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Rational approximations

Fundamental Question
Given an irrational number x , find fractions a/q that approximate it “well”.

I the error |x − a/q| must be small
I q must be small (fractions of “low complexity”)

Remark
Often, q must lie in a restricted set of denominators (e.g. primes, squares etc.)



Dirichlet’s theorem

Dirichlet (c.1840):
∀x irrational, we have i.o. ∣∣∣x − a

q

∣∣∣ < 1
q2 .

Improving Dirichlet’s theorem:

1. Can we replace 1/q2 by something smaller?
2. Can we restrict q to lie in some special set of denominators?



Improving the precision of rational approximations

Irrationality measure:

µ(x) := sup

{
E > 0 : 0 <

∣∣∣∣x − a
q

∣∣∣∣ 6 1
qE i.o.

}
Results:

I Roth (1955): µ(x) = 2 for every algebraic irrational x .

I Zeilberger–Zudilin (2020): µ(π) 6 7.10320533 . . .



Restricting the denominators

Zaharescu (1995):
Fix ε > 0 and x ∈ R \Q. Then∣∣∣x − a

q2

∣∣∣ 6 1
q8/3−2ε =

1
(q2)4/3−ε i.o.

Matomäki (2009):
Fix ε > 0 and x ∈ R \Q. Then∣∣∣x − a

p

∣∣∣ 6 1
p4/3−ε i.o. with p prime.

Hard open problems:
Improve “4/3” to “3/2” in Zaharescu’s theorem and “4/3” to “2” in Matomäki’s theorem.



Metric Diophantine approximation

Diophantine approximation:
Approximate a fixed irrational number x  hard open problems

Metric Diophantine approximation:
I Prove results about almost all numbers.
I Exclusion of small pathological sets  simple-to-state, general results

The basic set-up:
Given “permissible errors” ∆1,∆2, . . . > 0, let

A :=

{
x ∈ [0,1] :

∣∣∣x − a
q

∣∣∣ < ∆q i.o.
}



Khinchin’s theorem

Khinchin (1924):
Let A =

{
x ∈ [0,1] :

∣∣x − a/q
∣∣ < ∆q i.o.

}
.

1. If
∑

q∆q <∞, then m(A) = 0.
2. If

∑
q∆q =∞ and q2∆q ↘, then m(A) = 1.

The Borel–Cantelli lemmas:
E1,E2, . . . events; E event that∞-many Ej occur.

1. If
∑

P(Ej) <∞, then P(E) = 0.
2. If

∑
P(Ej) =∞ and the Ej ’s are independent, then P(E) = 1.

Proof of 1: consider the events Aq :=
{

x ∈ [0,1] :
∣∣x − a/q

∣∣ < ∆q
}

.



A cautionary tale

Duffin–Schaeffer (1941):
Khinchin’s theorem fails in full generality: ∃∆1,∆2, . . . > 0 such that:

1.
∑

q∆q =∞;
2. m(A) = 0.
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The Duffin–Schaeffer conjecture

Removing repetitions:

A∗ :=

{
x ∈ [0,1] :

∣∣∣∣x − a
q

∣∣∣∣ < ∆q i.o. with gcd(a,q) = 1
}

The Duffin–Schaeffer conjecture (1941):
1. If

∑
φ(q)∆q <∞, then m(A∗) = 0.

2. If
∑
φ(q)∆q =∞, then m(A∗) = 1.

DSC proven by K.–Maynard in 2019.
Earlier results: Duffin–Schaeffer, Gallagher, Erdős, Vaaler, Pollington – Vaughan,
Beresnevich – Velani, Aistleitner, Harman, Haynes, Lachman, Munsch, Technau,
Zafeiropoulos, . . .



Consequences of the DSC

Application 1: Catlin’s conjecture (1976):
Let ∆′q := sup{∆q,∆2q, . . . }. Then

m(A) = 1 ⇐⇒
∑

φ(q)∆′q =∞.

Application 2: Hausdorff dimensions
Assume

∑
φ(q)∆q <∞ so that m(A∗) = 0. Using a mass-transference principle of

Beresnevich–Velani (2006), we have

dim(A∗) = inf

{
s > 0 :

∑
φ(q)∆s

q <∞
}
.

I Same result for A by replacing ∆q with ∆′q.



New developments since 2019

Aistleitner–Borda–Hauke (2023): quantitative DSC
Assume that

∑
φ(q)∆q =∞. Given x ∈ R and Q > 1, let

NQ(x) = #
{ a

q reduced : q 6 Q,
∣∣x − a

q

∣∣ < ∆q
}
,

and note that ∫ 1

0
NQ(x)dx =

∑
q6Q

2φ(q)∆q =: SQ.

Let C be arbitrarily large but fixed. Then, for a.a. x ∈ R, we have

NQ(x) = SQ + OC
(
SQ/(log SQ)C) as Q →∞.

Conjecture

Presumably the error term can be improved to S1/2+ε
Q for any fixed ε > 0.



Borel–Cantelli without independence

A∗q :=

{
x ∈ [0,1] : ∃a ∈ Z co-prime to q s.t.

∣∣∣∣x − a
q

∣∣∣∣ < ∆q

}
Goal: prove P(A∗q ∩ A∗r ) 6 (1 + ε) · P(A∗q) · P(A∗r ) on average.

Gallagher’s ergodic theorem (1961): m(A∗) ∈ {0,1}.

Revised goal: prove P(A∗q ∩ A∗r ) 6 101010 · P(A∗q) · P(A∗r ) on average.

Erdős (1970), Vaaler (1978), Pollington–Vaughan (1990):

P(A∗q ∩ A∗r )

P(A∗q) · P(A∗r )
> 101010

=⇒ (1) qr/ gcd(q, r)2 has “too many” small prime factors
(2) gcd(q, r) is “large”



An important special case

I S ⊂ [x ,2x ] ∩ Z s.t.
∑

q∈S
φ(q)

q � xc “⇐⇒ ” |S| ≈ xc

I ∆q = 1
q1+c ∀q ∈ S =⇒

∑
q∈S φ(q)∆q � 1.

Goal: prove that m(
⋃

q∈S A∗q)� 1

Pollington–Vaughan: OK unless positive proportion of pairs (q, r) s.t.

(1) qr/ gcd(q, r)2 has “too many” small prime factors
(2) gcd(q, r) > x1−c

I c = 1 (Erdős–Vaaler): (2) trivial; use that (1) can’t hold for too many pairs (q, r)

I c < 1: savings from (1) insufficient; must exploit structural condition (2)



The model problem

A guiding example

Let d = dx1−ce and S = {dm : x
d 6 m 6 2x

d }.
I #S ∼ x

d ∼ xc

I gcd(q, r) > x1−c ∀q, r ∈ S

The model problem
I Let S ⊆ [x ,2x ] with #S = x/D
I Assume gcd(q, r) > D for > 1% of pairs (q, r) ∈ S × S.
I Must there exist a single d > D diving 0.01% of elements of S?

I If YES, then re-calibrate and pass to S ′ = {m : dm ∈ S}:
I S ′ ⊆ [1, x/D] and |S ′| > 0.0001x/D
I S ′ dense, so condition (1) can now be exploited.



The graph of dependencies

G = {(q, r) ∈ S × S : gcd(q, r) > D}
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The graph of dependencies when D = 1



An iterative compression algorithm

I S ⊆ {square-frees}, G0 := (S,S, E) (view as bipartite graph)

I G0 > G1 > · · · > GJ = (S ′, T ′, E ′) s.t.
I at each step gain info about divisibility of vertices/edges w.r.t. a new prime pj
I while maintaining control of edge/vertex counts

I In the end, we have full divisibility info:
I ∃a dividing all of S ′
I ∃b dividing all of T ′

I gcd(q, r) = gcd(a,b) > D for all (q, r) ∈ E ′

I In GJ , condition (1) can be exploited to control |E ′|

I Pigeonhole to find GJ . This uses a quality increment argument (inspired by Roth):

q(G0) 6 q(G1) 6 · · · 6 q(GJ)



The inductive step

I Assume we have constructed Gj−1 = (V ,W ,E)

I Consider a new prime p = pj and let Vp = {v ∈ V : p|v} and Vp̂ = V \ Vp

Vp

Vp̂

Wp

Wp̂

Subgraph Gain in V Gain in W Loss in E Total gain
(Vp,Wp) p p p 1
(Vp̂,Wp̂) 1 1 1 1
(Vp,Wp̂) p 1 1 p
(Vp̂,Wp̂) 1 p 1 p

Defining the quality of a graph

q(Gj)

q(Gj−1)
=
|Ej |
|Ej−1|

·
(

δj

δj−1

)10

·

{
1 in symmetric cases
p in asymmetric cases



Thank you for your attention


