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How many primes up to x?
π(x) := #{p ≤ x : p prime} ∼?

Gauss’s guess : π(x) ∼ Li(x) :=
∫ x

2

dt
log t

x π(x) Li(x)− π(x)
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214



Riemann’s plan

ζ(s) :=
∞∑

n=1

1

ns =
∏

p prime

(
1− 1

ps

)−1

(ℜ(s) > 1).

−ζ
′(s)
ζ(s)

=
∑

p prime
k≥1

log p
pks

Mellin’s inversion :
∑
pk≤x

log p =
1

2πi

∫
ℜ(s)=2

(
−ζ

′(s)
ζ(s)

)
xs

s
ds.

|xs| = xℜ(s) ⇝ want to have ℜ(s) small

Riemann’s remarkable discoveries:
ζ has meromorphic continuation to C (simple pole at 1 of residue 1)
Functional equation: π−

1−s
2 ζ(1− s)Γ(1−s

2 ) = π−
s
2 ζ(s)Γ( s

2)

⇝ Explicit Formula :
∑
pk≤x

log p = x −
∑

ρ: ζ(ρ)=0

xρ

ρ
− ζ ′(0)

ζ(0)



ζ(s) =
∏

p

(
1− 1

ps

)−1

, π−
1−s
2 ζ(1− s)Γ

(
1− s
2

)
= π−

s
2 ζ(s)Γ

( s
2

)
∑
pk≤x

log p = x −
∑

ρ: ζ(ρ)=0

xρ

ρ
− ζ ′(0)

ζ(0)

ζ(ρ) = 0
Product=⇒ ℜ(ρ) ≤ 1

F.E.+Prod.=⇒ 0 ≤ ℜ(ρ) ≤ 1 or ρ ∈ {−2,−4, . . . }.

π(x) ∼ Li(x) (Prime Number Theorem) ⇔ ℜ(ρ) < 1, ∀ ρ
π(x) = Li(x) + O(x

1
2
+ϵ) (Riemann Hypothesis) ⇔ ℜ(ρ) ≤ 1/2, ∀ ρ



Results on π(x) and proof ideas

Korobov-Vinogradov : π(x) = Li(x) + O
(

x
ec(log x)3/5(log log x)1/5

)
.

Follows by: ζ(σ + it) ̸= 0 for σ ≥ 1− c
(log |t|)2/3(log log |t|)1/3 .

Idea: If ζ(1 + it) = 0 with t ̸= 0, then ζ(σ + it) ∼ c(σ − 1) as σ → 1+.

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0. So, as σ → 1+:

1 ≤ |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ∼ 1

(σ − 1)3
c4(σ − 1)4|ζ(σ + 2it)|

=⇒ ζ(1 + 2it) = ∞. Contradiction! (only pole of ζ at 1)

Better upper bounds on ζ(1 + 2it) lead to improvements of this argument

⇝ Need estimates for the exponential sums
∑

N<n≤2N n2it

Claim: this argument uses little input specific to ζ. Rather, it uses general
facts about multiplicative functions.



Multiplicative Functions
.
Definition..

......

An arithmetic function f : N → C is called multiplicative if

f (mn) = f (m)f (n) whenever gcd(m, n) = 1.

the Euler function ϕ(n) = #{1 ≤ a ≤ n : gcd(a, n) = 1}
e.g. ϕ(12) = 4 = ϕ(4)ϕ(3)

the divisor function τ(n) = #{d ∈ N : d|n}
e.g. τ(6) = 4 = τ(2)τ(3))
the sum-of-divisors function σ(n) =

∑
d|n d

e.g. σ(28) = 56 = σ(4)σ(7)

2ω(n), where ω(n) = #{p|n}
e.g. ω(18) = 2 = ω(2) + ω(9)

the Dirichlet characters χ (periodic extensions of characters of the group
(Z/qZ)∗ = {a (mod q) : (a, q) = 1})
e.g. χ(a) =

(
a
p

)
= 1 or −1, according to whether a ≡ □ (mod p) or not.



Zeroes and Möbius

1

ζ(s)
=

∏
p

(
1− 1

ps

)
=

∞∑
n=1

µ(n)
ns , µ(n) =


(−1)r if n = p1 · · · pr,

p1 < · · · < pr,

0 otherwise.

⇝ The Möbius function µ is multiplicative.∑
n≤x

µ(n) ≪ xθ+o(1) ⇔ ζ(s) ̸= 0 for ℜ(s) > θ

∑
n≤x

µ(n) = o(x) ⇔ ζ(s) ̸= 0 for ℜ(s) = 1 ⇔ PNT

Proof of the PNT, recast

ζ(1 + it) = 0, t ̸= 0 ⇔
∏

p≤x(1 +
1+p−it

p ) ≈ c as x → ∞.
But

∏
p(1 +

ϵ
p) = ∞. Thus pit ≈ −1 often (i.e. µ(n) ≈ nit).

But then p2it ≈ 1 often (i.e. n2it ≈ 1).
Impossible:

∑
n≤x 1/n ∼ log x but

∑
n≤x n2it/n ≪t 1.



Statistical questions about multiplicative functions

...1 If A ⊂ C, then #{n ≤ x : f (n) ∈ A} ∼? (Distribution of values of f )

...2 How big is S(x; f ) :=
∑

n≤x f (n)? (Average value of f )

PNT ⇔ S(x;µ) = o(x). RH ⇔ S(x;µ) = Oϵ(x1/2+ϵ).

S(x;µχ) = o(x), ∀χ (mod q) ⇔ primes are equidistributed among
arithmetic progressions a (mod q) with (a, q) = 1.

2ω(n) ∈ A ⇔ ω(n) ∈ log A
log 2 (integers with a given number of prime

factors)
Erdős-Kac: ω(n), n ≤ x, is Gaussian with µ ∼ log log x, σ ∼ log log x

#{n ≤ x : σ(n)/n = 2} = #{n ≤ x : n perfect number}.
The distribution of σ(n)/n was shown to be continuous by Erdős.

Remark: Knowing S(x, f k) for k ∈ N, or S(x, f it) for t ∈ R, means knowing
the distribution of values of f . So, we only need to study Question 2.



Methods for studying the average value of f

...1 Complex-analytic methods (à la Riemann): analytic continuation, zeroes,
functional equations of L(s, f ) :=

∑∞
n=1 f (n)/ns

Under this category, we also find the Selberg-Delange method:
If f (p) ∼ v on average, then

L(s, f ) = G(s)ζ(s)v,

where G is analytic in a “large” region (say, ℜ(s) > 1− ϵ).

So the most important analytic properties of L(s, f ) (poles, rate of growth, etc.)
are captured by ζ(s)v.

What if we know nothing about f (p) on average?
...2 ‘Elementary’ methods: theory of general multiplicative functions,

harmonic analysis
⇝ pretentious multiplicative functions



Particularity implies structure
Idea/goal of the ‘pretentious’ approach: assume that the multiplicative
function f has some special behaviour on average (e.g. some extremality).

Then we wish to show that f has some nice structure: f pretends to be some
simpler multiplicative function g.

f (n) = f (m)f (p) if n = pm, p ∤ m. So if we know f (m) and f (p) (past of f ),
we know f (n) (present of f ):

S(x; f ) :=
∑
n≤x

f (n) ≈
∑
p≤x

f (p)
log p
log x

S(x/p; f )

S(x; f ) is an average of its ‘history’ (Integral-delay equations)

⇝ if f (p) is close to g(p) on average, then S(f ; x) and S(g; x) can be related.

As a measure of the distance of f and g, we use

D(f , g; x)2 :=
∑
p≤x

1−ℜ(f (p)g(p))
p

.



Halász’s theorem

Goal: If |f (n)| ≤ 1, when is S(x; f ) =
∑

n≤x f (n) = o(x)?

Counterexamples:

If f (n) = 1, then S(x; f ) ∼ x.

More generally, if f (n) = nit, then S(x; f ) ∼ x1+it/(1 + it).

Also, if f (n) ≈ nit, then we should still have that S(x; f ) ∼ cx1+it/(1+ it).

Halász showed that these are the only counterexamples:
.
Theorem (Halász)
..

......

Let f be multiplicative with |f (n)| ≤ 1. Then

S(x; f ) = o(x) ⇔ f (n) ̸≈ nit, ∀t ∈ R

⇔ D2(f (n), nit;∞) =
∑

p

1−ℜ(f (p)/pit)

p
= ∞, ∀ t ∈ R.



Prime Number Theorem via Halász and limitations

.
Theorem (Halász for µ)
..

......

S(x;µ) = o(x) ⇔ µ(n) ̸≈ nit, ∀t ∈ R

⇔
∑

p

1 + ℜ(pit)

p
= ∞, ∀ t ∈ R.

Recall: Prime Number Theorem ⇔ S(x;µ) = o(x).

Granville-Soundararajan: Need to show that pit ̸≈ −1. Use sieve methods to
show that |1 + pit| ≥ ϵ most of the time =⇒ PNT

(Alternatively, use that p2it ̸≈ 1, like de la Vallée-Poussin - Hadamard.)

Problem: best result one can get is S(x;µ) ≲ x/ log x but we expect that
S(x;µ) ≪ x1/2+ϵ.



A converse problem
.
Question
..

......

For which multiplicative functions f : N → {z ∈ C : |z| ≤ 1} is it true that

S(x; f ) ≪ x
(log x)100

, for all x ≥ 2? (*)

Assume (*) and that f (p) ∼ v =⇒ S(x; f ) ∼
cf

Γ(v)
x(log x)v−1, cf ̸= 0

(*)=⇒ Γ(v) = ∞ |v|⩽1=⇒ v = 0 or v = −1.

If v = −1, then f looks like µ and S(x; f ) is small by the PNT.
If v = 0, then f (n) is small on average by an elementary argument.

.
Theorem (K. (2013))
..

......

Fix A > 2, f mult. with |f (n)| ≤ 1 and S(x; f ) ≪ x/(log x)A for x ≥ 2. Then

either f (n) ≈ µ(n)nit for some t ∈ R (i.e.
∑

p
1+ℜ(f (p)p−it)

p <∞)

or
∑

p≤x f (p) = o(π(x)).



.
A converse theorem (K. (2013))
..

......

Fix A > 2, f mult. with |f (n)| ≤ 1 and S(x; f ) ≪ x/(log x)A for x ≥ 2. Then

either f (n) ≈ µ(n)nit for some t ∈ R (i.e.
∑

p
1+ℜ(f (p)p−it)

p <∞)

or
∑

p≤x f (p) = o(π(x)).

More precisely, in the second case, if

∑
p≤x

1 + ℜ(f (p)pit)

p
≥ ϵ log log x (|t| ≤ (log x)A−2),

then ∑
p≤x

f (p) ≪A π(x)/(log x)ϵ(A−2)/4.



An application to the distribution of primes in APs
Is it true that #{p ≤ x : p ≡ a (mod q)} ∼ π(x)/ϕ(q), when gcd(a, q) = 1?

How to detect the condition p ≡ a (mod q)?

1st idea: use additive characters (n → e2πibn/q). Problem: they do not mix
well with primes, which are multiplicative objects.

2nd idea: use multiplicative characters (characters of the group (Z/qZ)∗), the
so-called Dirichlet characters:∑

p≤x
p≡a (mod q)

1 =
∑
p≤x
p∤q

1

ϕ(q)

∑
χ (mod q)

χ(a−1p)

=
1

ϕ(q)

∑
χ (mod q)

χ(a)−1
∑
p≤x
p∤q

χ(p)

=
π(x)
ϕ(q)

+
1

ϕ(q)

∑
χ̸=χ0

χ̄(a)
∑
p≤x

χ(p) + O(log q).

So if χ ̸= χ0, is χ(p) small on average?



.
Question
..

......

If χ is a non-trivial Dirichlet character mod q, is it true that∑
p≤x

χ(p) = o(π(x))?

For such a χ, we know that
∑

n≤x χ(n) = O(
√

x log x) when x ≥ q. So. . .

either χ(p) is small on average =⇒ PNT for APs

or χ(n) ≈ µ(n)nit ⇒ χ2(n)n−2it ≈ µ2(n) ⇒ t = 0, χ real.

The case when χ ≈ µ, χ real, means we have a Siegel zero (different
techniques).

In the end, we have a new proof (K., 2013) of. . .
.
The prime number theorem for arithmetic progressions
..

......

Fix A > 0. If 1 ≤ q ≤ (log x)A and gcd(a, q) = 1, then

#{p ≤ x : p ≡ a (mod q)} =
Li(x)
ϕ(q)

{
1 + O

(
1

ecA(log x)3/5(log log x)1/5

)}
.



The proof of the converse theorem

∑
p≤x

f (p) ≈ (−1)m

2πi(log x)m

∫
ℜ(s)=1

(
L′

L

)(m−1)

(s, f )
xs

s
ds,

where L(s, f ) =
∑

n≥1 f (n)/ns. So. . .

∑
p≤x

f (p) = small ⇔
(

L′

L

)(m−1)

(1 + it, f ) = small

⇔ L(j)(1 + it, f )
L(1 + it, f )

= small (1 ≤ j ≤ m)

∑
n≤x

f (n) ≪ x
(log x)A ⇒ L(j)(1+it, f ) =

∞∑
n=1

f (n)(− log n)j

n1+it ≪ 1 (j < A−1)

|L(1 + it, f )| = large ⇔ D2(f (n), µ(n)nit;∞) = large.



Pretentiousness’ status
We now have “pretentious” proofs of all major results in classical analytic
number theory:

Prime number theorem for arithmetic progressions
Prime number theorem for short intervals (Hoheisel’s result)
Linnik’s Theorem about primes in short APs
Asymptotic behaviour of S(x; f ) for ‘regular’ f (Selberg-Delange method)

Moral: the underlying ideas of many proofs of classical analytic number
theory are, in reality, ideas about multiplicative functions
(use of multiplicativity, i.e. Euler product)

The use of the functional equation (symmetry of ζ) is absent. Could this be the
missing ingredient?

Applications of pretentious ideas to previously unsolved problems:

Character sum bounds (Granville-Soundararajan, ’07; Goldmakher, ’12)
Quantum Unique Ergodicity (Holowinsky-Soundararajan, ’10)
Distribution of the max of char. sums (Bober-Goldmakher-Graville-K.)



Bounds for character sums
Why care? Multiplicative Fourier Inversion =⇒ applications to problems
about equidistribution in arithmetic progressions

for a Dirichlet character χ mod q, M(χ) := max1≤t≤q |
∑

n≤t χ(n)|.
Pólya-Vinogradov: if χ is non trivial, then M(χ) ≪ √

q log q.
Montgomery-Vaughan: if GRH holds, then M(χ) ≪ √

q log log q.

Remark: Improvement seems very modest even on GRH because cancellation
is much milder due to the presence of a logarithmic weight 1/n:

Pólya : M(χ) =

√
q

2π
max

0≤α≤1

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)(1− e2πinα)

n

∣∣∣∣∣∣+ O(log q)

Granville-Soundararajan and Goldmakher: if χ has odd order g, then

M(χ) ≪g

{√
q(log q)1−δg+o(1) unconditionally,

√
q(log log q)1−δg+o(1) on GRH,

where δg = 1− g
π sin π

g .



Improving Polya-Vinogradov
How to show that M(χ) = o(

√
q log q)?

M(χ) ∼
√

q
2π

max
α∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)(1− e2πiαn)

n

∣∣∣∣∣∣ .
Montgomery-Vaughan: if |α− a/b| < 1/b2 and b → ∞ slowly, then∑

n≤q χ(n)e
2πinα/n = o(log q)

Assume now that b ≪ 1. We have that∑
1≤|n|≤q

χ(n)e2πiαn

n
∼

∑
1≤|n|≤q

χ(n)e
2πian

b

n
.

So if M(χ)/
√

q ≫ log q, then Granville-Soundararajan observe that χ(n) must
resonate with some harmonic e2πian/b, i.e. χ exhibits b-pseudoperiodicity.

Multiplicative functions correlate with multiplicative functions

⇒ χ pretends to be a character ψ (mod b) (and, also, ψ(−1) = −χ(−1)).

Granville-Soundararajan show this is impossible if χ has odd order.



The distribution of M(χ)

Pq(τ) :=
1

ϕ(q)
# {χ (mod q) : M(χ) > (eγ/π)τ

√
q} .

Recall: M(χ) ≪ √
q log log q on GRH.

Paley: conversely, there are ∞-ly many χ (mod q) with M(χ) ≫ √
q log log q.

Such extremal examples should be rather rare.
Improving on results of Montgomery-Vaughan and of Bober-Goldmakher:
.
Theorem (Bober, Goldmakher, Granville, K.)
..

......

Fix θ > 1/2. If q is prime and 1 ≤ τ ≤ log log q − K, for some K ≥ 1, then

exp
{
−Ceτ

τ
(1 + oτ,K→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eτ+O(τθ)

}
.

Remark: extremely fast decay of tails, due to the weight 1/n:

M(χ) ∼
√

q
2π

max
α∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)(1− e2πiαn)

n

∣∣∣∣∣∣ .



Pq(τ) :=
1

ϕ(q)
# {χ (mod q) : M(χ) > (eγ/π)τ

√
q} .

M(χ) ∼
√

q
2π

max
α∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)(1− e2πiαn)

n

∣∣∣∣∣∣ .
.
Theorem (Bober, Goldmakher, Granville, K.)
..

......

Fix θ > 1/2. If q is prime and 1 ≤ τ ≤ log log q − K, for some K ≥ 1, then

exp
{
−Ceτ

τ
(1 + oτ,K→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eτ+O(τθ)

}
.

Three key steps:
...1 Bound high moments to truncate Pólya’s expansion for most χ
...2 The remaining characters are 1-pretentious
...3 Relate M(χ) to

∑
n≥1

χ(n)
n ; use distribution results about the latter due to

Granville-Soundararjan.



Thank you!


