE D (z, y, 2y) =0 g ( : ) — 0).
(2.12) (z,9,2y) e log o L iogyis (41 )

The argument we give is heuristic but, if combined with the results of Sections 4 and 5, it
can be made rigorous.
The right inequality in (2.11) is equivalent to

(k+1)log(k+1)—2log2
(k4 1)t

Also, inequalities (1.3) and (2.11) imply that

k—(k+1)"log(k+1) >0 and 27log2—1>0.

(2.13) <k-1.

So if we select y; = yo = - -+ = y_1 large enough, then there is a unique y; > yx_1 such that
1 k—1
by = —— E—i+1—(k—142)"log(k —1+2))L;,
’ MOgQ_l;( i+ 1= (k—i+2)"log(k —i+2))

that is to say, there is a unique yj so that the k-tuple y = (y1,. .., yx) satisfies the relation
a(k,y) = . We claim that (2.12) holds and we support this claim with a heuristic argument:
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Similarly to Subsection 2.1, we consider @ = (ay,...,ax) such that a; € P.(2y;_1,2y;).

Note that we necessarily have that as = ---ax_1 = 1, since y; = -+ = y_1. Set 7, = w(a;)
for all i € {1,...,k} and assume further that loga; < logy; for i € {1, k}, that
(2.14) ri~(k—i4+2)% =(k—i+2)7 (i€{l,k}, y1 > c0)

and that (2.5) holds. We will show that

(2.15) L*(a) = o (H log y) (y1 — o0).

Indeed, Lemma 2.3, applied with z; =--- = 2, = k — 1, implies that
k k
£60a) i 3 (TI0 -9 )i [T}
dj|aj j:1 ]:1
1<j<k
= Z (k — 1)) min {log yx, 27"’“+”(a1/d1)}
dilar

(note that all summands with dj, > 1 vanish and d; = a; = 1 for j € {2,...,k —1}). The
main contribution to the sum
k k

S — 1yt (g ynon — TGk - j +2)5 =i [[log
dy|as j=1 i=1
comes from integers d; such that
k—1
AE
If d; satisfies (2.16), then relations (2.5), (2.13) and (2.14) and the fact that r; = 0 and
; =0() for i € {2,...,k — 1} imply that

(2.16) w(dy) r1 (y1 — o00).

2log 2
E+1

=1y —

r1 + (log2)ry — €1 — Uy + ox (1)

k+1)log(k+1) —2log2
k+1
as y; — 0o. Consequently, for integers d; that satisfy (2.16) we have that

min {log y., 2+ T(@/ M} = log y; = o (27T (@/M)) (- 00),

which in turn implies that relation (2.15) is indeed true. This yields that, in contrast to the
prediction of the arguments in Subsection 2.1, Dy ;(a) is not well-distributed for such a.
Hence, in general, relation (2.9) overestimates the size of H**V(z, y, 2y).

(ri + w(ay/dy)) log 2 — loglog yi, =

1+ Ok(fl) — 400

Remark 2.4. The information about L*+Y(a) that is contained in Lemma 2.3 makes its
appearance implicitly in the statement of Lemma 6.2. An approach that could potentially
extend Theorem 1.5 to the case when condition (1.1) fails is to insert Lemma 2.3 into the
proof of the upper bound in Theorem 1.5 (Section 5) and then adjust the lower bound
argument accordingly (Sections 6, 7 and 8).
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3. LOCAL-TO-GLOBAL ESTIMATES

In this section we reduce the counting in H (k“)(:c, Y, 2y) to the estimation of
(k+1)(a)

S(kﬂ)(t) = Z L

CL o o . a/
acPk(t) k

and prove Theorem 1.7. This reduction has also been carried in the author’s thesis [K10b],
but we give it here for completeness. The basic ideas behind it can be found in [Fo08a] and
[K10a]. However, the details are more complicated, especially in the proof of the upper
bound implicit in Theorem 1.7, because of the presence of more parameters. Finally, we
employ Theorem 1.7 to deduce Theorem 1.1 in Subsection 3.4.

Remark 3.1. In order to show Theorem 1.7 for some £ > 1, we may assume without loss of
generality that y; > C}, where C1,C}, ..., C}, ... is an increasing sequence of large constants.
Indeed, suppose for the moment that Theorem 1.7 holds for all £ > 1 when y; > C}, and
consider the case when y; < C}. Then either y, < C}, in which case Theorem 1.7 follows
immediately, or there exists [ € {1,...,k — 1} such that y; < C} < y;11. In the latter case
let y' = (Yru1,---,ux) and d = |2y;] - [2u] < 2y -+ -y < (2C%)* and note that

g (h—tt1) (d Y, 2y> < H* (2, y,2y) < HEH (1,9 2y,
Moreover,
x/d x
Z 5
Yirr Yk~ 21 Uk

As aresult, the desired bound on H**+Y)(z, y, 2y) follows by Theorem 1.7 applied to H*~+1 (x4, 2y")
and H* =1 (x/d, 4y, 2y'), which holds since y;,1 > C} > C4_,.

> 2Ky,

3.1. Auxiliary results. Before we launch into the proof of Theorem 1.7, we list a few
results from number theory and analysis that we shall need. First, we state a standard sieve
estimate for easy reference (see for example [HT, Theorem 06]).

Lemma 3.2. For 4 < 2z < x we have
Hn <z:P (n) >z} <

log 2
Next, we have the following result, which follows by Lemma 2.3(b) in [K10a].

Lemma 3.3. Let f : N — [0,+00) be an arithmetic function that satisfies the inequality
flap) < Crf(a), for all integers a and all primes p with (a,p) = 1, where Cy is a positive
constant depending only on f. Also, let h >0 and 3/2 <y < x < 2% for some C > 0. Then

f(a) log 2 f
Z alog"(P+(a)) K0 XP {_210gx} log" x Z

a€Px(y,x) a€Px(y,z)
a>z

Finally, we need a covering lemma which is a slightly different version of Lemma 3.15 in
[F]. If r is a positive real number and I is a k-dimensional rectangle, then I will denote the
rectangle which has the same center with I and r times its diameter. More formally, if xq
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is the center of I, then rI := {r(x — x¢) + ®o : « € I}. The lemma is then formulated as
follows:

Lemma 3.4. Let Iy, ..., Iy be k-dimensional cubes of the form [al, by) X+« X[ag, b)) (by—a; =
c=bp —a, > 0). Then there exists a sub-collection I, . .. of mutually disjoint cubes

such that
N M
U c 3.
n=1 m=1

3.2. The lower bound in Theorem 1.7. We start with the proof of the lower bound
implicit in Theorem 1.7, which is simpler. First, we prove a weaker result; then we use

Lemma 3.3 to complete the proof. Note that the lemma below is similar to Lemma 2.1 in
[Fo08a], Lemma 4.1 in [FoO8b] and Lemma 3.2 in [K10a].

ZJVI

Lemma 3.5. Letk > 1, 2> 1 and 3 =1yy < y1 < yo < -+ < yp such that 2%y, - yp < /1y
and y; > C}. Then

H*D ( z,Yy, 2?/ H log y; ~(b=i42) Z L(k+1)<a)
k .« .. ak ’

log Yi—1 acPh(2y) a1

i<y’ " (1<i<k)

Proof. Set
- > Y-
2ky -y

Consider integers n = ay - - - agpy - - - pxb < x such that the following hold:

(1) a € P¥(2y) and al<y1/ (8k) fori=1,...,k;

(2) p1,...,px are prime numbers with (log(yl/pl), .. dog(yr/pr)) € LEH (a);

(3) If 2/ < y2, then let b be a prime number > y,i/S; if 2’ > y?, then let b be an integer

with P~ (b) > 2y

Note that for every i € {1,...,k} all prime factors of a; lie in (2y;_1, yz/ (8k ] Also, condi-
tion (2) in the definition of n is equivalent to the existence of integers dy, ..., d; such that
dy---dilay - a; and y; /p; < d; < 2y;/p; for all i € {1,...,k}. In particular, 7441 (n,y,2y) >
1. Furthermore, we have that

yf/sﬁy—<%<pz<2—<2y@
ay---a;  d; d;

So (ay «--ag,p1---prb) = 1 and hence this representation of n, if it exists, is unique up to

a possible permutation of pq,...,p, and the prime factors of b that lie in (yl/ 8 2y]. Since
b has at most one such prime factor, n has a bounded number of such representations. Fix
ai,...,a, and pq,...,pr and note that

T '

(3.1) X = > > ()7 > 2y,/%.

al-..akpla-.pk y;/S

We start by counting the number of possibilities for b. We consider two cases. First, if
x> y?, then X > 4y, by (3.1), provided that C, is large enough. So Lemma 3.2 implies
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that
S - Y w2
b admissible b<X,P~(b)>2yy 08 Yk
by Lemma 3.2. On the other hand, if 2’ < y?, then
X — x < :Edl e dk S Qkx/ S Qkyi

ay---QagPr-- Pk Q1 QRY1L - Yk
The above inequality and (3.1) imply that

X
Z 1= Z 1> Z ng>>

b admissible y,lg/8<b§X X/2<b<X
b prime

b prime

In any case, we have that

X
Z 1>
log yi

b admissible

> = > :

a DY a “ .. ’
a€Px(2y) F (log ;j—i,...,log Z—:)Eﬁ(k+1)(a) P Pk
/8K (1 <i<k)

and, consequently,

3.2 H kD 2
(3.2) (z,y,2y) >y oz 70

a;<y;

Fix a € P*(2y) with ozZ < yl/ B9 for i =1,... k. Let {I,}E | be the collection of cubes

log(di/2),1logdy) x -+ x [log(di/2),log dy) Wlth dy---dilay---a;;, 1 < i < k. Then for
I = [log(d/2),log dl) X -+ x [log(di/2), log dy) in this collection we have that

| D DR

(log 3b-.,log )€l i=1 g /di<pr<oyi/di ! logyy - - - log yi

because d; < a;---a; < yl Sfor 1 <i < k. By Lemma 3.4, there exists a sub-collection
{1, }5_, of mutually disjoint cubes so that

S(31og2)" > Vol (U 3[rs> > Vol (O L~> = L*+(q).

s=1 r=1

Hence

S
3 1ZZ L S

(log%,...,log z—’;)eﬁ(k“)(a) D1 D u P1e Dk log y; - - - log yi

LD (@)
>k .
log y - - - log yi
Combining the above estimate with (3.2) completes the proof of the lemma. 0

Having proven the above lemma, it is not so hard to finish the proof of the lower bound
of Theorem 1.7. We give the argument below.



18 DIMITRIS KOUKOULOPOULOS

Proof of Theorem 1.7 (lower bound). For every fixed i € {1,...,k} and integers ay,...,a;_;
and a;y1,...,ax, the function a; — L**Y(a) satisfies the hypothesis of Lemma 3.3 with
Cr=k—i+2<k+1, by Lemma 2.1(b). So if we set

P = {a eNt g eP <2yi—17yzl/M> (I<i< k)}

for some sufficiently large M = M (k), then

3 L a) 3 M:Zw@wk(e-g@))

acP*(2y) ai---ap e ap - ay
: 1/(8k) .
<y/ M (1<i<k) a; <y P (1<i<k)

Y]

1
2 a
By the above inequality and Lemma 2.1(b), we deduce that

1)

Ik . A (k+1)
Th—iva(b L a
SEUME Sl | BD DI —L R S
acp =1 b €Py (yi-1,29i 1) : acPk(2y) L
or b;€Px(y; 1/M Vi) aigyil/(Sk) (1<i<k)

Combining the above estimate with Lemma 3.5 completes the proof of the lower bound in
Theorem 1.7. O

3.3. The upper bound in Theorem 1.7. In this subsection we complete the proof of
Theorem 1.7. Before we proceed to the proof, we need to define some auxiliary notation.
For y,z € RF and o > 1 set

H£k+1)(.17,y72) = |{7l S x: MQ(n) = 17 E|d1 o dk’n such that Y < dz S Zj (1 S { S k)}l
Also, for t € [1,4+00)*, h € [0, +00)* and € > 0 define

Pr(t;e) = {a eNt:q, eP, (max{P*(al > ~ail),ti;1} ,ti> (1<i< k)},
i—1

al..-a.

where 5 = 1, and

k-‘rl te
SE(¢; b, 1 -a; . :
wna= 3 DO (o
aG’Pf(t;e)
Lastly, let
e — <€k71,...,6k,k) = (1,,1,2) ERk.
———

k—1 times

Then we have the following estimate.
Lemma 3.6. Let \/C) <y < --- <y <z with 28y, -y, < x/(2yr)"/®. Then
H* D (2,y,2y) — HED (22, y, 2y) < 2% (2y; €4, 7/8).
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Proof. Let n € (z/2,x] be a square-free integer for which there exist integers d; € (y;, 2yi],
1 <i<k,with dy---d|n. If we set dpi1 =n/(dy---dy) and ypq = 2/(28 1y -+ yp), then
we have that n = d; - - - djy1 with y; < d; < 281y, for 1 <i <k +1. Let 21,..., 2,41 be the
sequence ¥, . . ., Yrr1 ordered increasingly. Also, let o be the unique permutation in Sy, for
which P*(dy1)) < -+ < P*(dy(t1)) and set p; = PH(dy;)) for 1 < j < k41 and py = 1.
We can write n = ay - - - agpy - - - prb with P~(b) > pp and a; € Py(p;_1,p;) for all 1 < i < k.

We claim that
2 7/8
(3.3) pi > Qi = max {P+(a1 ), (2y:)""
a’l PR al

} (1<i<k).

Indeed, for every j € {1 ..., k} we have that y,) < ds) = p;d for some d|a; - --a; and
therefore Yo(j) < Pja1 - -+ a;. Consequently,

. MAaX1cics ) 2 2, )7/8
pi — max p] > max yU(]) Z 1<5<q yU(]) 2 1 Z ( yl) (1 S Z S k),
1<5<i 1<j<iay---aj ap - a; ai---a; ai---a;
by the definition of 21, ..., zz41 and our assumption that y; < -+ <y < 2yk +1 Moreover,

- + Tlas - a.
pi = Maxp; >1rr<1aXP (a;) = P (ay---aj).

So (3.3) follows. In addition,
P+(ai) < pi= PJF(dU(Z)) < max P+(dj) < 2y2 (1 <1< k’),

1<5<i
by the choice of o, and
P (a;)) >pi-1> Qi1 (2<i<k),
by (3.3). In particular, @ = (ay, ..., a;) € P¥(2y;7/8). Furthermore, note that
2k+1

Yo (i do % Yo (i .
(doqy/p1) - - (dog@y/pi)|ar - - -a;  and 0 o 2o < Q (1<i<k),
Di Di Di
that is to say, there are numbers wy, ..., w, € {1,2,22,..., 2%} such that
(3.4) (log M, ..., log M) e LD ().
p1 Pk

Lastly, observe that pg.1|b and consequently b > pry1 > pr > Qg, by (3.3). Similarly, we
have P~ (b) > pr > Q. Combining all of the above, we deduce that

HE D (2,y,2y) — HF D (2/2,y,2y)

S22 > > >

55 g I 5 8

<k Z Z Z Z cagpy - - prlog Qp’

€S k1 w;€{1,2,...,2*} a€PE(2y;7/8) PLy Pk
‘ igigk } (3.3),(3.4)

by Lemma 3.2. We fix o, wq,...,wg and aq, ..., a; as above and estimate the sum over the
primes py, ..., pg in the right hand side of (3.5). In order to analyze condition (3.4), consider
the collection {1}, of cubes of the form [log(m;/2),logm;) x - - - x [log(my/2), log my,) with
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my - -mylay - - a; for 1 < i < k. By Lemma 3.4, there is a sub-collection {1, }5_, of mutually
dlSJOlIlt such cubes for which £#+D(a) ¢ |2, 31,,. Consider I,, = [log(my/2),logm;) x
X [log(my/2),logmy) in this sub-collection and set

Then we find that

W1 Yy WEYo
<1OgM, N mm)
D1 Pk

€ 31, = [log(my/4),1log(2my)) x - -+ x [log(my/4),log(2my))
if, and only if, U; < p; < 8U; forallt=1,... k. So

< H Z <k H log(max{Ui, Qz}) = H log QZ

pipr P1° 11U<pl<8Upl
(3.3),(3.6) pi>Q;

(3.6)

Therefore we deduce that

S L(k+1) a
Yoy Y S
prope P17 s=1 Dl,--Dk Pk g1 &<k & gl &k
(3.3),(3.4) (3.3),(3. 6)
Inserting the above estimate into (3.5) completes the proof of the lemma. 0

Next, we bound the sum S**V(t;h, ¢) from above in terms of S**V(t). This is ac-
complished by establishing an iterative inequality that simplifies the complicated range of
summation P¥(t; ) by gradually reducing it to the much simpler set P¥(¢) and, at the same
time, eliminates the complicated logarithms that appear in the summands of S*+V(¢; h, €).
Lemma 3.3 plays a crucial role in the proof of this inequality

Lemma 3.7. Fiz k> 1,¢> 0 and h = (hy,...,h) € [0,+00)*. Fort = (ti,...,t) with
3<ty <+ <ty we have that

SED(t h€) <pne (ﬁ log ™" tz-) SHED ().
i=1
Proof. Set 6 = €/(2k) and to = 1. For [ € {1,...,k} define
h”:{hi | ifi e {1L,....1-1}U{k},
’ hi+k—i+1 ifl<i<k-—1,
and
Pi(t) = {a e NF:q; € P, (max{P*( cai 1), 5 (ay - ~-ai,1)} ,ti) (1<i<li),
a; € Pu(tici,ti) (I +1<i<k)}.
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Also, let ho; = hy,; for i € {1,...,k} and Py(t) = Pi(t). Lastly, for [ € {0,...,k} set
hl = (hl,la c. 7hl,k) and

L(k+1 ! 46/ 210
SED (g hy) = Z Hlog ( coeap) +—
a/l PR ajl

acPi(t)
t6/2+l5
—hui Ty - i
X‘H log <P (aq al>+a1---al)'
i=l+1

Note that
(3.7) SED (g hy) = SED(E: ke
and

N k

Sék+1)(t§ ho) =hch (H(log ti)—ho,i> S(k+1)(t)
(3.8) =

k—1
B (H(logtz-r“i*’“‘””) (log t,) . S*+D)(¢),

We claim that
(3.9) SEV (@t hy) <o (log 2t 1) 28 % I (b)) (1< 1< k).

Clearly, if we prove (3.9), then the lemma will follow immediately by iterating (3.9) and
combining the resulting inequality with relations (3.7) and (3.8). So we fix [ € {1,...,k}
and proceed to the proof of (3.9). Consider integers ay, ..., a;_; such that

t6~/2+l5
CLZ‘EP* (max{P*(a1~-ai1),L},ti> (1§Z§l—1)
-1

a---a;
and a;i1,...,a; such that

a; € Pu(ti1,t;) (1+1<i<k)

t6/2+l§
t;_, = max {P+(a1 ceagq), —} .

al .. .al_l

and set

Observe that in order to show (3.9) it suffices to prove that
LU+

t§/2+l5
re 3 B e (s )

QLEP*( 1—1° tl)

(3.10)

k+1

t€/2+(l*1)5
Lo he 1 e i )
bhe D H og ™" < a-1) + _~ "az—1>

@ €Px(t_q )
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Indeed, if (3.10) holds, then Lemma 2.1(b) and the relation
- k—1+2 log 2t "'
Z Tk l+2<a) _ H 14 <s og f 1
a D log 2t)_,
a€Pi(t]_q5t1-1) t_ <p<ti_1

imply that

log 2t \ F 71 LED (q) < pe/2+(1-1)3
T <khe (%) Z A Hlog—hz,i P+(a1 ceapg) 4 =

a1 €Px(ti—1,t1) i=l ap---a—1
thus completing the proof of (3.9). To prove (3.10) we decompose 1" into the sums

te‘/2+l§

T, = Z THngh”<P+(al"'al)+a;---az> (<m<k+1),

ar€P«(t]_q,t1) i=l
a €1y,

where I; = (0,8)], I, = (t3,_,t3] if m € {l +1,...,k} and Iy, = (tJ,+00). First, we

m—12"m

estimate T;. If a; € I, then

te-/2+l5 t§/2+(l—1)6
P(ay--a) + ———>P¥(ay--aig) + ——— (I<i<k)
al ... al al DY al—l

I(+D) k tg/2+(z_1)5
(311) irl < Z J H logfh” P+((11 ce &l—l) 4+ .

ap---a._
ar€P«(t]_1,t1) ! =1

Next, we fix m € {{+1,...,k+ 1} and bound T,,. For every q; € I,, we have that

/2418 Pt () it <i<m,
Prar )+ i > . $6/2+(1=1)5 . -
ai---q P(al"'al—1)+z— lfmSZSk

al .. .alfl
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Moreover, the function a; — L**1(a) satisfies the hypothesis of Lemma 3.3 with C; =
k — 1+ 2, by Lemma 2.1(b). Hence

k , . /2 (U=1)8 L(k“)(a)

T < [ TTlog™ | P (ar---ai 1) + ——
il_‘n[l ( 1 l 1) ai - aj—q aleP(Zt o) al(log P+(al))hl»l+'”+hl,mfl
al>t

m—1

k te/2+(l 15
Lk,hoe H log ™~ Pt(ay--- 1) + a’ H log"ti t;
1

k+1
X exp {_%} (log tl)*(hl,l+“'+hl,m71) Z M

ay
alep*( 1—1° tl)
f€/2+(=1)8
Lohe Z H log™" < ceapq) + Z—) .
- ay---ap_1
alep*(tl_p 1)

Combining the above estimate with (3.11) shows (3.10). This completes the proof of (3.9)
and hence of the lemma. O

Before we prove the upper bound in Theorem 1.7, we need one last intermediate result.
Lemma 3.8. Let 1 <I<k—1and3 <t; <---<t,. Then
SED (0t < (log2)LSED (1L 1)

and
S(kJrl)(tl, Ce ,tk> > IOg tk

Proof. Note that
@ s () floa(di/2),logdy) x -+ x [log(dy/2), log dy)

d1~--di\a1~~~ai (1§Z§k‘)
di=1 (1<i<l)

= [~log 2,0)1 X E(k_l+1)(@1 Sy, (g, Q)
and, consequently,
L(k+1)(a) > (log 2)1L(k_l+l)(a1 i, Qi - - - ).

Summing over a € PF(t) then proves the first part of the lemma.
For the second part, note that

1
SEFD (q) > (log 2)F =, log .
(a) > (log2) E o Sk lost
acPEk(t)

O

We are now in position to show the upper bound in Theorem 1.7. In fact, we shall prove
a slightly stronger estimate, which will be useful in the proof of Theorem 1.5.
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Theorem 3.9. Fizk > 1. Letz > 1 and C), <y < -+ < yp, with 2%y - -y, < x/yx. There
exists a constant ¢, such that

H(kﬂ)(x y,2y) k L(kﬂ)(a)
) Y 1 _ek’ii )

1
acPl(y)
a; <y (1<i<k)

Proof. Observe that it suffices to show that

k
(3.12) H" Y (z,y,2y) < @ (H log = yi> T,
i=1
where
T:=max{SEV@#): 1<t; < <ty, Vy <t: <2y (1 <i <k}
Indeed, assume for the moment that (3.12) holds. Note that

T <, S (y),
by Lemma 2.1(b) and inequality (1.4). Also, for every i € {1,...,k}, we have that

I (k+1)
Z L7 (a) < e R2GEED (4,

a/l PR ak
acPh(y)

a; >y2-ck

by Lemma 3.3 applied to the arithmetic function a; — L*+Y(a). Hence, if ¢; is large enough,
we find that

(k+1)
T <, S(kﬂ)(y) <92 Z A

al .« .. ak
acPr(y)
ai<y;® (1<i<k)

which, together with (3.12), completes the proof of the theorem.

In order to prove (3.12), we first reduce the counting in H**+Y(z,y,2y) to square-free
integers. Let n < x be an integer counted by H*+Y(z y,2y) and write n = ab with a being
square-full, b square-free and (a,b) = 1. The number of n < z with a > (log yz)** is at most

1 T
P S
a lo k
a>(log yx) (log 91

a square—full

Assume now that
a € I, :={a e NN ((logym_1)*, (logym)**] : a square — full}

for some m € {1,...,k}, where for the convenience of notation we have set yo = 1. Then we
may uniquely write d; = fie;, m < i <k, with f,,--- fr|a and e, - - - ex|b. Therefore

k
ST S e (5 (8) a(%..2)

(3.13) m=LaE L fn-fila
T
10 (_) ,
(log yx)*
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Fix m e {1,...,k}, a € I, and f,,..., fr with f,,--- fgla. Let z,,..., zx be the sequence
Ym/ fny - -, Yx/ fr in increasing order and set 2’ = (z,, ..., 2x). Since Y, < --- <y, and

Yi Yi Yi )
—2>=2>—-2>y (m<i<k),
fi = a — (logym)* Vi )
we have that
(3.14) VI <z <y (m<i<k).

Next, observe that

(3.15)
Hik_m+2) (E’ Z/7 2z/) < Z (Hik—m+2) ( $1 7z/’ QZ/) o Hik—m+2) (i’ Z/, 22/))
a reN 2 a 2
2"<(log yx)*
2x

b
a(log yy)*
For r with 2" < (log yx)* we have that

v/ ) w1 Y

> oy 2 (20)7"

Qk_m+22m ce 2k - Qkyl e yk 27'a

Thus Lemma 3.6 (applied with K —m+1 in place of k, /(2" 'a) in place of z and z,, . .., 2
in place of y1,...,yx), Lemmas 3.7 and 3.8 and relation (3.14) yield

(3.16)
L N ) B L e (f[(log >) S (22)
=
<g 2fa <i1__£(log yﬁ%z) T.

Since T >, log y,, by Lemma 3.8, inequalities (3.15) and (3.16) yield

& k
Fp(k=m+2) (f z 2z’> <. L log=iy; | T Tl log™ i y; | T.
* a’”’ " il;[nog Y +a(logyk)k “a gog !
So

T T Thema2(@ T
} : Z Fmt2) <—,z’, 2z/> < — | Z k—m+2(a) < — )
a€lm frm-frla a [Tie,, (logyi)ri =7 a [Ti—; (log ;)

Inserting the above estimate into (3.13) and using the inequality T' >} log yx completes the
proof of the theorem. 0
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3.4. Proof of Theorem 1.1. In this subsection we prove Theorem 1.1. Consider real
numbers 3 = Ny < Ny < --- < Niyy. Using an inductive argument, similar to the one
given in Remark 3.1, we may assume without loss of generality that Ny > 4(C};)%  Set
N = (Ny,..., Ng) and note that

(3.17)

Ny--- N N N N
Ak+1(N17"'7Nk+1> Z H(k+1) ( . 2k;2 k+172_k7 2k—1> =k H(kJrl) <N1 "'Nk+1777N) 9

by Corollary 1.8. Also, we have that

(3.18)
Ny---N N N, N N,
(k+1) 1 k+1 1 k 1 _k
App1(Ny, .oy Nigyr) < 1<2mZ:<N.H ( omy+-tmy, (2m1+1’ Y 2mk+1) ’ <2m1 LR 2%)) '
A<i<k

For i € {0,1,...,k} let M; be the set of vectors m € (NU {0})* such that 2™ < ,/N; for
1< j <kand+N; <2™ < N; and set

Ny--- N N N, N N,
o (k+1) 1 k+1 1 k 1 k
1= 3 at (G (g ) (o))

meM;

We have that

k
(319) Ak-i—l(Nl)"'aNk-‘rl) < Zﬂ)

i=0
by (3.18). Wefixi € {0,1,...,k} and proceed to the estimation of T;. Consider m € M, and
let N' = (N/,,,...,N;) be the vector whose coordinates are the sequence {N;/2m+!}F |

in increasing order. We have that /N; < 2N; < Njforalli+1<j <k Thus

ey (N1 Ney [ Ny N Ny Ny
omi+tmy 7\ 9ma+1’ 7T 9m+l J 2\ 9ma T omy

(3.20) k
, Ny---N Ni--- N, i —ek
< H ( 2inl+-.-+’lk7;:17N,72N/) =k 271711+...+1Ii:;:1 st H)(N,) | | (log N;) =7,
j=i+1

by Theorem 1.7, with the notational convention that SM(@)) = 1. Furthermore, we have that

SEH(N) < (log2) 'SV (V/ Ny, ..., /N, N)

(3.21) H®D(Ny -+ Nyyy, N/2,N)

=k S(k+1)(N1; o NE) =g

by Lemma 3.8, Corolllary 1.6 and Theorem 1.7. Combining (3.20) and (3.21) we deduce that

k+1
H(k+1) (Nl e 'Nk+1’N/72N/) < H! )(Nl B 'Nk+1aN/2aN) (logNZ-)kﬂ.

Qmittmy Qmt-tmy
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Summing the above inequality over m € M, gives us that

N (log N;)F+1
T, < H¥*Y [Ny - Ny, —, N | =22 —
<L 1 k+1; 9 ) \/Nz )

which together with (3.17) and (3.19) completes the proof of Theorem 1.1.

4. LINEAR CONSTRAINTS ON A POISSON DISTRIBUTION

A k-dimensional Poisson distribution with parameters z1, ..., z; is a probability distribu-
tion on the lattice (N U {0})* that assigns to each lattice point (r1,...,7;) the probability
Hle e %z /r;l. Our goal in this section is to estimate the probability that lattice points
obeying such a distribution lie close to a hyperplane and other related quantities. Through-
out this entire section we fix positive real numbers Aq,..., Ay and we set A = max;<;<x \;.
Given R > A, let

HH(R) = {(rl,...,m € (NU{O) : R—A <> A gR}

i=1

”H’i(R):{(rl,.. ) € (NU{0})* ZAT,SR}
and

Hi(R):{(rl,...,) (NU{0})¥ mezR}

Also, define the number a(R) = a(R; k, z, A) implicitly via the equation

k
Z Nedhiy — R
i=1
and set

H"(R,8) = {’r e H'(R): |r— e ’ZZ’ < —max{k’ LRV eO‘(R)’\Zz} 1<i<k) }

Remark 4.1. The motivation for the definition of a(R) may be briefly summarized as follows:

By Stirling’s formula, we have that

LNy i 1 ze\"
4.1 L~ = .
(41) gr' kg\/Qﬂri(m)

Using Lagrange multipliers, we see that when r ranges over H*(R), the maximum of the
right hand side in (4.1) occurs when r; = e®®Aiz; + Oy £ (1) for all i € {1,... k}.

Lemma 4.2. Let ke N, 0< 0 <1, z1,...,z > 1 and \y,...,\p > 0. There is a constant
¢ = c(k,\) such that the following hold:
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(1) If R > max{A,0(z1 + -+ zx)}, then

7c\oz(R
Prob(H*(R,8)) s

Hexp{ Qe )z},

(2) If R > A, then

Prob(H*(R)) <s»

Proof. By Stirling’s formula, we have that

k ) k
2 Zirl _ T; + 1 F(r)

=1

where

zZ; €

(4.3) F(r)=—(z1+4--+2)+ > (ri+1)log

i=1 i+l

Set 1} = MNPz — 1 fori € {1,...,k}. Without loss of generality, we assume that r} +1 =
max;<;<x(r’ + 1), so that
(44) 7“;; +1 =k, R.

In order to prove part (a) of the lemma, we shall employ quadratic approximation to F(r)
around the point r*. However, for part (b) we need to be more careful: we shall reparametrize
the set H*(R) first and then use the saddle point method. We give the details of the proof
below.

(a) Since R > 6(z1 + - -+ + 2x), then (4.4) yields
Rz >3 R > 02,

and thus a(R) > —C for some constant C' = C'(k, A, 0). In turn, this implies that rf4+1 > x5
2z > 1foralli e {1,...,k}. By Taylor’s theorem, for every » € H*(R,J) there is a vector
¢ € R” that lies on the line segment connecting r and r* and satisfies

Fr) Z B g X G )
= F) -3 e f;) +Oualla(B)) = F(r*) + Oa(1 + |a(R))

Since we also have that

HF (R, 0)| > Hr € H*R) : |r;

A .
< {k,dx/rzw—l—l} (1§z§k—1)}‘
-1
1
Xk,A,&H\/T;k+1Xk,A\/ Tk+ )7
i—1
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by our assumption that rj + 1 = maxj<;<x(r; + 1), and

(4.5) F(r*) = — Z QM) 2,

the desired lower bound on Prob(H*(R,§)) follows.
(b) Let
R={r=(r,...,re-1) € (NU{OO* s Ayry + -+ M1mpe1 < R}
and, for 7 € R, set

1) = 5 (R -y A) and  G(7) = F(7, f(7)),

i=1

where F'is defined by (4.3). Given 7 € R, there is a positive but bounded number of integers
re such that (ry,...,7) € H*(R): Indeed, we have that (ry,...,r;) € H¥(R) if, and only if,

(4.6) r, >0 and f(7) — A/ <rp < f(7).

Also, relation (4.6) and the Mean Value Theorem imply that there is some £ € (rx+1, f(7)+1)
such that

2ie 2ie . 13
(it 1)log -5 — (1) + 1) log 5 = (F() — ) log -
We have that
R/\ 1 1
log £ < log B/t log £~ el Orx(1) < Mela(R)| 4 Opa(1),
2k 2k 2k

by (4.4). So (4.2) yields that

Prob(H*(R)) < eMof Z(H”’ >V UGRS W)

2k

TER
Since we also have that f(7) +1 < R/A\, + 1 =<y rj + 1, by (4.4), we deduce that

(47) Prob(#*(R)) <. Oki/li(m' Z<H o )

rER

In order to estimate the right hand side of (4.7), we shall use quadratic approximation to
G(7) around the point #* = (r],...,75_;). We have that

ox; o8 ri+1 * Ak 08 2k pY 08 i+ 1 S R (l=is< )
by (4.4) and (4.6). Also,
0’°G - (SiJ' >\l)‘j

3551'5’%'(%) T4l X(f(F)+1) (1<i,j<k-1),
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where 9; ; is the standard Kronecker symbol. So for every 7 € R there is a vector § =

(&1, ..., &k—1) that lies on the line segment connecting 7 and 7* and satisfies
. - 1 . — (=) 1 Nilri—r) 2
. G(#) = G(#) + O (E;!n—mo —; SETT) 2 gAk GRS
: k—1 L e*)\2 ~\ ~ %\ 2
= G(I*) + Opa(1) = (35 12) - <f(2}(£)f+(”2)) .

Next, we split the set R into certain subsets. Let
Ri={reR:f(r)+1>Q+n)(r+1)— A/},
Ro={r€eR\Ry:1m <3r;+4 (1 <i<k-1)},

where n = —1 4+ 2%/4 > 0, and for I C {1,...,k — 1} set

Rs(I)={reR\Ry:rm>3r;+4(Gel),r,<3r+4 (¢, 1<i<k-—1)}

If # € R4, then (4.8) implies that

— Opa(1))?
2R/ M\

GF) < G + Opa(1) — I < G(.) + Opa(l) — coR

for some positive constant co = c¢o(k, A), by (4.4). Therefore

(4.9) Z (H Vi + > G(#) <, R3k 1)/2,G(F")—coR i G

TER1 i=1

Next, if 7 € Ry, then for any & that lies on the line segment connecting 7 and 7* we have
that & < 3rf + 4. Consequently,

by (4.8). So we deduce that

] k—1 o kel
Z (H VT + ) (%) <<l~c,)\ (H T1—+) eG('r ) H /’l“;k +2
(4.10) FERs \i=1 i=1 Zi i=1

_ Ora(+a(R)+G()

Lastly, fix some non-empty set I C {1,...,k — 1} and ¢ € I and consider 7 € R3(I). Set

r, = (T’l, ey i1, Ty — 1,7”i+1, e ,Tk).
Then for every vector s that lies in the line segment connecting 7 and 7; we have that

oG o A fF)+1 % o (L+n)(rr+1) 3
<1 1] <1 —1 < —log —.
8@- (S) = 108 r; + >\k 08 2k =8 3ri+3 + )\k 08 Zle - 08 2

)
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So by the Mean Value Theorem we find that e“) < 2¢%(") and, consequently,

S () e en s ([ e
FER3( “

FER3(I) Ni}HURy \i=1

[terating the above inequality yields that
ri + 7 ri + 7
> () e () e
FeR3(I) FER1UR

since R3()) = R,. Combining the above estimate with relations (4.7), (4.9) and (4.10) shows
that

Ok (Ha(R))+G()

Prob(H*(R)) < 75

To complete the proof of the lemma, note that
G(7") = F(r)| = [F(", f(77)) = F(7", rp)| e 1+ |a(R)]
which together with (4.5) implies that

ZQ o)z + Opa(L + [a(R))).

Finally, as a consequence of Lemma 4.2, we have the following estimates.

Lemma 4.3. Let k e N, C >0, z1,..., 2. > 1, A,..., \x > 0 and pq, ..., ur > 0 such that
Z=mz+ -+ peze > A
(a) If Ay < p; for allie{1,...,k}, then

k ¢ k —2; ST
> (1 + ) A — Z) I1° er <kamc Prob(H*(2)).
i=1 i=1 v

rEHﬁ(Z)

(b) If log(pi/Ni) < N\; for alli € {1 .k}, then

N

Z (1 +Z - Z i n) H % Lpapc 2Prob(H"(2)).

reHk (Z) i=1

Proof. (a) Let Sy be the sum in question. If we set

k
= — Z Qe M)z = —Ra(R) + Z (ea(R)’\" —1) 2,
i=1 ;

then Lemma 4.2(b) implies that

= exp{cla(Z +nA)|+ G(Z +nA\)}
4.11 Sy < > (1+n)° .
(4.11) + kG n:()( n) Z +nA
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Differentiating implicitly the defining equation of a(R), we find that there are positive con-
stants ¢; = ¢1(k, A) and ¢3 = co(k, X) such that

K -1
% < a’(R) _ <Z )\?ea(R)/\izi> < C_R2 (R > A)‘

Also, we have that

| i
N S 7
(4.12) (2) Z min +-log (A) >0

by the definition of a(Z) and our assumption that \; < y; for all i. So
G'(R)=—a(R) < —a(Z)<0 (R>2).

Combining the above remarks, we see that the summands in the right hand side of (4.11)
decay exponentially. Hence

exp{ca(Z) + G(2)}
N ,

Sy Lpoap

which together with Lemma 4.2(a) implies that
S+ <k,0M 1 ezm(z)PrOb(Hk(Z)).

To complete the proof, note that

1 i
< _ Ll
(4.13) a(Z) < 1H§12a§>§C N log ()\Z) <kap 1,

by the definition of (7).

(b) We argue as in part (a). Let S_ be the sum we want to estimate. Then

cexp{cla(Z —nA)|+ H(Z —nA)}
Z —nl\ ’

S_ Lk, 0 p Z (1 + n)

0<n<zZ/A—1
where H(R) = R+ G(R), by Lemma 4.2(b). We have that
HR)=1-a(R)>1—-a(Z)>0 (R>2),
by the first inequality in (4.13) and our assumption that log(u;/A;) < A; for all i. Thus

exp{cla(Z)| + H(Z)}
VZ

by Lemma 4.2(a) and relations (4.12) and (4.13). This completes the proof of the lemma. [

pap 2T DIProb(HY (Z)) <ja e?Prob(H*(2)),

S_ Lpoap
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5. THE UPPER BOUND IN THEOREM 1.5

5.1. Outline of the proof. In this subsection we give the key steps of the proof of the
upper bound in Theorem 1.5 with most of the technical details omitted. Observe that, in
view of Corollary 1.8, we may assume that the numbers ¢4, ... ¢, are sufficiently large. Our
starting point is Theorem 3.9. We break the sum

Z L(k—i—l) (CL)
acP(y) i
a;<y® (1<i<k)

into pieces according to the number of prime factors of the variables aq,...,a;. More pre-
cisely, set wg(a) = |{p|n : p > k}| and

L(k+1) (CL)
G(k+1) _ L¥H(a) o
v (Y) Z ay - ag (r e (NU{0})")
acPl(y)
“’k(ai):m,aigyfk
1<i<k
Also, for each fixed i € {1,..., k} define a sequence of prime numbers A; 1, A; 2, . . ., as follows.

Set ppm = (m+1)"™ for m € N, Xio = max{k,y;_1} and define inductively \; ; as the largest
element of the set {p prime : A\;p < p < y;} such that

1
(5.1) > = <log(prita).
Aij—1<p<Ai

Notice that the sequence {\;;};en eventually becomes constant. Let v; be the smallest
integer satisfying \; ,, = Aiy,41. Set

Dij={pprime: \; 1 <p<A,} (1<i<k1<j<u)

and observe that
(5.2) U D, ; = {p prime : max{y;,_1,k} <p <y} (1<i<k).
j=1

Also, we have the following estimate.

Lemma 5.1. There exists some positive number Ly such that
(pr—in1)’ ™+ < Jog Xij. < (proip)’™ (1<i<k1<j<uw).
log yi—1
Consequently, we have that
he log(pr—it1)

Proof. The proof is similar to the proof of Lemma 4.6 in [FoO8b] and Lemma 3.4 in [K10a].
O

LO1) (1<i<h).
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Set v = (vq,...,0k),
Ar:{(ﬁl,,fr)ERrngl §§fr§ 1}
and for i € {1,...,k} and &, = (§1,- .., &) € A, define
¢ ¢ k—i+1
Fi(&;) = <Og}1nr P z+1(1 + Pkl ;—&l-l +-ot pkl—;‘il)) .

We shall bound S¢"™(y) in terms of

i—1
U,Ekﬂ)(v) _ / ) / 1I£ii£k {Fl(gl) Hl(k —m+ 2)vm—rm} dg, - - - dE,,

gieAri
Fi(&;)<Cr(k—i+2)Vi™"
1<i<k

where CY is a sufficiently large constant.

Lemma 5.2. If y; is large enough, then

k
SED (y) < UFD (0) [ (vik — i +2) log(pr—is1))"
=1
Lemma 5.2 will be proven in Subsection 5.2. Next, we give an upper bound on U (k+1) (v),

but first we need to introduce some notation. For r € (NU{0})*, 1 < i < k+ 1 and
1<j<k+1set

(-1
m)log(k —m+2) if1<j<i,
m=j
Bij =40 if j =1,
j—1
(rm — Um) log(k —m + 2) ifi < j.
[ m=i

Observe that
(5.3) Bim~+Bnj=Bi; (1<im,j<k+1).
For je{l,...,k+ 1} set

R;={rc (NU{O})":B;; >0(1<i<k+1)}

Then
k+1

UR, = (U {op*.

Indeed, for every r € (N U {0})* there is some j € {1,...,k + 1} such that By, > By, for
alli e {l,....k+1}. Sor € R;, by (5.3).

The following estimate will be shown in Subsection 5.2.
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Lemma 5.3. Let j € {1,...,k+ 1} and r € R;. Then

1+ By j)(1+ Bigr1y) | [1521(k —m + 2)vm=m
7’1'0 —+ 1 .

rileeorg!

U (v) < min {1, (
By Lemma 5.3 and the results of Section 4, we obtain the following estimate, which will
be proven in Subsection 5.2.

Lemma 5.4. We have that

log y;

Sk+1 (
Z W) < x/loglogka log yi—1

€(NU{0})*

> k—i+2-Q((k—i+2)*)

The upper bound in Theorem 1.5 now follows immediately by Theorem 3.9 and Lemma
5.4.

5.2. Completion of the proof. In this subsection we give the proofs of Lemmas 5.2,
5.3 and 5.4.

Proof of Lemma 5.2. Let a1 = a\py1---pry, < yi* with af € Po(1,k) and k < p1p < --- <
P < y1. Also, for m € {2,... k} let aw = Pt Dy, < Y With Y1 < pipg < -+ <
Dmy,- For each m € {1,...,k} let by, = pm1 -+ Pmg,,- Also, for 1 <m < kand1<i<r,
define n,,; € {1,...,Um} by Pmi € Dpp,,, and put ny, = (N1, Ny, ). For every
i€ {l,...,k} Lemma 2.1(b) implies that

L% (@) < 7a(ah, 1,0 Lbiyr, o b)) L5 by, b, 1,0 D)
i—1 times k—i times
k
= 71(d, k— 2)m | LEHD by, b1, 1),
k+1(a1)< H ( m + ) ) (17 » Dis L, ) )
m=i+1 k—i times

Moreover, Lemmas 2.1 and 5.1 together with our assumption that a; < y;* for 1 <i < k
imply that for every j € {0,1,...,7;} we have

L&Y (b b 1,..01)
——
k—i times
< (k—i+2)" L% Dby, b, pia iy 1)
——
k—i times

< (]C — i+ 2 Ti— (H log 2[)1 )) (log(2b1 . bi—l) + lOg(le . 'pi,j))k_i_'_l

<p (k=i +2)"7 [ ] log ym> (logyiy (14 ppt 4+ pa )

i—1 |
=i (b —i+2)" ( (k—m+2)" ) (Pk i (L4 o+ +p:i§+1))k_z+l.

m=1
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So if we set

k—i+1
Gulng) = ( min g7, (14, + o+ pZi—’Jﬁl))

0<j<r;

and

1<i<k

i—1
G(nl,...,nk): mjn {Gz H k‘ m+2vm rm}’
m=1

then we find that

—2+2

:w

L* (@) < T (d})G(ny, ..., n
=1
Next, note that

. —r n;, Ni,r, k—i+1
Gi(ni) < (k—i+2)7" (14+p + -+ o)
log 2a;

=k (kf-l-f-?) (10gy_

by Lemma 5.1 and our assumption that a; < y;*. Also,

Tiera ()
z : kJrl/( 1) <<k 1.
’ al
a} €Px(1,k)

(5.4)

k—i+1
) < (k? — 1+ 2)1;1-—7“1-7

So if N denotes the set of k-tuples n = (nq,...,ny) satisfying 1 <nyq <o < ngp <0y
for 1 <m < k and inequality (5.4), then

k
1
(5.5) S(k+1 ) < Z Gin H itoy Z 1
neN =1 pin < <pin, Di1 - Dirs
pi»jEDi,nLj
1<j<rs

Fixie{l,...,k}. Let ;s = {1 <j <ri:n; =s} forse{l,...,v;}. By (5.1), the sum
over p;1,...,Piy in (5.5) is at most
9i,s

(56) 1—1 1 Z 1 < (10g<pkz’+1))|ri _ (vi log(pkfwrl))” VOI([(’H,Z)),

s=1 gi’S! pED- p gl’l' o gi7vi.

where
I(n) :={§ €A, ini; — 1< 06 <y (1<j5<m))
By (5.5) and (5.6) we deduce that

(5.7) S (y) <4 (H (vi(k — i+ 2)1og(pp—_i+1) ) D G(n) Vol (I(ny) x -+ x I(ny)).

i=1 neN
Finally, note that the definition of I(n;) and (5.4) imply that
Gi(ni) < (k—i+2)F(&) < (k—i+2)Gi(n:) < Ce(k—i+2)" " (& € I(ny))
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for some sufficiently large constant C}; and, consequently,
> G(n) Vol (I(ny) x -+ x I(ny)) < UK (v).
neN

Inserting the above estimate into (5.7) completes the proof of the lemma. U
Our next goal is to show Lemma 5.3. First, we state an auxiliary result.

Lemma 5.5. Let p > 1, A >0, r,v € N and v > 0. Consider the set T,(r,v,v) of all
vectors (£1,...,&) € A, such that p* + -+ p¥% > W=7 for 1 < j<r. Ify>r—v— A,
then

WﬂUMﬁ%w)<w4lmm{l(7_T+U+A+lx7+n}'

r
Proof. If 1 < r < 2uv, then the result follows by Lemma 5.3 in [K10a] (see also Lemma 4.4
in [Fo08a]) and the trivial bound Vol(7,(r,v,7)) < Vol(A,) = 1/r!. If r > 2v, then we have
that v >r —v— A >r/2 — A and, consequently,
(y=r+v+A+1)(y+1)
r
So the lemma holds in this case too by the trivial estimate Vol (7,(r,v,v)) < 1/r!. O

Proof of Lemma 5.3. Let j € {1,...,k+ 1} and r € R;. For each i € {1,...,k}, let 7; be
the set of & = (§,,...,&;) € A, X --- x A,, such that

>4 1.

1

1<s<k 1<s<k

m=1

(5.8) min {F5(£ ) (k —m +2)"m~ rm} = min {F,(&,)e Bro} = Fy(€,)e Bro

and
FS(Es) < Ck(k' — S+ 2)1}57745 (1 <s< k)
Then for every & € 7T; we have that

X . _Bl,i 3 3 . Vs—Ts _Bl,s
F;(&))e < Join {min{Cy(k — s+ 2) ,1}e },

which, together with (5.3), implies that

Fl(gz) < CkeBl’i min e~ max{Bi,s,B1,s+1} _ C’ke’ maX{Bi,lw-yBi,kJrl}.
1<s<k

Relation (5.3) and our assumption that » € R; imply that B; ; = B; s + B, > B, s for all
se{l,...,k+ 1}, that is to say, max{B, 1, ..., Bix+1} = B;; and, consequently,
Fi(&) < Cre™.

For i € {1,...,k} and n > B,;; > max{DB;;,, Bii+1,0}, define 7;(n) to be the set of
(&,...,&;) € T; such that

Cre™" < Fi(&;) < Cre "
Then for (&1,...,&) € Ti(n) relations (5.3) and (5.8) imply that

Ful€,) > P B(E) > CuePo™.
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Hence, for every j € {1,...,7;,}, we have that

-7 i0&i vig&i 1/(k—i +1) g i
pkzio—&-l (Pk 010111 Tt Py Ozo%) 2> max { (Fio (Sz’o)) - pkiio—i-la pkiio—l—l}

1 o n— Bll0

1/(k—io+1 _n=Biig
= 5 (Fio(gio)) [hmiotl = (pk7i0+1) log(k—ig+2)

provided that Cj is large enough. So Lemma 5.5 gives us that

k+1 i/ le
=l

k
1 n— B;;
Bi,l—n—i-l - 1 3 o0
< ka Z e H ] Vol (7;);@_1'04-1 (’rzm Vi log(k — 4o+ 2)))

, r;!
i=1 n>B; 1<<k J
J#io
k
(n = Bijiy + 1)(n — Bijig41 + 1)
@Y 5 {1, ’
l .
= ! n>Bi; Tig +1
k B;1
1 ) 00 5] ;L0
< ;rl' 1l €Bis mm{ i + 1
_ ke 1, (Biyj + 1)(Big41,5 + 1) ’
7’1" -rk! Ti0+1

which completes the proof of the lemma.
We conclude this section with the proof of Lemma 5.4.

Proof of Lemma 5.4. Lemmas 5.2 and 5.3 imply that

> sE(y) <<k§z<ﬁk m+2)" )(fljk m +2)" )

re(NU{0})* j=17reR; \m=1
k
(5.9) o min J 1. 1+ Biog) (A + Bigy,) 11 (Vm logpk m+1) "
’ i +1 i
k+1
=27
j=1

We fix j € {1,...,k+ 1} and bound 7. We have that » € R; if, and only if,

(5.10) Jilog(k:—m+2)(rm—vm)20 (1<i<j-—1)

m=i
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and
(5.11) ilog(k—m+2)(rm—vm) <0 (j<i<k).

m=j

Let Ry be the set of vectors 1 = (r1,...,7r;_1) € (NU{0})’~! such that (5.10) holds and
let Ro; be the set of vectors ro = (rj,...,7%) € (NU{0})*77*! such that (5.11) holds. Note
that if T € Rl:j’ then

14+ B, j =14+Bj,1+Bi; < (1+max{0, B, 1})(1+By1,;) <g 14+ +---+Liy—1)(1+ By ),
since (5.10) implies that B; ; > 0. Similarly, if r, € Ry, then

1+ Bigt1,j = 1+ Bigy1ht1 + Brrj <i (L+ Tige1 + - +715) (1 + Bit1),
since (5.11) implies that By ; > 0. So, if we set

B(r) :min{l (U b4+ Ly ) (1 + 70 +...+rk)}

Tig + 1
then we have that

For s € {0,1,... ,k} set

Tjo= Y. (ﬁ(k—m+2)”m> (H(k—m+2)’“m>

Ti€R;,; m=j
ie{1,2}

k
rs+1 (U 10g pr—mi1)™
x (1+ By;)(1+ B ; ||
( + LJ)( + k+17j)7,i0_|_1 1 )

where g = 0. Then
(5.12) T <k mln{ b0 (1 +0+--+ Eio—l)(Tj,O + Y—jjﬂ'o_l,_l + Tj,i0+2 + -+ Tj,k;)} .

Observe that T} ; may be written as a product of two sums, with the first one ranging over
r1 € R ; and the second one over ry € Ry ;. Lemma 4.3(a) can be applied to the first of
these sums (with j— 1 in place of k, {vZ log(pr—is1) /=1 in place of {z}* |, {log(k—i+2)}_;
in place of {\;}¥_; and {k —i + 1}] L in place of {y;}¥_;). Similarly, Lemma 4.3(b) can be
applied to the second sum. As a result, we deduce that

k
1+ 0, (Vm logpk m+1)
(5.13) T <k T3 (H(k m+2)" ) > H ,
’ m=1

1'1672' =
ie{1, 2}
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where £y = 0,

Ry, = {m c (NU{0})': —log(k+1) ]Z: (k—m+2)(ry —vm) < 0}

and

Rh, = {rz e (NU{0})F: —log(k +1) < Z log(k —m + 2)(rm — vpm) < O} .

m=j
Clearly, we have that

k
Rij xRy € {7“ € (NU{0})*: —2log(k +1) < ) log(k —m + 2)(

m=1

rm—vm)SO},

which, in combination with relation (5.13) and Lemmas 5.1 and 4.2(b), implies that

T ls+1 H log v; k—i+2—-Q((k—i+2)*)
&O +1vlog log Y o7 \10gYi1

By the above estimate and (5.12) we deduce that

min{l, (Ll A+ Al ) (LA Ly + -

T, <
7k log y;—1

V/1oglog yy,

Finally, inserting this inequality and (2.10) into (5.9) proves the lemma.

+/{
3 } k k—i+2—-Q((k—i+2)*)
i, H( log y; ) ‘

O

6. THE LOWER BOUND IN THEOREM 1.5: OUTLINE OF THE PROOF

As in the proof of the upper bound in Theorem 1.5, our starting point in order to prove the
corresponding lower bound is Theorem 1.7. Also, we may assume that the numbers ¢4, ..., ¢y
are large enough, by Corollary 1.8. However, the arguments deviate significantly from those
in Section 5. As in [Fo08a, Fo08b, K10a], our strategy is to construct a subset of P¥(y) which
contributes a positive proportion to S**(y) and on which we have good control of the size

of L*+1 (@) via Holder’s inequality. First, for P € (1,4+00) and @ = (a4, ...

pP-1

P _
Wia(a) = E § 1
d1--~di|a1~~~ai dll---dfb-‘al---ai
1<i<k [log(d}/d;)|<log 2
1<i<k

We have the following inequality.
Lemma 6.1. Let P € (1,+00) and consider a finite set A C N¥. Then

/P 1-1/P
Z W/ﬂ{(a) Z kH) ) > Z Tir1(@
ceeay log2 )E aj -

a
acA 1 acA -

,ax) € N¥ set
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Proof. The proof is similar to the proof of Lemma 3.3 in [K10a] O

Our next goal is to bound
Z Wlﬁ-l(a’)
aeA.al..'ak
from above for suitably chosen sets A C N¥. In order to construct these sets, recall the

definition of the numbers ); ; and v; and of the sets D; ; from the beginning of Subsection
5.1. Then for g = (g;,...,9;) € (NU{0})" x -+ x (NU{0})* with g, = (gi1,-- -, Gin,) let

A(g) = Ai(gy) x - x Ai(gy),

where for each i € {1,...,k} A;(g;) is defined to be the set of square-free integers composed
of exactly g, ; prime factors from D;; for each j € {1,...,v;}. Set G;p = 0 and G;; =
Gix+ - +6i5,7=1,...,v;. We shall estimate

Z Wli&-l(a’)
aEA(g) al o e ak

but first we need to introduce some additional notation. Fix P € (1,2] and set
j+k—i+2-j5"F

k—1+2
Also, for integers 1 <i < k,v>0andn > 0withv+n <k—i+1and for g, € (NU{0})",
set

tij =

(1<i<k 0<j<k—i+1).

n

. _ P—1 81+ +s .
E(ghya n) - § (pk—i+1 " H zu+j lsﬁ—l Zsj'

0=50<51 < <sn<Sn4+1=v; J=0
Lastly, we define

rg) - Y T i L= )

U:J0<J1< <Jk<k‘7, 1
Jizi (1<i<k)

Lemma 6.2. Let r € N* and g = (g,...,9;) € (NU{0})" x -+ x (NU{0})% such that
Giw, =1 foralli e {1,... k}. Then

Z M < T(g) ﬁ ((k=i+2)logpi—141)"

a ... a . ! .o .. . !
acA(g) 1 k i1 gi1 Giv;

The proof of Lemma 6.2 will be given in Section 7. Next, we use the above result to show
that W5, (a) is bounded on average over a union of suitably chosen sets A(g), which we
construct below. Define

k
R* = {m,...,rk) € (NU{0})": —log(k +1) <Y log(k —i+2)(r; — v;) <0,

i=1

Iri — (k—i+2)%0] < V& ( 1<z<k}
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Fix r € R* and i € {1,...,k} and set

i—1
1

=1l — loo(k — 5+ D (v: — s

= g kT 20 )

and

1 i
f=u v, —r=1 —21 kE—7+2)(vi —r;).
wl uz+v r + 10g(k}—2+2) — Og( .]+ )(U] T])

By Lemma 2.2 and the definition of i, (see also the derivation of (2.6)), we have that

/ T+ 4+ i1 < <,
146, +---+ 4, ifig+1<i<k,
and
1+0,+---+ ¢ if 1 <i<ig—1,
(62) sy IO 1< <o
14+l +- -+ 0 ifig<i<k.
Define
u; = min {u;, ri — i+ /(i —v)? + 4Tz}
2
and

wi:ui—i—vi—ri:min{w

’ ’UZ‘—TZ'—F\/(TZ'—UZ')2+4T¢}
@) 9 '

Note that u; >, 1 and w; >, 1, since r; <;, v; for r € R*. Also, since
ww; = (uf)? + (v — 73w,

(2

we have that wjw] < r; exactly when

!/
u; <

Ti—Ui+\/(Ti—Ui)2+4TZ‘
9 )

in which case u; = v} and w; = w;. On the other hand, if w/w, > r;, then we find similarly
that

Ti — U + i —vi)? + 4 i — T i —vi)? + 4
v — V(i —v)?+4r and wi:v ri 44/ (r U)-FT"
2 2
In any case, we have that
U;W; . ww!
(6.3) B = = min {1, : ’} )
Ti i

Lastly, observe that

(6.4) B = {/3 it =,

1 otherwise,
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by relations (6.1), (6.2) and (2.10). For every i € {2,...,k} let G;(r;) be the set of vectors
€ (NU{0})" such that
(65) Gi,vi =T; and G@j S j + u, (1 S] S Ui).

Also, let Gy (r1) be the set of vectors g, = (g1.1,---,91.,) € (NU{0})" that satisty (6.5) with
i = 1 and have the additional property that g, ; = 0 for 1 < j < N — 1, where N = N(k)
is a sufficiently large constant to be chosen later. Finally, let G(r) = Gi(r1) X - -+ X Gg(7%)-
Then the following estimates hold.

Lemma 6.3. For every r € R* we have that

2 2

geg(r) acAlg

provided that N is large enough.

Lemma 6.4. Assume that « satisfies (1.1) for some fivred € > 0. If P = P(k,¢€) is close
enough to 1, then for r € R* we have that

Z Z Wk+1 keﬁH —@+2 )4)"

geg(r) acA(g)

Lemmas 6.3 and 6.4 will be proven in Section 8. Using these results, we complete the
proof of Theorem 1.5.

Proof of Theorem 1.5 (lower bound). Assume that « satisfies (1.1) for some fixed € > 0. Fix
r € R*. For every a € U g, A(g) we have that

. log y; ho
Tk+1(a):H(k—i—|—2“VkH —z+2va< ‘ > ,

i=1 logyi 1
by Lemma 5.1 and the definition of R*. Therefore

L¥+)(q

logy; \ ! k e
(6.6) > >>k56H( ) 115

9€9(r) acA(g) log yi-1 i1
by Lemmas 6.1, 6.3 and 6.4. Also, relation (5.2) implies that

U U Alg) cPiy).

rcR* geg(r)

Hence, combining (6.6) with Theorem 1.7, we deduce that

(k+1) 9 k
(;572% Y) St 66_(Zl+”'+£k Z H
ER* 1=1

7.
’L

Z‘

Finally, we have that

log y;

1
- " Vloglog yi 11 (10g Yi1

—(l14+Lk)

> —Q((k—i+2)%)
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by Lemma 4.2(a), which completes the proof. O

7. THE METHOD OF LOW MOMENTS

This section is devoted to establishing Lemma 6.2. This will be done in three steps.
Throughout this entire section we fix a vector » € N¥ and a vector g = (gy,...,9;) €

(NU{0})™ x --- x (NU{0})"* with G;,, = r; for all i € {1,...,k}. We set R; = 23:1 T
and define

Also, we set

0L R ifi=1
" M{Risi+1,.. R if2<i<k.

For I € {0,1,..., Ry}, we define E4(I) € Ule{O,l,...,vi} as follows: if I = 0, we set
E4(I) = 0; else, we let ¢ be the unique number in {1,...,k} such that R;,_y < I < R; and
we define E4(1) by

Gigyn-1<1—Ri1 <Gip, )

For Y = (Y1,...,Y) € Pr, m = {my,...,my} a permutation of {1,... k} and Iy,... I €
{0,1,..., Ry} we put

M. (Y;I;m)

=7 =7

{(zl,...,zk) €Pr:|JZm N R =V N Re)) (1< < k)}‘

In addition, we let
j:{(\ﬂ,...,jk):\ﬂc{l,...,k}, Z|jm|2i(1§i§k:), jiﬂjj:@ifi%j}
m=1

and, for (J1,...,Jx) € J, we set J; = ||+ -+ |T;| =i for all i € {0,...,k}. Lastly, for
a family of sets {X;};c; we define

L{({Xizz'el})::{xGUXi:HjEI:xEXjH:l}.
iel

In particular, U(Y, Z) = Y AZ, the symmetric difference of Y and Z.

Remark 7.1. Assume that Yy,...,Y, and Z,,...,Z, satisty Y, NY,; = Z; N Z; = () for i # j.

Then
atvosvzs e = () s (012)

j=1
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7.1. Interpolating between L' and L? estimates. The main difficulty in bounding
Wk (a) when P € (1,2) is that it is hard to use combinatorial arguments directly due
to the presence of the fractional exponent P — 1 in the definition of W, ,(a). To overcome
this difficulty, we perform a special type of interpolation between L' and L? estimates. This
is accomplished in Lemma 7.2 below, which is a generalization of Lemma 3.5 in [K10a].

Lemma 7.2. Let P € (1,2], r € (NU{0})* and g = (g;,-..,9,) € (NU{0})"* x --- x (NU
{0})" such that G,,, =1 fori=1,... k. Then

Z %<<k Z Z Z Z (M, (Y; I;m)) "

acA(g) (T, T)ET ™M I;eR; YeEPr
1<i<k,j€T;
k ri( AP=1 \—(k—J;)v;
(log(pr—i+1)) Z(pkfiJrl) (k= JuJos P—1 \—Eg(I;
X H g7,1|gz11' H(pk—i+1> o J).

i=1 7 Ui JET;
Proof. Consider
(7~1) a = (ah Sy ak) = (pl ***PRiyPRi+1" " "PRyy -+ s PR_1+1 " 'ka) € A(g)
such that
(7.2) PRi_14+Gi 141 PRia+Gi, € Diy (1 <1<k, 1 <7 <wy)
and the primes in each interval D; ; fori =1,...,kand j = 1,...,v; are unordered. Since the

number Hle a; is square-free and w(a;) = r; for all ¢ € {1,...,k}, the k-tuples (di, ..., dy)
with dy ---d;|lay---a; for 1 < ¢ < k are in one to one correspondence with the k-tuples
(Y1,...,Yy) € P, via the relation

Using this observation twice, we find that

P-1

Wlﬁ-l (a) = Z Z 1 ;

(Y1,..,Yx)EPr \ (Z1,..-,2,)EPr
(7.3)

where for two k-tuples (Y1,...,Y) € Pr and (Z4,...,Zy) € P, condition (7.3) is defined by

(7.3) —10g2<210gpi—210gp,~<10g2 (1<j<k).

i€Y; i€z,

Moreover, each k-tuple (ai,...,a;y) € A(g) has exactly [[;;gi;! representations of the
form given in (7.1), corresponding to all the possible permutations of the prime numbers
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P1s- .., Pr, under condition (7.2). Hence
P-1
Wkljd(a) H 1 1
RN - 1
> o | > - X >
acA(g) M1k 12i<k J00° ) pl o, PU PR (v T ep (20 z)ep,
1<j<w; (7.2) (7.3)
j
1
s = | %o
1<i<k 757 | (v1,..,Y;,)€Py P1o-: ory, P (Z1,.-,21)EPr.
1<) <v; (7.2) (7.3)
So Holder’s inequality yields that
P-1

Wki(a 1 1
O I | B SR B S D Dl

a :
acAlg) ! 11<g;§k 9ij (Y1,...,Y3)EPy m,(---,p)Rk P PRy (Z1,0sZ1) EPr
<j<v; 7.2 (7.3)
2—-P

(7.2)
Note that
kv 9i,j &
Z HH Z 1 Hlogpk i+1)
prpry, P i1 51 \penr, P o
(7.2)
by (5.1) and, consequently,
> Win(@) _ (ﬁ (log(pr—i+1))*~" )>
acdlg MW\ Gial - Giw,!
(7.4) o

<D D

(Y1, YR)EPr \ (Z1,.., 25 )EPr P> ’ka
(7.2),(7.3)

Next, we estimate the sum over the primes above. In order to do so, we need to understand
condition (7.3). Note that (7.3) is equivalent to

(7.5) —log2 < Z log p; — Z logp; <log2 (1<j<k).
i€v,\2, i€Z,\;

Fix two k-tuples (Y3,...,Yy) € P. and (Z1,...,Zk) € P, and define the numbers Iy, ..., Iy
and my,...,my with I; € (Y,,AZ,,) U{0} for all i € {1,...,k} inductively, as follows (see
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the proof of [K10a, Lemma 3.5] for the motivation behind these definitions). Let
I = max {UN1LAZy, ..., Vi NZ,) U{0}}.

If I, =0, set m; = k. Else, define m; to be the unique element of {1,...,k} such that
L € Y,,,AZ,,. Assume we have defined I4,...,I; for some i € {1,...,k — 1} with I, €
(Yo, AZ,,, ) U{0} for r=1,... 7. Then set

Iy =max{U ({YV;AZ; -5 € {1,....k}\{mq,....,m;}}) U{0}}.

If ;11 = 0, set m;y1 = max{{1l,...,k}\ {m1,...,m;}}. Otherwise, define m;; to be the
unique element of {1,...,k} \ {mq,...,m;} such that I,;; € Y}, +1AZm ...~ This completes
the inductive step.

Note that we must have {mq,...,my} = {1,...,k}. Also, if we set

then observe that (71,..., ) € J, since

=Y |Tnl=H{1<j<k:L<RY>{1<j<k:m<i}|=i
m=1

forallie {1,...,k}. Set Z={I;:1<j <k,I; >0} and fix for the moment the primes p;
fori e {1,..., Rg}\Z. Then (7.5) becomes a system of linear inequalities with respect to the
set of variables {log p; : I € Z} that corresponds to a triangular matrix, up to a permutation
of its rows. So a straightforward manipulation of the inequalities which constitute (7.5)
implies that p; € [X;,4%X;] for I € Z, where the numbers X; depend only on the primes p;
for i € {1,..., Ry} \ Z and the k-tuples (Y1,...,Y%) and (Zy,..., Z), which we have fixed.
Consequently,

Z H o S H H log( max{)\

pr, 1z 1ex 1 i=1 jeJ, iEq (1) 1’XI =1 e, 1Ogyz 1
(7.2),(7.5) 7,50
by Lemma 5.1. So we find that
k
1 r; (pr—iyr) Pl
Dt | (LSRN | B
pripr, P17 PRy i=1 JET: 08 Yi—1
(7.2),(7.5)

which, together with (7.4), implies that

Z Wk+1 (ﬁ (log( Pk it+1)) >

a
acA(g) 1° i=1 gz 1 i ful

(7.6) P-1

Z Z H (Pr—it1) ~Eg(Ly)

lo
(Y1,..,YR)EPr \(Z1,..,2)EPr 1=1 jET; & ¥i-1
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Note that
k k k
(7.7) [T0ogyi) o =< TT e 7% =i [[(pr—ivn)® 70",
=1 i=1 i=1
by Lemma 5.1. Moreover, the definition of the numbers I,..., Iy and my,..., m; implies
that

(L, Rl NU(Y 3, A Z, 2 j <17 < k}) = 0 (1<j<h),
which is equivalent to
k k

U @m0 (1, R) = | Vo 0 (1 Re]) - (1< 5 <),
r=j r=j

by Remark 7.1. Hence for fixed (Y3,...,Ys) € Pr, 0 < I1,..., I < Ryand m = {my,...,my},
a permutation of {1, ..., k}, the number of admissible k-tuples (71, ..., Zy) € P, is at most

M, (Y; I;m). Combining this observation with (7.6) and (7.7) we deduce that

wWE (a " (o i Ti
> M (T
acA(g) =1 IbY L

’ Z ( Z ZMT(Y;I;m)H(pk*iﬂ)i(kfﬁ)w H(ﬂki+1)E9(1j)> )
€Pr

Y1,y Yk) Iq,..., I, m =1 Jj€T;
Finally, the inequality (a + b)F~ < a1 + bt for a > 0 and b > 0, which holds precisely
when 1 < P < 2, completes the proof of the lemma. 0

7.2. Combinatorial arguments. In this subsection we use combinatorial arguments to
calculate M,.(Y;I;m) and, as a result, simplify the estimate given by Lemma 7.2. Note
that the following lemma is similar to Lemma 3.6 in [K10a].

Lemma 7.3. Let P € (1,4), » € (NU{0}*, m = {my,...,my} a permutation of
{1,...,k}, (Jh,-.,Tx) € T and 0 < Iy,..., Iy < Ry such that Iy € R; for s € J; and
1 <i < k. Assume that o € Sy, is a permutation such that Iy < --- < Iygy. Then

k i .
Z (M (Y5 I m’))P_l < I I (k—i+2)" Brminn) - II (M)Im)
r ) )Ri_l
=1

YGPT (ti,Ji_l—i—‘rl Ji71<j<J7; tl,]—z+1

Proof. Set 0(0) =0, o(k+1) = k+1, Iy = 0 and [;1 = Ry. First, we calculate M,.(Y;I;m)
for fixed Y € P,.. Let

Nij=RiN(Loj), Loj+1y] (1 <i<k, Jig <j< )

and
Yeij =YsONij vysi;=1Ysijl (0<s<k, 1<i<k, J_1<j<.),
where

k
Yo={L....R}\ [V
=1
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The k-tuple (Z1,...,Zy) € P, is counted by M,.(Y; I;m) when
k k
(7.8) U @m0 Ri) = Vo 0 (L, Re)) (1< < k).

§=] §=]

So if we set
Zsij=2sNNij (0<s<k, 1<i<k, Ji_1<j<.),
where

k
Zo=A{1,....Ri}\|J Z,
=1

then (7.8) can be written as

k k
(7.9) U Zoii= | Yoy (1<i<k Ji<j<J, 0<t<j)
s=ao(t) s=a(t)
For j > 0 let
x;:{0,1,....4,7+1} = {0(0),0(1),...,0(j),0(k+1)}
be the bijection uniquely determined by the property that x,;(0) < --- < x;(j +1). So the
sequence x;(0),...,x;(j+1) is the sequence ¢(0),...,0(j), o(k+1) ordered increasingly. In
particular, x;(0) = 0(0) = 0 and x;(j +1) = o(k+1) = k+1. Note that Z,,_;; = Yi,.;; =0
if 1 < m, < 1, by the definition of P,.. So if we set my = 0 and
A ={xjt) <s<xjt+1):mg>iors=0} (1<i<k, J1<j<J, 0<t<j),
then (7.9) is equivalent to
(7.10) U Znii= U Yoy (0<t<9),
SGAt’iyj SEAtyi’j
forall 1 <4 <k and J;_y < j < J;. For such a pair (4, ), let M; ; be the set of mutually
disjoint (k — 1+ 2)—tuples (ZO,i,ja Zi,i,j? Z/L'+17Z'7j7 ey Zk,i,j) that Satisfy (710) Then
(7.11) M.(Y;I;m) = H M; ;.

1<i<k
Ji—1<5<J;

Moreover, it is immediate from the definition of M; ; that

J
Mi; = H |At,i,j|zsef‘tvi,j Yms,i.g
t=0
(with the standard notational convention that 0° = 1). Let
(7.12) Wiij = U Yin,i; and wg;; = |Wt,i,j| (1<i<hk, J1<j<J,0<t<j)
S€AL G ;

With this notation, we have that

j
My = [T 1Aes 1.

t=0
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Inserting the above relation into (7.11), we deduce that

wvitom) =TT T T

Zl]JltO

Therefore
Ji

S = Z (M,(Y;I;m))" H H Z H‘At,i,j(

YeP, 1=1 j=Ji—1 Y0,i,5,Yi,i,jr> Yk,i,j t=0

P—l)wm,j

Next, for fixed i € {1,...,k}, j € {Ji_1,..., Ji} and Wy, ;, ..., W, ;, a partition of A ;, the
number of Yy, ;,Y;, i, ..., Yy, ; that satisfy (7.12) is equal to

J
| J RIS
t=0

Consequently,
kg j kg " |
(713) S=1[ I > TTHAw P =TT TT (Aial” + -+ +1450,7)
i=1 j=Ji—1 Wo,i,j,..,Wj,i,; t=0 =1 j=J;_1

by the multinomial theorem. Fix 1 < < k and J;_; <7 < Jr and set
Ki;={0<t<j:|A;l>1}
We claim that
(7.14) J—i+2<|K;j| <k—i+2.
Indeed, we have that
{0Ju{l1<s<k:mg>i}= U Aiij C U {s€Z:x;(t) <s<x;(t+1)}.
teK; ; teK;

The above relation implies that

k—it+2={0}Uu{l<s<k:m,>i} = |Ayl> Kyl

teK; ;
and
E—i1+2< U{SEZ:Xj(t)§s<Xj(t+1)}
teK, ;
—k+1—| |J {se€zZ:x®) <s<x(t+ DY <k—j+|Kyl,

te{O,l,...,j}\Ki,j

which together prove (7.14). Lastly, note that for n < X we have that

max{fo:ij:X, szl(1§j§n)}=n—1+(X—n+1)P,
i= =1
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since the maximum of a convex function in a simplex occurs at its vertices. Therefore
A"+ 4+ A0 <|Kijl =14+ (k—i+3—|Kij)F <j—i+1+(k—jF+1"
- (k — Z + 2)ti,j7i+17

by (7.14). Finally, inserting the above inequality into (7.13) yields

k Ji
s <TI0+ ] (o
=1 j=Ji—1
k
= [k —i+2)" (tig,_ i) e
i=1
Ji—1
Iogiony =T Ri—I ;.
x H (timi1) 70T (i) D,
j=Ji—1+1
which completes the proof of the lemma. O

7.3. Proof of Lemma 6.2. In this last subsection we combine the results of Subsections 7.1
and 7.2 to show Lemma 6.2.

Proof of Lemma 6.2. By Lemmas 7.2 and 7.3 we have that

(7.15)
Wili(a k—1+2)lo i i

R D VI R s T
acA(g) ! k 0=Jo<J1<-<Jp<k 0<I1<--<I,<Ry i=1 ! gz,vi-

Ji>i (1<i<k) I;ER;, Ji—1<j<J;

1<i<k
(tz J'*iJrl)Ri P—1 \—FEg4(I;) tl]fz L
X — ’.Z. : (pk ; 1) g\tj T
(o1 ) 00 (b gy i) T JZ.EQ " bij—it1

Write e; = E4(I;) for i € {1,...,k} and note that
O§6J1;1+1§“'§6J¢§/Ui (1§Z§k)

Moreover, for 1 <+ < k and J;_; < j < J; we have that
I I; Gie.+Ri—1
t. . J t i J t . %:€5 g
3 (4) < T (4) <ip (4) |
. _ \tij—it1 , N  \lij—it1 tij—it1
jER'L» Eg(Ij)—ej G'L,ejrfl‘i’szlSI]SGz,ej+R7,71
since t; j_; > t; j_i+1. Inserting the above inequality into (7.15) completes the proof. O

8. THE LOWER BOUND IN THEOREM 1.5: COMPLETION OF THE PROOF

In this section we complete the proof of Theorem 1.5 by showing Lemmas 6.3 and 6.4.
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8.1. Preliminaries. We state here some inequalities we will need later. For 0 < h < x set
(x+1)log(x+1)— (x —h+1)log(zx —h+1)
h
Lemma 8.1. The function F' has the following properties:

(a) For 0 < h <z we have

OF(x,h) OF(x,h)
o <0 Ty =0 ad ——0

(b) For 0 < h <x—1 we have
F(z,h) > F(x — h,1).

F(z,h) =

Proof. (a) We have that

OF(x,h) 1 h
B <ux).
T e {h—{—(:z:—kl)log(l 1)]<O (0<h<ux)

Also,

| T
8 z—h+1

OF(x,h) 1 r+1
ox h

)>o (0<h<u).

Finally,
O(F(x,r)) x—log(z+1)
Ox B x?

>0 (x>0).

(b) Fix > 1 and note that it suffices to show that
gh)=(z+1)log(z+1)— (h+1)(x —h+1)log(x — h+ 1)+ h(x — h)log(x — h) >0
for 0 < h <z — 1. Since ¢g(0) = 0, it is enough to show that ¢’(h) > 0. We have that

x—h—i—l)

g'(h):1+(2h—x)log< p—

If h > x/2, then ¢’(h) > 1. If 0 < h < x/2, then

x —2h h
'(h) >1— = > 0.
g(h) x—h x—h
In any case, we have that ¢’(h) > 0, which completes the proof of the lemma. 0]

Finally, we have the following lemma.

Lemma 8.2. The sequence

{1 B ]og(nl—|— - log ((n +2) log(TTLl—l- 2) —log 4) }NEN

18 strictly increasing.
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Proof. For x > 0 set

(x 4 2)log(x + 2) — log 4 B log(g(z))
. and G(x)—l—m.

First, we check numerically that G(1) < G(2) < --- < G(14). Next, we handle the larger
terms of the sequence. We have

g(z) =

h(z)
z(z + 2)[(z + 2) log(z + 2) — log 4] log®(z + 2)’

G'(z) =

where
h(z) = x[(x + 2)log(x + 2) — log 4] log(g(z)) — (z + 2) log(z + 2)(x — 2log(z + 2) + log4).
Observe that for x > 14 we have log(g(z)) > loglog(xz + 2) > 1. Consequently,
h(z) > —zlogd + 2(x + 2) log*(x + 2) — (log4)(z + 2) log(x + 2)
> (—x + 3(x + 2)log(x 4+ 2))logd > 0
for all z > 14, that is G'(z) > 0 for > 14 and the desired result follows. O

8.2. Estimates from order statistics. Throughout this subsection we fix a vector r € R*.
Our goal is to bound on average the quantities T;(g;; v, n), which were defined in Section 6,
on average. To achieve this, we appeal to certain estimates from probability theory proven
by Ford in [Fo08c|. Recall that

AT:{gz(flvvgr)eRT0§§1§Sgrgl}
Forr e N, u >0 and v > 1 set

Q) =rvol ({eea 6220 n<i<n})

:Prob(fiz?(lgigr)

geAr).

Then we have the following estimate, which essentially follows from Theorem 1 in [FoO8c].
This estimate is stated in [Fo07] too without proof. For the sake of completeness, we supply
the details of its proof.

Lemma 8.3. Letr e Ny u>1andv>1. [fw=u+v—1r>1, then
Q. (u,v) xmin{l,%}.
r

Proof. The desired upper bound follows immediately by Theorem 1 in [Fo08c| and the trivial
bound Q,(u,v) < 1. For the lower bound we distinguish several cases. First, assume that
v > 2r. Then

[

I+v—r AN _ uw
Qr(u,v) > Q.(1,v) = — [ 1+ - xlzmm{l,—},
v T
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by [Fo08c, Lemma 2.1(i)]. Next, consider the case v < 2r. Set

, _ r—u+/(r—ov)?+4r 1
U = min | u, 5 >§

and

w':u'+v—r:min{w,

By a similar argument with the one leading to (6.3), we have that

) Uw u'w’
mingl, — = .
r r

Fix some constant C. If v/ > C and w’ > C, then the lower bound follows by Theorem 1
in [Fo08c] applied to Q. (v/,v) < @Q,(u,v), provided that C' is large enough. If 1/2 < v/ < w’
and v’ < C, then r < v < 2r and thus

l+v—r 1\"! u4v—r u'w’
Qu(u,v) > Qu(1v) = LFUT (1 n —) = e ¥
v v r r

by [Fo08¢c, Lemma 2.1(i)]. Finally, if 1/2 <« <’ and w’ < C, then v < r and thus

l+r—v w+r—wv u'w’
QT(U,U> > Qr(l—l—r_vvv) > =c =c )
r r r
by [Fo08b, Lemma 11.1]. In any case, we obtain the desired result. O

For r,v € N and u > 0 set
g'l'(u7v):{(gl7agv> S (NU{O})vgl++gU:r7 g1+t g §Z+U(1 SZSU)}
Then an equivalent formulation of Lemma 8.3 is the following result.

Lemma 8.4. Letr e Ny veNandu>0. Ifw=u+v—1r >0, then

3 ;vv_rmm{l’(uﬂ)iwﬂ)}

Lgol 7l
9€G () LTI

Proof. For every g € G,(u,v), let R(g) be the set of & € A, such that, for any i € {1,...,v},
exactly g; of the numbers &; lie in [(¢ — 1)/v,i/v). Then
(1) Vol(R(g)) = -
. 0 e —
D=l
Also, we have that g, +---+¢; < i+wif, and only if, § 4|41 > % Hence summing (8.1) over
g € G,.(u,v) and applying Lemma 8.3 completes the proof. O

Lemma 8.5. Let r € R*. Consider integers1 <1 < k,v >0 andn > 1 withv+n < k—i+1
and n € (0,1]. There exists a constant ¢, > 0 such that the following hold:
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(a) If

'F(/{;—i—l—l—u,n)_l >

(k—i+42)t-«
P <1+n/c andv; > (c./n)?, then
k k
T;(gzﬁyﬂ n) U” n—j)v; T
Z — <k,Py ﬁz (pk H—l) (n=d) Z<ti71f+j> E

R e T | 0
giegri (us,v;) gi1 Giv; ] { }

(b) If P<1+1/¢, and v; > ¢, then
ri LOk((P—1)%v;)

Ti(g;;v,n v;'e —J)vi /
Z % Lp,p i~ | max (py )" D (b 45)"
9i1t Qi Ti: setdn}
giegri(uiﬂ]i)

Proof. For now, we treat parts (a) and (b) together. Their proofs will deviate only towards
the end. Set

R e T |
9, €Gr; (ui,v;) 9i1 i,

n
- Z Z i1 gzU'H “/-H Gt GHJ'
0=50 <1< <8n<n+1=V; g;E€Cr, (ui,0:) " j=0
Fix0=50<5<--- <5, <Spp1 =v; and let myq, ..., m, 1 be non-negative integers with
Mj=mi+---4+m;<s;+u; (1<j<n), Mpp=mi+- - +myy =1
Also, put My = 0. Then we have that

> -1 X :

T | . ... qg; |
1! n » 841} Sit1
9;€Gr,; (uiyv;) 9, Gisvi J=0 (gis 415190551 1) Fissit Fissitn
iy =M; egij (ui+s;—Mj,s541—5;)
1<j<n
n .
. fwi(u; +s1—my + 1) wi(u; + s, — (Sj41 — 55)"t
< min : H :
my +1 M1 + 1 mji!

7=0
by Lemma 8.4 applied for j = 0 and j = n. Also, note that

wi(u; +s1 —my + 1) < wi(w; +1r; —my + 1) < wi(w; + 1)(r; —my + 1)
mi+1 - mi+1 - mi+1
ri(ri —my +1)
my + 1

and, similarly,

wi(u; + 8, — M, +1 w;(u; +1)(s, +1 ri(s, + 1
( )S ( )( )<<B¢ ( )
Mpg1 + 1 Mpy1+1 Mpg1 + 1
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So
P—1 \—(si+—+sn
S <L By Z (Pr—it1) (rrton)

0=50<51<-<8n<Sn+1=V;

1 1 n 1 a z v A
% Z min T my + , Sp + H +j S]+1 S, ))
mi+1 " muy+1 mjq1!

(8.2)

mi+-+Mmpp1=r; =

The inner sum in the right hand side of (8.2) satisfies the following two upper bounds: it is
at most

Ti—MmM1

j;: ri —my + 1 (L;,51)™ <§:?=1t“”+7(8j+1'_'5j>>

=0 mq + 1 ml! (7“1' — ml)'

1UZ—81+1 "
D (Zt”ﬂsﬁl )>

and, also, it is at most

n—1 TiTMntl
" tz v+n{Sn — Sn Mintt (Z =0 ti’ll+j(8j+1 B Sj))
(50 + 1) Z (iptn(Snt1 ) J

(Mpy1 +1)! (ri — mpyq)!

Mp+1=0

1 so+1 "
— tivyi(s .
L v — 5+ v —s 41 (Z +5(8541 — ))

Consequently,

ri+1
(s o fvi—s1+1 Sp+ 1
S <, Bi— E (pb=t )~ lstten) mln{ }
Ay k—i+1 Yy,
Til s St <o s1+1 v; — Sy, + 1

n 5. i
(8.3) X (Z(ti,y+j1 — tz’,u+j)ﬁ + ti,u+n>

J=1

= 3~ Z g(s1, 8n) exp{G(s1,...,5n)},

0<s1<<sn<v;

where for = (z1,...,2,) € [0,400)" we have set
B e . n T T
G(x) = log <(Pkpil+1) (prtn) <Z<ti,u+j—1 - tz‘,u—&-j)ﬁ + ti,u-l—n) )
=1 ’

and for (x,y) € [0,+00)? we have set

i— x4 1 1
g(rv,y)Zmin{v SR }

r+1 Tv—y+1
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We claim that

U?‘H—l
(8.4) A9<%Pﬁi;! D gls,s)exp{G(s,....s)}.
0<s<v;

To show (8.4) we will make extensive use of the following simple fact: if b: [m,m + 1] - R
is a differentiable function satisfying ¢'(x) > § > 0 for all x € (m, m + 1), where ¢ is a fixed
positive number, then

6b(erl)

Vv
)
<%

(8.5)

@b(m)

by the Mean Value Theorem. Fix a small positive constant 79 = 19(k) to be chosen later
and define J € {0,1,...,n — 1} as follows. If

Flk—i+1—-wv,1)
(k—it2)io

<1+7]0,

then set J = 0; else, put
Flk—i+1—-v,j)
(k —i+42)t-e

J:max{lgjgn—lz 21—1—770}.

Observe that
(k—i+2—j)loglk—i+2—7)

ti;j=1 P-1D+0((P-1?) (0<j<k—i+1).
Therefore if 1 < j < J, then Lemma 8.1(a) yields that
(8.6)
0
87<G(xJ7 o3 Ljy Ljg15 L2y« - - ,xn))
J —
j times

7i(tin — tives)
(tiv — tiptj)ej + Z:lzjﬂ(ti,wrm—l — tivtm)Tm + tiyint;

. F(k—z—l—l—y,]) —-1/2
_j(P—l)log(pk_,-H)(—l—{— ity +Ok<P—1+vi >

= —j(P = 1)log(pr—it1) +

S no(P —1)jlog(pr—it1)

- 2
uniformly in 0 < z; <--- <, < v, provided that ¢ is large enough. So if J > 1 and we
fix 0 < sy <.+ <s,, then we have that

>0

Z g(s1,5,) exp{G(s1,...,50)} <p.p 9(S2, Sn) exp{G(S2, 52,53, ..,5n)},

0<s1<s2

by (8.6) with j = 1, and (8.5). Similarly, if J > 2 and we fix 0 < s3 < --- <'s,, < v;, then

Z 9(827 Sn) exp{G(827 59,83, ... ,Sn)} <<k:,P 9(837 Sn) eXp{G<S3) 53,53, 54, .. 7877,)}'

0<s2<s3
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Continuing in the above fashion, we deduce that

> glsi.sa)exp{G(s,...,s0)}
0<s1<-<sp<wv;
(8.7)
<<k,P Z g(SJ—I—lySn) eXp{G(SJ+17'"aSJ+17SJ+27"'aSn)}7
N—————

OSSJ+1S"'SSTLS’U7Z J+1 times

which also holds trivially if J = 0. If, now, J = n—1, then (8.4) follows immediately by (8.7).
So assume that J < n — 1. Then Lemma 8.1(b) implies that

Fk—i—v—-J1)<Flk—-i+1l—v,J+1)<1+mn
and hence
Fk—i+2—v—j ) <Fk—i—-v—J1)<1—-n (J+2<j<n),
provided that 2ng < F(k—i+1—-v,J+1)— F(k—i—v — J,1). Consequently,

oG Flk—i+2—v—3j1 ~
%(m) = (P - 1) log(pk—i-i—l) (_1 + ( (k i+ 2)1aj ) + Ok (P -1 + v 1/2>)
(8.8) %
< _770<P_ 1);0g(,0k—i+1) <0 (J+2<j<n)

uniformly in 0 < 23 < --- < z,, < v;, provided that ¢ is large enough. Thus, if we fix
sje1>0and v; > 8, > 8,1 > -+ > Syi3 > Syy1, then we find that

§ eXp{G(SJ+1, sy ST, ST42, - - 7871)} <<k,P eXp{G(SJ+17 ey STH1, ST43y - )Sn)}7
— —
SJ+15874255743 J+1 times J+2 times

by (8.8) with j = J + 2, and (8.5). Similarly, if we fix s;.; > 0and v; > s, > 5,1 > -+ >
Sji4 > Sji1, then we have

E exp{G (5741, 5741,5743: - -+ 5n) } Ki,p eXP{G (8741, 5741, 57445 -+ 5n) }-
N—— N——
SJ+1S8J4358744 J+2 times J+3 times

Continuing in this fashion, we deduce that

Z g(SJJrl; Sn) eXp{G(SJJrl; ey ST, ST425 - - 7Sn)}
~——

0Ssy415Ssn<v; J+1 times

Lg, P Z 9(8741,8741) exp{G (5741, ..., 5741)}

0<sy4+1<v;

which, together with (8.7) and (8.3), proves (8.4) in this case too. Finally, we use (8.4) to
prove parts (a) and (b).

(a) First, assume that

Flk—i+1—v,n)
>1 .
h—it2ia - 1
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Note that

0 (G(x,...,x)) =n(P —1)log(pr_it1) (—1 +

Oz
S n(P — 1)nlog(pr—it1)
- 2

uniformly in 0 < z < v;, provided that ¢}, is large enough. Hence

Flk—i+1—-v,n)
(k—i+2)l-«

+Ou(P—1+ v;1/2))

>0

_ exp{G(Ui, e ,Ul')}

Z g(s,s)exp{G(s,...,9)} Kpnp 9(vi,v;) exp{G(v;,...,v;)} |

0<s<v;

9

by (8.5), which together with (8.4) yields the desired result. Similarly, if
Flk—i+1—vn)

<1-
k—it2p—e = "
then we find that
P — V)nlog(pp_s
%G(zv,-..,x)) <M )"QOg(p’“ +)
x

uniformly in 0 < x < v;, and therefore

exp{G(O0, ... ,0)}.

(%

Z g(s,s)exp{G(s,...,s)} <pnp

0<s<v;
Inserting this estimate into (8.4) gives us the desired result in this case as well.

(b) By (8.4), we have that

ri+2 eOk((P—l)Zvi)UTi

V.-
G(5,...,)
8.9 S« — ; max e~
(8.9) ep fi il 0<s<v; ’ 7! 0<s<u;

Since t; ; = 1+ Op(P — 1) for all j, we find that, for any 0 < s < v;, we have that

S S
IOg ((ti,u - tiy—i—n); + ti,u—i—n) = (ti,u - ti,u—i—n); + ti,u-‘,—n -1+ Ok((P - 1)2)

K3 3

tiu
-2 log < ’ ) +log(tiptn) + Ok((P — 1)2)

(% i,v+n
and, consequently,
max. G(s,...,s) =max{r;log(t;yn), —(P — 1)nv;log(pr_it1) + i log(t;n) }
+O0,((P — 1)%v;).
Inserting the above estimate into (8.9) completes the proof of the lemma. UJ

The proof of the next lemma uses some ideas from the proof of [FoO8b, Lemmas 4.8 and
11.1] and [K10a, Lemma 3.8].
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Lemma 8.6. Let r € R* and i € {1,...,k}. There is a constant ¢, > 0 such that
i—1

Ti(9;; O k—1 —|— 1) r; o
> (g <Lk, Pi ,H — j 4 2)F D),
gieg'ri (’U,'L',Ui) g gl vz

provided that P <14 1/¢].

Proof. Since t;g > -+ > t; 5 > tix—iy1 = 1, we have that

; —sj [ Zj—1
ngok-ivn= > [l (%)
,Lh]

0<s1 < <sp—j+1<v; j=1

Also,
k—i+1 Gis. Gy, k—it1 55+ G, k—it1
Lij—1\ % tio) "™ tig—1\ 7 tio\ , s,
» < | 22 J — 22 t.,)s1tuwe t. o )SiTSi-1
H (ti' ) _<ti1 H ij ti1 (Ei1) H(m 2
]:1 5J I ]:2 5J kl ]:2
Thus, by setting
P—1 \k—i
\ lio _ (i)
i tia ’
my = s; and m; = s; —s;_q for j =2,...,k — ¢+ 1, we deduce that
k—i+1 ‘ mj
. y 0 Gz my1 ’.71
(810) Ti(gy;0.k—i+1) < (1) > AGmm ] ((pp i j)k_iﬂ_j) :
mi+-tmy i 1<v; Jj=2 k—it+l

m;>0 (1<j<k—i+1)
Note that
(k—i—j+3)log(k—1i—j+3) 5
log(t; ;1) = (P —1 - Op((P—1
oa(ti 1) = (P~ 1) Lol FO((P 1))
<(P -1k —i—j+2)log(pr—ir1) (2<j<k—it]),

provided that P — 1 is small enough, by Lemma 8.1(a). Combining the above relation
with (8.10) and summing the resulting inequality over g, € G, (u;, v;), we find that

(8.11)
E (gg | ) <Lk, P (ti71) ¢ E g E )\G”" =: (1 ) T
il g —

gz,vi!
9;€Gr, (u,0;) 9:€Gr, (u,v;)

“Giw;!

Next, we claim that

e " .
8.12 T< — / L+ ) N7ubi ) dg,
512 T ACSS )

where

—{seAnrﬁjzj_LZ—fHJ (1§j§n’)}-

To see this, fix g; € G, (u;,v;) and consider the set (g,) of vectors & € A,, such that
H1<j<ri:s—1<wu <st =g, (1<s<v).
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Notice that if £ € I(g;), then v;§;4|u,4+1] = j for all j because g; € G,,(u;,v;), that is to say,
& € D. Moreover,

1 T ety 1 Ui . .
S O
j=1 s=1 Ji vigj€ls—1.8)

V4 V4

S 3D SIS Pt
s=1 m=s J: vi€j€[s—1,s)
= Z ATy N
m=1 Jr vi§j<m
> A~ HGim
1S;§Ui
Gim>0

U

1
> - >\fm+Gi,m.
Z T 2

m=0
Lastly, we have that
1 1

—
V" Gi1 e Gig

Vol(I(g;)) =

Combining the above remarks, (8.12) follows. To bound the integral in the right hand side
of (8.12), we proceed as in the proof of Lemma 4.9 in [FoO8b]. The only difference is that
we use Lemma 8.3 from this paper in place of [FoO8b, Lemma 11.1]. This method gives us

T

v,h o
T <, p Bi 7:‘ A

By the above estimate, (8.11) and (8.12), we deduce that

7:(g;;0,k —1+4+1 v _ D
gial - Giw,! 7!

9;€Gr; (ui,v;)
To complete the proof of the lemma, recall that

i—1

1
;<1 —E log(k — j + 2)(v; — ;).
u; < +10g(l{:—i+2) . og(k —j+2)(v; —1j)

O

8.3. Proof of Lemmas 6.3 and 6.4. In this subsection we establish Lemmas 6.3 and 6.4
thus completing all the steps in the proof of the lower bound implicit in Theorem 1.5.
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Proof of Lemma 6.3. Since ¢1; < G1; < j+wu; <j+1forall j € {1,...,v1}, we have that

BRI DD S > -

a1€A1(gy) j= Ngl‘j p1€D1; p2€D1 pgl’jEDl,j pgl’j
p27&p1 Pgy,; E{p1yeees pg1,j—1}
1 U1 ( 91 . 91,5
> log py, —
(8.13) gl giw,! ]1:_][\, ALj-1
N ) Jj+1
(1 - |+ 1
=z H Og o) 1- L Li—1
i gt iy (log pi.) exp {pj . }
1 (log Pk;)
2 gi,N “g1 ’Ul

by Lemma 5.1, provided that N is large. Similarly, if i € {2,...,k}, then we have that
Gi; < Gij <j+u; <j+cloglogy;_; for some ¢ = ¢(k). Therefore

J+cloglogy;—1

Z 1 > (log(pr—i+1))" 1— J + cloglogy; 1
L R I |
ase g i gir:tt Giw G (log(pr—i+1))(log yi-1) exp {Pk ey 1}
1 i (log( p
814) - k— Z+1 ,
( =3 1} 9i,N gwl

provided that y;_1 > y; > C}, is large enough. Combine (8.13) and (8.14) with Lemmas 5.1
and 8.4 and relation (6. 4) to complete the proof. O

Proof of Lemma 6.4. Fix r € R*. In view of Lemmas 5.1 and 6.2, it suffices to show that

k . k )

A T(gjfl—l—i-l J‘—J',l) UT.Z

k—J;i)v; t\J iy 1 y J1 i i

(8.15) |J(ZE i E—— < 8[1+5
i=1 gieg'r‘i(uiavi) 271' 7,05 * =1 1

for every choice of integers 0 = Jy < J; < -+ < J, < k with J; > i foralli e {1,...,k}. So
fix such a (k + 1)-tuple (Jo, Ji, ..., Jx) and set

A Ti(gs; Jici —i+1,J; — Jisq) .
Ti= (o) 0 T~ (1<i<k).

9,€Gr; (ui,v;)
Also, let
I=min{l <i<k:J;,=k}
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(note that J = k, so I is well-defined). We claim that

(8.16)
(k —i+2)P-Dri—v) itl1 <i<lI,
Ti I-1
Ty <pe ficly % { max {1, (k — I 42)"= D=0 TT(k - j + 2)“’—1)(”]'—%')} if i =1,
T
7 j=1
1 if I <i<k.

Note that if inequality (8.16) is indeed true, then

k k T m—1 k N
v, "
ﬂ € i ¢ kE— 1 2 (P=1)(rj—vj) 7
g o (21]16 Ti!) me {0l 41) [[(F=7+2) © ﬁg il

j=1

by relations (6.1), (6.2) and (6.4), that is (8.15) holds. So establishing (8.16) will complete
the proof of the lemma.
Before embarking on the proof of (8.16), we introduce some notation and prove an inter-
mediate result. For i € {1,...,k} define J! € {J;_1, J;} by
(e =it) ™0 (i) = je{l}fffh}(ﬂf:fH)7(&7”“ (tij—it1)"™
We claim that if i« < J! <k — 1, then

T

(8.17) T <k, /Bzv—zl(k — i+ 2)P D)
r

provided that P — 1 is small enough. Indeed, Lemmas 5.1 and 8.5(b) give us that
T; - (k; — g+ 2)(P*1)(Ui*n‘)

eok((P—l)QUi)v:i( P-1 )—(k—Ji)vi<pP71 )_(Ji_‘];)w(ti,lf—i-i-l)”

Pr—it1 k—i+1

<k 7] (k — i+ 2)(P-D(ri—v)
_ O((P=D) i)y (pE=L HWimithe bigy—i+1 "

Ti! k—i+1 (k’ — + 2)P—1

So
(TZ . (k; — i+ 2)(131)(%‘7%))
log -
AR
) Fk—i+1,J —i+1
Flk—i+1,J —i+1 -
=(P-1)(J—i+ 1) <1 _ K (kzjl_ - 21)1Z+ ) o, (P14 1/2>> .

For every i € {1,...,k — 1}, condition (1.1) and Lemma 8.2 imply that
o (k—i+2)log(k —i+2)—2log2
log(k—i+2) ° ki

a>1+4¢€e—

or, equivalently, that
(k—i+2)*'"Fk—i+1,k—14) > (k—i+2)"
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Soif i < J! <k —1, then
(819) (k—i+2)* '"F(k—i+1,J —i+1)> (k—i+2)* 'Fk—i+1,k—1i) > (k—i+2)",
by Lemma 8.1(a). Inserting the above inequality into (8.18) proves (8.17).

We are now in position to show (8.16). First, if I <i <k, then J; = J;_1 = k. So

Ti(gs Jici —i+1,J; — Jioq) =Ti(g;sk—i+1,0) =1

for every g, € G;(r;) and (8.16) follows immediately by Lemma 8.4. Next, let 1 <i < [. If
J! > i, then (8.16) follows by (8.17), since we also have that J; < J; < J;_; < k—1. Assume
now that J/ = ¢ — 1, in which case J;_; =i — 1. Then

Flk—i+1—(Jiga—i+1),Ji—Jioy) Fk—i+1,J;—i+1)

(k—i+2)t—= (k—i+2)—«

F(k—i+1k—i)
(k—i+2)-o
> (k—i+2)",

by Lemma 8.1(a) and relation (8.19). The above inequality allows us to apply Lemma 8.5(a)
with n = (k — i+ 2)° — 1 > 0. Therefore we deduce that

v

U p1 N (bedVos f Pl (e V0s , v . T
T <iye @‘F(P;ilﬂ) ki (=t )T gy i) = @F(k — i 42)(P V),
that is (8.16) holds in this case too. Finally, we bound from above T}. If I < J; <k —1 or
Jr—1 = I —1, then (8.16) follows immediately by relation (8.17) or Lemma 8.6, respectively.
So suppose that J; € {I —1,k} and J;_; > I, in which case we must have J; = J; = k. We
separate two cases. Set
Flk—I+1k—I+1)—F(k—1k—1I)

= >0
n ok — I +2)1—

and assume first that

Flk—I+1,J,—1+1) Fk—I+1,k—1+1)
- = - > 1+m.
(k—1+2)l- (k—1+42)l-«

Inserting the above inequality into (8.18) implies that

TI

v
7}<k&fﬂk—]+394wpm,
I

provided that P — 1 is small enough, thus proving (8.16) in this case. Finally, assume that
Flk—I+1,k—1+1)

i—Tgoie  =ttm
Then
Fk—1+1—(Jia—1+4+1),J1—Jr)  Flk—Jr,k—Jr1) < Fk—1,k—1)
(k—1+2)t-« (k—1+2)t-« ~ (k—1+2)l-

<l-m
which, together with Lemma 8.5(a), shows that

U o (1w v
T <ppe 5]%},(/)5_11“) (* JI)UI(PkP_}H) (1 J’)vl(tI,J;—IH)” = ﬁlﬁ’
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thus proving (8.16) in this last case too. This completes the proof of the lemma. O
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