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Rational approximations

Fundamental Question
Given an irrational number x, find fractions a/q that approximate it “well”.

> the error |x — a/q| must be small
> g must be small (fractions of “low complexity”)

Often, g must lie in a restricted set of denominators (e.g. primes, squares etc.)



Dirichlet’s theorem

Dirichlet (c.1840):
Vx irrational, we have i.o.
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Can we replace 1/g2 by something smaller?
Can we restrict g to lie in some special set of denominators?



Improving the precision of rational approximations

Irrationality measure:

,u(x)::sup{ >0:0<

X — a’ < i i.o.}
q q
Results:

> Roth (1955): u(x) = 2 for every algebraic irrational x.

» Zeilberger—Zudilin (2020): u(r) < 7.10320533. ..



Restricting the denominators
Zaharescu (1995):
Fixe >0and x € R\ Q. Then

a < 1 _ 1
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Matoméaki (2009):
Fixe >0and x € R\ Q. Then
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‘ < p4/13—€ i.0. with p prime.

Improve “4/3” to “3/2” in Zaharescu’s theorem and “4/3” to “2” in Matomaki’s theorem.



Metric Diophantine approximation

Approximate a fixed irrational number x ~ hard open problems

Metric Diophantine approximation:
> Prove results about almost all numbers.
» Exclusion of small pathological sets ~ simple-to-state, general results

The basic set-up:
Given “permissible errors” Aq, Ao, ... > 0, let

A= {xe [0,1]: ‘X—Z‘ < Ag i.o.}



Khinchin’s theorem

Khinchin (1924):
Let A= {x€[0,1]:|x—a/q| <Ay i0.}.
1. 1" qAg < oo, then m(A) = 0.
2.1ty qAq=occand , then m(A) = 1.
The Borel-Cantelli lemmas:
Ei, Eo, ... events; E event that co-many E; occur.
1. 1f " P(Ej) < oo, then P(E) = 0.
2. It Y PP(Ej) = oo and the Ej’s are ,then P(E) = 1.

consider the events Aq := {x € [0,1] : |x — a/q| < Ag}.



A cautionary tale

Duffin—Schaeffer (1941):

Khinchin’s theorem in full generality: 3A+, Ao, ... > 0 such that:
2. m(A) =0.
1 2

0 3 3 1
1 2 3 4

0 5 5 5 5 1

1 2 i 4 1 2 7 8 3 2 11 4 14
0 i5 15 5 15 3 5 15 15 5 3 1 5 15 1




The Duffin—Schaeffer conjecture

Removing repetitions:

A= {xe [0,1] :

X — Z| < Aq i.0. with ged(a, q) = 1}

It > o(q)Aq < oo, then m(A*)

0.
If 3 ¢(g)Aq = oo, then m(A*) = 1.

DSC proven by K.—Maynard in 2019.

Earlier results: Duffin—Schaeffer, Gallagher, Erdés, Vaaler, Pollington — Vaughan,
Beresnevich — Velani, Aistleitner, Harman, Haynes, Lachman, Munsch, Technau,
Zafeiropoulos, . ..



Consequences of the DSC

Application 1: Catlin’s conjecture (1976):
Let Ay :=sup{Aq, Azg, ... }. Then

mA) =1 <« ) ¢(q)A; =

Application 2: Hausdorff dimensions

Assume > ¢(q)Aq < oo so that m(A*) = 0. Using a
, we have

dim(A*) = inf {s >0:) d(q)A5 < oo}.

» Same result for A by replacing Aq with A,



New developments since 2019

Aistleitner—Borda—Hauke (2023): quantitative DSC
Assume that > | ¢(q)Ag = 0o. Given x e Rand Q > 1, let

No(x) = #{g reduced : g < Q, |x — g\ < Ag},

and note that

1
/0 No(x)dx = 3 26(q) 2 = So.

9<Q

Let C be arbitrarily large but fixed. Then, for a.a. x € R, we have

Na(x) = Sq + Oc(So/(log Sq)¢)  as Q — .

Presumably the error term can be improved to ngﬁ for any fixed € > 0.



Borel-Cantelli without independence

Ay = {x € [0,1] : 3a € Z co-prime to g s.t.
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Goal: prove  P(A, A < (1+4¢) P(A) - P(A) on average.
Gallagher’s ergodic theorem (1961): m(A*) € {0,1}.
Revised goal:  prove (A} 11.A;) < 10197 P(A;)-P(A;)  on average.

Erdds (1970), Vaaler (1978), Pollington—Vaughan (1990):

P(AG N Af) Sl . (1) ar/ecd(q, r)? has “too many” small prime factors
P(A3) - P(A7) (2) ged(q,r) is “large”



An important special case
> ScCx,2X]NZ st qus%xx “e=" S|~ xC¢
> Ag= e VgES = Dges9(q)hg =< 1.
prove that m(U,cs Az) > 1

OK unless positive proportion of pairs (g, r) s.t

gr/ ged(q, r)? has “too many” small prime factors
ged(g.r) > x17°

» ¢ =1 (Erdés—Vaaler): trivial; use that (1) can’t hold for too many pairs (q, r)

> ¢ < 1: savings from (1) insufficient; must exploit structural condition




The model problem

A guiding example

Letd =[x""¢land S = {dm: % < m< &}.
> H#HS ~ H~XC
> ged(q, ) >x'""¢vq,resS

Let S C [x,2x] with #S = x/D
Assume gcd(q, r) > D for > 1% of pairs (gq,r) € S x S.
Must there exist a single d > D diving 0.01% of elements of S?

> If YES, then re-calibrate and pass to &' = {m: dm € S}:
» &' C[1,x/D]and |S’| > 0.0001x/D
> S’ dense, so condition (1) can now be exploited.



The graph of dependencies

G=1{(q,r) € S xS :gcd(q,r) > D}

The graph of dependencies when D = 1



An iterative compression algorithm

» S C {square-frees}, Go =(S5,5,8) ( )

» Goz2G = 2G=(8.T,&) st

> at each step gain info about divisibility of vertices/edges w.r.t. a new prime p;
> while maintaining control of edge/vertex counts

> In the end, we have full divisibility info:
> Jadividing all of &’
» 3b dividing all of 7~
> gcd(q,r) =ged(a,b) > Dforall (q,r) € &
> In Gy, condition (1) can be exploited to control |£’|

» Pigeonhole to find G,. This uses a (inspired by Roth):

9(Go) < q(Gy) <--- < q(Gy)



The inductive step

» Assume we have constructed G;_1 = (V, W, E)
» Consider a new prime p = p;and let V, = {v € V : p|v} and

Vo= V\ Y,
@ @ Subgraph | Gainin V | Gainin W | Loss in E
v (Vp, Wp) p p p
( ) 1 1 1
Ny e
W) wmw T e
aG) | ( 5 >1°. 1 in symmetric cases
a(Gi—1)  [E=1] \Gj—1 p in asymmetric cases



Thank you for your attention



