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A Generalization of a Theorem of
Boyd and Lawton
Zahraa Issa and Matilde Lalı́n

Abstract. The Mahler measure of a nonzero n-variable polynomial P is the integral of log |P| on the
unit n-torus. A result of Boyd and Lawton says that the Mahler measure of a multivariate polynomial
is the limit of Mahler measures of univariate polynomials. We prove the analogous result for different
extensions of Mahler measure such as generalized Mahler measure (integrating the maximum of log |P|
for possibly different P’s), multiple Mahler measure (involving products of log |P| for possibly different
P’s), and higher Mahler measure (involving logk |P|).

1 Introduction

The Mahler measure of a nonzero polynomial P(x1, . . . , xn) ∈ C[x1, . . . , xn] is de-
fined by

m(P) :=
1

(2πi)n

∫
Tn

log |P(x1, . . . , xn)| dx1

x1
· · · dxn

xn
,

where Tn = {(z1, . . . , zn) ∈ Cn : |z1| = · · · = |zn|} is the unit torus in dimen-
tion n. This formula has a particularly simple expression for univariate polynomi-
als. If P(x) = a

∏
i(x − αi), then Jensen’s formula implies that m(P) = log |a| +∑

i max{0, log |αi |}. In fact, Lehmer [Le33] only considered the measure for uni-
variate polynomials which was later extended to multivariate polynomials by Mahler
[Ma62]. Lehmer’s motivation for considering this object was finding a method to
construct large prime numbers that generalizes Mersenne’s sequence. Mahler, on the
other hand, was interested in relating heights of products of polynomials with the
heights of the factors. The Mahler measure is a height that is multiplicative, and
therefore it was a natural object for Mahler to study.

Boyd and Lawton proved the following useful and interesting result.

Theorem 1.1 ([Bo81a, Bo81b, La83]) Let P(x1, . . . , xn) ∈ C[x1, . . . , xn] and r =
(r1, . . . , rn), ri ∈ Z>0. Define Pr(x) as Pr(x) = P(xr1 , . . . , xrn ), and let

q(r) = min
{

H(t) : t = (t1, . . . , tn) ∈ Zn, t 6= (0, . . . , 0),
n∑

j=1

t jr j = 0
}
,

where H(t) = max{|t j | : 1 ≤ j ≤ n}. Then

lim
q(r)→∞

m(Pr) = m(P).
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This result implies that the multivariate Mahler measure is a limit of univariate
Mahler measures. In particular, it gives evidence that the extension to multivariate
polynomials is the right generalization.

The Mahler measure of multivariate polynomials often yields special values of the
Riemann zeta function and L-functions; thus one can construct sequences of num-
bers that approach these special values in this way.

In addition, this theorem has consequences in terms of limit points of Mahler
measure. The most famous open question in this area is the so-called Lehmer’s ques-
tion. Is there a constant c > 0 such that for every polynomial P ∈ Z[x] with m(P) > 0,
then m(P) ≥ c? Thus, Theorem 1.1 tells us that given a multivariate polynomial
whose measure is smaller than a certain constant c, we can generate infinitely many
univariate polynomials with the same property.

In this work, we are going to consider two extensions of Mahler measure.
Given P1, . . . , Ps ∈ C[x1, . . . , xn], (not necessarily distinct) nonzero polynomials,

the generalized Mahler measure is defined in [GO04] by

mmax(P1, . . . , Ps) :=

1

(2πi)n

∫
Tn

max
{

log |P1(x1, . . . , xn)|, . . . , log |Ps(x1, . . . , xn)|
} dx1

x1
· · · dxn

xn
.

On the other hand, the multiple Mahler measure is defined in [KLO08] by

m(P1, . . . , Ps) :=

1

(2πi)n

∫
Tn

log |P1(x1, . . . , xn)| · · · log |Ps(x1, . . . , xn)|dx1

x1
· · · dxn

xn
.

For the particular case in which P1 = · · · = Ps = P, the multiple Mahler meausure is
called higher Mahler measure

ms(P) :=
1

(2πi)n

∫
Tn

logs |P(x1, . . . , xn)|dx1

x1
· · · dxn

xn
.

These objects have been related to special values of the Riemann zeta function
and L-functions ([GO04, La08] for generalized Mahler measure, [KLO08, Sa10, BS,
BBSW] for multiple Mahler measure), but the nature of this relationship is not as
well understood than in the classical case.

Our goal in this note is to prove the equivalent for Theorem 1.1 for these general-
izations.

Theorem 1.2 Let P1, . . . , Ps ∈ C[x1, . . . , xn], and let r be as before. Then

(i) limq(r)→∞mmax(P1r, . . . , Psr) = mmax(P1, . . . , Ps);
(ii) limq(r)→∞m(P1r, . . . , Psr) = m(P1, . . . , Ps);
(iii) if P1 = · · · = Ps = P, limq(r)→∞ms(Pr) = ms(P).
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2 Some Preliminary Results

The difficulty in obtaining Theorem 1.2 lies in the case where (some of) the polyno-
mials vanish in the domain of integration and the logarithm is not bounded. This
problem already appears in the proof of Theorem 1.1. The key result for solving this
is a theorem by Lawton [La83].

Let µn denote the Lebesgue measure in the torus Tn.

Theorem 2.1 ([La83, Theorem 1]) Let P(x) ∈ C[x] be a monic polynomial and let k
be the number of nonzero coefficients of P. Then if k ≥ 2, there is a positive constant Ck

that depends only on k such that

µ1

(
{z ∈ T : |P(z)| < y}

)
≤ Ck y

1
k−1 ,

for any real number y > 0.

The strength of this result lies in the fact that the constant is absolute and depends
on the number of nonzero coefficients of P, but it does not depend on P.

Notice that we can always assume that the polynomials involved in multiple Mah-
ler measure have at least two nonzero monomials, since log |axk| is a constant and
can be easily extracted from the integral. It should be noted that the above theorem
remains true for k = 1 if y is sufficiently small (i.e., y < |a|) and C1 = 0.

It is not hard to prove a result where the constant depends on P. For example,

Lemma 2.2 ([EW99, Lemma 3.8, p. 58]) Let P(x1, . . . , xn) ∈ C[x1, . . . , xn]. There
there are constants CP, δP that depend on P such that

(2.1) µn

(
{(z1, . . . , zn) ∈ Tn : |P(z1, . . . , zn)| < y}

)
≤ CP yδP ,

for small y > 0.

In what follows, we will let

Sn(P, y) = {(z1, . . . , zn) ∈ Tn : |P(z1, . . . , zn)| < y},

where the n depends on the number of variables involved. Thus n is greater than or
equal to the number of variables of P. We will write S(P, y) for S1(P, y).

The following elementary lemma will be useful to bound integrals.

Lemma 2.3 Let ` be a positive integer and y, δ > 0. Then

J`,δ(y) := (−1)`
∫ y

0
log` zd

(
zδ
)

= yδ
(

(−1)` log` y +
`

δ
(−1)`−1 log`−1 y +

`(`− 1)

δ2
(−1)`−2 log`−2 y + · · ·

+
`(`− 1) · · · 2

δ`−1
(−1) log y +

`!

δ`

)
.
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Proof The proof is easily obtained by repeated integration by parts.

Corollary 2.4 For 0 < y ≤ 1 we have

0 ≤ J`,δ(y) ≤ yδ(` + 1)! max
{ 1

δ
, (− log y)

} `

.

In other words, limy→0 J`,δ(y) = 0.

For the remainder of this work, we will let

(2.2) I`,k(y) := J`, 1
k−1

(y) = (−1)`
∫ y

0
log` zd

(
z

1
k−1
)
.

We finish this section by recalling the statement of the following extension of Hölder’s
inequality.

Lemma 2.5 Let S be a measurable set of Rn or Cn and let f1, . . . , fs be measurable
complex or real valued functions. Then

∫
S
| f1 · · · fs|dx ≤

(∫
S
| f1|sdx

) 1
s

· · ·
(∫

S
| fs|sdx

) 1
s

.

3 Integration over Combinations of S(P, y)

In this section, we consider the integration over sets resulting from combining the
different S(P, y)’s.

Lemma 3.1 Let P(x) ∈ C[x] be a polynomial having k ≥ 2 non-zero complex coeffi-
cients each having modulus≥ 1. Let 0 < y ≤ 1. Then

0 ≤ (−1)`
∫

S(P,y)
log` |P(x)|dx

x
≤ CkI`,k(y).

Analogously, if P(x1, . . . , xn) ∈ C[x1, . . . , xn] and 0 < y small enough to satisfy equa-
tion (2.1),

0 ≤ (−1)`
∫

Sn(P,y)
log` |P(x1, . . . , xn)|dx1

x1
· · · dxn

xn
≤ CP J`,δP (y).

Proof The case ` = 1 is [La83, Lemma 4]. The general proof starts in the same way.
Define for 0 < z ≤ 1

h(z) := µ1(S(P, z)),

where we recall that µ1 stands for the Lebesgue measure of the set. Let the leading
coefficient of P(x) be a with |a| ≥ 1. Then a−1P is monic, and so Theorem 2.1 implies
that

h(z) ≤ Ck

( z

|a|

) 1
k−1 ≤ Ckz

1
k−1 .
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Now we compute the desired integral:

(−1)`
∫

S(P,y)
log` |P(x)|dx

x
= (−1)`

∫ z=y

z=0

∫
|x|=1
|P(x)|=z

log` z
dx

x
dz

= (−1)` log` yh(y)−
∫ y

0

d

dz

[
(− log z)`

]
h(z)dz

≤ (−1)` log` yCk y
1

k−1 −
∫ y

0

d

dz

[
(− log z)`

]
Ckz

1
k−1 dz,

where the last inequality is a consequence of the fact that (− log z)` is a positive de-
creasing function and its derivative is negative. By applying integration by parts again
we obtain

≤ (−1)`Ck

∫ y

0
log` zd

(
z

1
k−1
)
,

which finishes the proof of the first statement by Lemma 2.3 and equation (2.2)
The proof of the second statement follows along the same lines.

Lemma 3.2 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients with absolute value greater than 1 and 0 < y1, . . . , ys ≤ 1. Let
1 ≤ n ≤ s. Then

0 ≤ (−1)s

∫
⋂n

i=1 S(Pi ,yi )\
⋃s

i=n+1 S(Pi ,yi )
log |P1(x)| · · · log |Ps(x)|dx

x

≤
(

Ck1 In,k1 (y1) · · ·Ckn In,kn (yn)
) 1

n (−1)s−n log yn+1 · · · log ys.

Proof Notice that 0 ≤ − log |P(x)| ≤ − log y for x 6∈ S(P, y) for 0 < y ≤ 1.
Therefore,

(−1)s

∫
⋂n

i=1 S(Pi ,yi )\
⋃s

i=n+1 S(Pi ,yi )
log |P1(x)| · · · log |Ps(x)|dx

x

≤ (−1)s log yn+1 · · · log ys

∫
⋂n

i=1 S(Pi ,yi )\
⋃s

i=n+1 S(Pi ,yi )
log |P1(x)| · · · log |Pn(x)|dx

x

≤ (−1)s log yn+1 · · · log ys

∫
⋂n

i=1 S(Pi ,yi )
log |P1(x)| · · · log |Pn(x)|dx

x

≤ (−1)s−n log yn+1 · · · log ys

(
Ck1 In,k1 (y1) · · ·Ckn In,kn (yn)

) 1
n

by Lemmas 2.5 and 3.1.

Lemma 3.3 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients with absolute value greater than 1 and 0 < y1, . . . , ys ≤ 0. Then

0 ≤ (−1)s

∫
S(P1,y1)∪···∪S(Ps,ys)

log |P1(x)| · · · log |Ps(x)|dx

x

≤
∑

A⊂{1,...,s}

∏
i∈A

(
Cki I|A|,ki

(yi)
) 1
|A|

∏
i∈{1,...,s}\A

(− log yi).
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Proof We start with the observation that

s⋃
i=1

S(Pi , yi) =
⋃

A⊂{1,...,s}

(⋂
i∈A

S(Pi , yi)
∖ ⋃

i∈{1,...,s}\A

S(Pi , yi)

)
.

By applying Lemma 3.2, we get

(−1)s

∫
S(P1,y1)∪···∪S(Ps,ys)

log |P1(x)| · · · log |Ps(x)|dx

x

≤
∑

A⊂{1,...,s}

(−1)s

∫
⋂

i∈A S(Pi ,yi )\
⋃

i∈{1,...,s}\A S(Pi ,yi )
log |P1(x)| · · · log |Ps(x)|dx

x

≤
∑

A⊂{1,...,s}

∏
i∈A

(
Cki I|A|,ki

(yi)
) 1
|A|

∏
i∈{1,...,s}\A

(− log yi).

Setting y1 = · · · = ys = y and letting y → 0, we get the following result by
Corollary 2.4.

Corollary 3.4 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients. Let 0 < y < 1. As y approaches 0, we obtain

lim
y→0

∫
S(P1,y)∪···∪S(Ps,y)

log |P1(x)| · · · log |Ps(x)|dx

x
= 0,

where the speed of convergence is independent of the polynomials P1(x), . . . , Ps(x).

Lemma 3.5 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients with absolute value greater than 1 and 0 < y1, . . . , ys ≤ 1. Then

0 ≤ (−1)s

∫
S(P1,y1)∩···∩S(Ps,ys)

log |P1(x)| · · · log |Ps(x)|dx

x

≤
(

Ck1 Is,k1 (y1) · · ·Cks Is,ks (ys)
) 1

s .

Proof This is a consequence of Lemma 3.2 with n = s.

Lemma 3.6 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients with absolute value greater than 1 and 0 < y1, . . . , ys ≤ 1. Then

0 ≤
∫

S(P1,y1)∩···∩S(Ps,ys)
max
1≤i≤s

{log |Pi(x)|}dx

x

≤ (2π)1− 1
s
(
Ck1 Is,k1 (y1) · · ·Cks Is,ks (ys)

) 1
s .
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Proof Notice that

max
1≤i≤s

{log |Pi(x)|} = − min
1≤i≤s

{− log |Pi(x)|}.

In S(P1, y1) ∩ · · · ∩ S(Ps, ys), we have 0 ≤ min1≤i≤s{− log |Pi(x)|} ≤ − log |Pi(x)|
for any i = 1, . . . , s. Thus,(

− max
1≤i≤s

{
log |Pi(x)|

}) s
=
(

min
1≤i≤s

{− log |Pi(x)|}
) s

≤ (−1)s log |P1(x)| · · · log |Ps(x)|.

By applying Hölder’s inequality, and taking into account that the measure of
S(P1, y1) ∩ · · · ∩ S(Ps, ys) is bounded by 2π, we get

0 ≤
∫

S(P1,y1)∩···∩S(Ps,ys)
− max

1≤i≤s
{log |Pi(x)|}dx

x

≤ (2π)1− 1
s

(∫
S(P1,y1)∩···∩S(Ps,ys)

(
− max

1≤i≤s

{
log |Pi(x)|

}) s dx

x

) 1
s

≤ (2π)1− 1
s
(

Ck1 Is,k1 (y1) · · ·Cks Is,ks (ys)
) 1

s2 .

Again, we let y1 = · · · = ys = y and y → 0, and we obtain the following result.

Corollary 3.7 Let P1(x), . . . , Ps(x) ∈ C[x] be polynomials having k1, . . . , ks nonzero
complex coefficients. Let 0 < y ≤ 1. As y approaches 0, we obtain

lim
y→0

∫
S(P1,y)∩···∩S(Ps,y)

max
1≤i≤s

{log |Pi(x)|}dx

x
= 0,

where the speed of convergence is independent of the polynomials P1(x), . . . , Ps(x).

Observe that when ki = 1, the previous result is trivially true since the set S(Pi , y)
becomes empty for y sufficiently small.

Remark 3.8 Results analogous to Corollaries 3.4 and 3.7 can be proved for the case
where P1(x1, . . . , xn), . . . , Ps(x1, . . . , xn) are fixed polynomials in C[x1, . . . , xn].

4 Proof of Theorem 1.2

We begin by proving that the extended versions of Mahler measures always exist (i.e.,
that the integrals always converge). This has been used repeatedly in previous works,
but the details have never been published, so we include them here for completeness.

Theorem 4.1 Let P1(x1, . . . , xn), . . . , Ps(x1, . . . , xn) ∈ C[x1, . . . , xn] be nonzero
polynomials. Then the integrals giving the generalized Mahler measure and the mul-
tiple Mahler measure converge, i.e.,
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(i) |mmax(P1, . . . , Ps)| <∞;
(ii) |m(P1, . . . , Ps)| <∞;
(iii) if P1 = · · · = Ps = P, |ms(P)| <∞.

Proof (i) Let y > 0. We write∫
Tn

max
1≤i≤s

{log |Pi(x1, . . . , xn)|}dx1

x1
· · · dxn

xn

=

∫
Sn(P1,y)∩···∩Sn(Ps,y)

max
1≤i≤s

{
log |Pi(x1, . . . , xn)|

} dx1

x1
· · · dxn

xn

+

∫
S(P1,y)c∪···∪S(Ps,y)c

max
1≤i≤s

{
log |Pi(x1, . . . , xn)|

} dx1

x1
· · · dxn

xn
.

The second integral converges, while the first integral approaches 0 as y → 0 by
Corollary 3.7 and Remark 3.8. Therefore, the integral on the left converges.

(ii) For y > 0, we consider∫
Tn

log |P1(x1, . . . , xn)| . . . log |Ps(x1, . . . , xn)|dx1

x1
· · · dxn

xn

=

∫
Sn(P1,y)∪···∪Sn(Ps,y)

log |P1(x1, . . . , xn)| . . . log |Ps(x1, . . . , xn)|dx1

x1
· · · dxn

xn

+

∫
Sn(P1,y)c∩···∩Sn(Ps,y)c

log |P1(x1, . . . , xn)| . . . log |Ps(x1, . . . , xn)|dx1

x1
· · · dxn

xn
.

As before, the second integral converges, while the first integral approaches 0 as
y → 0 by Corollary 3.4 and Remark 3.8. Thus, the first integral converges.

(iii) This statement is a particular case of (ii).

Proof of Theorem 1.2 (i) Following [La83], we define F : Tn → R by F(ω) =
−max1≤i≤s{log |Pi(ω)|} for ω ∈ Tn. It suffices to prove that

lim
q(r)→∞

∣∣∣∣∫
T

Fr −
∫

Tn

F

∣∣∣∣ = 0.

Without loss of generality, we may assume that each coefficient of Pi has modulus
greater than or equal to 1, and therefore the same is true for Pi,r for q(r) sufficiently
large. For any 0 ≤ y ≤ 1 we construct a continuous function gy : Tn → R such that
0 ≤ gy(ω) ≤ 1 for all ω ∈ Tn, gy(ω) = 1 for max1≤i≤s{|Pi(ω)|} ≥ y, and gy(ω) = 0
for max1≤i≤s{|Pi(ω)|} ≤ 1

2 y. Therefore, gyFr is a continuous function on Tn for
0 ≤ y ≤ 1. Since F = gyF + (1− gy)F, the triangle inequality implies that

(4.1) lim sup
q(r)→∞

∣∣∣∣∫
T

Fr −
∫

Tn

F

∣∣∣∣ ≤ lim sup
q(r)→∞

∣∣∣∣∫
T

[gyF]r −
∫

Tn

gyF

∣∣∣∣
+ lim sup

q(r)→∞

∣∣∣∣∫
T

[
(1− gy)F

]
r

∣∣∣∣ + lim sup
q(r)→∞

∣∣∣∣∫
Tn

(1− gy)F

∣∣∣∣ .
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Now, by the Weierstrass approximation theorem, the first term goes to zero, since
gyF is continuous on Tn. The function [(1 − gy)F]r = (1 − gy,r)Fr vanishes in the
set
⋃

S(Pi,r, y)c = (
⋂

S(Pi,r, y))c, and it is bounded below by 0 and above by Fr in⋂
S(Pi,r, y). This implies

0 ≤ lim sup
q(r)→∞

∣∣∣∣∫
T

[
(1− gy)F

]
r

∣∣∣∣ ≤ lim sup
q(r)→∞

∣∣∣∣∫⋂
S(Pi,r,y)

Fr

∣∣∣∣ ,
which goes to zero as y → 0 by Corollary 3.7. Finally, the third term in (4.1) tends to
0 as y → 0, since F is integrable over Tn by Theorem 4.1(i).

Thus, lim supq(r)→∞ |
∫

T Fr −
∫

Tn F| = 0 since it is independent of y and tends to
zero as y → 0.

(ii) We proceed as before. We define F : Tn → R by F(ω) =
∏s

i=1(− log |Pi(ω)|)
for ω ∈ Tn. Without loss of generality, we may assume that each coefficient of Pi

has modulus greater than or equal to 1, and therefore the same is true for Pi,r for q(r)
sufficiently large. For any 0 ≤ y ≤ 1 we construct a continuous function gy : Tn → R
such that 0 ≤ gy(ω) ≤ 1 for all ω ∈ Tn, gy(ω) = 1 if |Pi(ω)| ≥ y for all i, and
gy(ω) = 0 if there is an i such that |Pi(ω)| ≤ 1

2 y. Therefore, gyF is a continuous
function on Tn for 0 ≤ y ≤ 1. The triangle inequality implies that

(4.2) lim sup
q(r)→∞

∣∣∣∣∫
T

Fr −
∫

Tn

F

∣∣∣∣ ≤ lim sup
q(r)→∞

∣∣∣∣∫
T

[gyF]r −
∫

Tn

gyF

∣∣∣∣
+ lim sup

q(r)→∞

∣∣∣∣∫
T

[
(1− gy)F

]
r

∣∣∣∣ + lim sup
q(r)→∞

∣∣∣∣∫
Tn

(1− gy)F

∣∣∣∣
The Weierstrass approximation theorem implies that the first term goes to zero, since
gyF is continuous on Tn. Now the function [(1 − gy)F]r = (1 − gy,r)Fr vanishes in
the set

⋂
S(Pi,r, y)c = (

⋃
S(Pi,r, y))c, and it is bounded below by 0 and above by Fr

in
⋃

S(Pi,r, y). Combining all of this,

0 ≤ lim sup
q(r)→∞

∣∣∣∣∫
T

[
(1− gy)F

]
r

∣∣∣∣ ≤ lim sup
q(r)→∞

∣∣∣∣∫⋃
S(Pi,r,y)

Fr

∣∣∣∣ .
The term on the right goes to zero as y → 0 by Corollary 3.4. The third term in (4.2)
tends to 0 as y → 0, since F is integrable over Tn by Theorem 4.1(ii).

Finally, lim supq(r)→∞ |
∫

T Fr −
∫

Tn F| = 0, since it is independent of y and tends
to zero as y → 0.

(iii) This case follows from (ii) by setting P1 = · · · = Ps = P. This concludes the
proof of the theorem.
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e-mail: issaz@dms.umontreal.ca mlalin@dms.umontreal.ca

http://dx.doi.org/10.4153/CMB-1981-069-5
http://dx.doi.org/10.4153/CMB-1981-069-5
http://dx.doi.org/10.1016/0022-314X(81)90033-0
http://dx.doi.org/10.1016/0022-314X(81)90033-0
http://dx.doi.org/10.1142/S0129167X04002363
http://dx.doi.org/10.1142/S0129167X04002363
http://dx.doi.org/10.4064/aa135-3-5
http://dx.doi.org/10.4064/aa135-3-5
http://dx.doi.org/10.1016/j.jnt.2007.03.002
http://dx.doi.org/10.1016/j.jnt.2007.03.002
http://dx.doi.org/10.1016/0022-314X(83)90063-X
http://dx.doi.org/10.1016/0022-314X(83)90063-X
http://dx.doi.org/10.2307/1968172
http://dx.doi.org/10.2307/1968172
http://dx.doi.org/10.1112/jlms/s1-37.1.341
http://dx.doi.org/10.4064/aa144-2-5
http://dx.doi.org/10.4064/aa144-2-5

