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Abstract. The Northcott property for special values of Dedekind zeta functions and more general motivic
L-functions was defined by Pazuki and Pengo. We investigate this property for any complex evaluation of

Dedekind zeta functions. The results are more delicate and subtle than what was proven for the function field
case in previous work of Li and the authors, since they include some surprising behavior in the neighborhood

of the trivial zeros. The techniques include a mixture of analytic and computer assisted arguments.

1. Introduction

Recently Pazuki and Pengo [18] considered a variant of the Northcott property for special values of L-
functions attached to mixed motives. Usually the Northcott property [13] refers to the fact that a set of
algebraic numbers with bounded height and bounded degree must be finite. In the number field case, the
problem studied by Pazuki and Pengo concerns special values of the Dedekind zeta function. For a field K
and s ∈ C denote by

ζ∗K(s) ∶= lim
t→s

ζK(t)
(t − s)ordt=s(ζK(t))

,

the first nonzero coefficient of the Taylor series for ζK around s.
For a fixed s = n ∈ Z and a fixed positive real number B, Pazuki and Pengo study the set of isomorphism

classes of number fields K given by

SB,n = {[K] ∶ ∣ζ∗K(n)∣ ≤ B},
and discuss the finiteness of this set under various conditions of B and n. For number fields, they prove that
the Northcott property holds for n a negative integer or n = 0, and it does not hold if n is a positive integer.
They also estimate the size of this set for the integers n such that the Northcott property holds.

In [6] Li and the authors of this note consider the analogous problem for isomorphism classes of function
fields K with constant field Fq. However, instead of restricting to special values with s = n ∈ Z, they work
directly with ζ∗K(s) with s a fixed arbitrary complex number. They are able to establish or partially establish

the question of the Northcott property outside the set 1
2
− log 2

log q
≤ Re(s) < 1

2
. More precisely, the Northcott

property holds when Re(s) < 1
2
− log 2

log q
and the set SB,s is infinite for B larger than a certain constant

depending on s in Re(s) ≥ 1
2
. This is illustrated by Figure 1. Moreover, remark that the gap corresponding

to 1
2
− log 2

log q
≤ Re(s) < 1

2
shrinks to the empty set as q tends to infinity. These results are consistent with what

Pazuki and Pengo obtained for the cases s = n ∈ Z.
The goal of this article is to return to the case considered by Pazuki and Pengo in [18] and to explore

the special values ζ∗K(s) associated to Dedekind zeta functions at any complex number. The motivation for
considering such questions comes naturally from a desire to better understand the results in [6]. Figure 2
gives an approximate (not to scale) illustration of the results obtained in this article over number fields.

We will say that s satisfies the Northcott property for B a real positive number if SB,s is finite.
Occasionally, we will work with ζK(s) instead of ζ∗K(s). We will say that s satisfies the Northcott property

for values of ζK if the set

{[K] ∶ ∣ζK(s)∣ ≤ B}
is finite. When ζK(s) /= 0, we have that ζK(s) = ζ∗K(s). The above definition is only different from the
standard Northcott property when working with values of s where ζK(s) may have zeros or poles.

We prove the following statements.
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1/2 10

Figure 1. For the base field Fq, with q a fixed prime power, the Northcott property holds
in the blue area. In the red area, SB,s is infinite for B greater than a certain constant (which
is zero in the case of the real segment [1/2,1]). The white gap disappears when q →∞.

1/2 10

Figure 2. Approximate (not to scale) illustration summarizing what is proven in the whole
article regarding the Northcott property for Dedekind zeta functions. The Northcott prop-
erty holds in the blue area. In the red area, SB,s is infinite for B greater than a certain
constant. Unlike the function field case, we do not have information regarding the situation
when Re(s) = 1 and s ≠ 1 as well as when Re(s) = 1

2
.
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Theorem 1.1. The Northcott property is satisfied for s = σ + iτ with σ, τ ∈ R and any B > 0 under the
following conditions:

● When s = σ + iτ with

σ < −1.5 and ∣τ ∣ > τ0 ∶=
2

π
tanh−1

⎛
⎝
ζ ( 5

2
)

3
√
2e2γ

⎞
⎠
= 0.063666 . . . ,

where

(1) γ = lim
n→∞

(− logn +
n

∑
k=1

1

k
)

is the Euler–Mascheroni constant given by γ = 0.577215 . . . .
● When s = σ + iτ = −2n + reiθ with n ∈ Z>0 and satisfying the following conditions

−2n − 1

2
≤ σ ≤ −2n + 1

2
, and ∣τ ∣ ≤ τ0,

as well as

r >max{ sin
−1(CC(n))

π
,
2 sin−1(CR(n))

π
}

where

CC(n) = π (
e−2γ

2
)
4n
ζ (2n + 1

2
)2

Γ (2n + 1
2
)2

18e4γ + ζ ( 5
2
)2

18e4γ − ζ ( 5
2
)2
,

and

CR(n) =
√
π (e

−2γ

2
)
2n
ζ(2n + 1

2
)

Γ(2n + 1
2
)

3e2γ

(18e4γ − ζ ( 5
2
)2)

1
2

.

● When s = σ + iτ = −2n + 1 + reiθ with n ∈ Z>1 and satisfying the following conditions

−2n + 1

2
≤ σ ≤ −2n + 3

2
, σ < σ0, and ∣τ ∣ ≤ τ0,

as well as

r > 1

π
sin−1

⎛
⎝
π (e

−γ

2
)
4n−2

ζ (2n − 1
2
)2

Γ (2n − 1
2
)2

18e4γ + ζ ( 5
2
)2

18e4γ − ζ ( 5
2
)2
⎞
⎠
.

● When s = σ + iτ with σ < 0 and

∣τ ∣ > (2eγ)2σ−1

tanh (π
2
(2eγ)2σ−1 ζ(1−σ)2

Γ(1−σ)2 )
ζ(1 − σ)2

Γ(1 − σ)2
.

The idea behind Theorem 1.1 is to use the functional equation of the Dedekind zeta function in order to
compare the value of ζK(s) with that of ζK(1− s), where Re(1− s) = 1−σ > 0, which is easier to understand
and control. However, this strategy requires the control of the discriminant ∆K and the Γ-factors. To control
the discriminant we use a result of Odlyzko [16] that gives a lower bound for the inferior limit of the root

discriminant ∣∆K ∣
1

[K∶Q] as the degree [K ∶ Q] goes to infinity. With these bounds in hand, it remains to
control the Γ-factors, which is done in stages, first when the imaginary part τ is sufficiently away from zero,
and then in discs centered at negative integers, and chosen in such a way that they cover all the strip around
the real negative axis, except for some smaller concentric discs. There are several strategies to bound τ and
to choose the discs. For Theorem 1.1, the choice of σ0 determines the choice of τ0, but the choice of σ0 = −1.5
is arbitrary. It is related with the fact that this method yields very sub-optimal results if we try to reach
−1, in the sense that the τ0 must be very large. Given that we do our analysis over intervals of length 1
centered at negative integers, the choice of σ0 = −1.5 is then natural. Figure 3 illustrates the strategy and
results of Theorem 1.1, except for the last item, which removes the condition σ < σ0, but it gives a relatively
bad bound for τ .
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Figure 3. Illustration of the Northcott property as verified by the first three items in
Theorem 1.1.

More precise results can be obtained by studying the region where the Northcott property holds with
a computer-generated graph (see Figure 9) and by approximating its boundary with analytic methods.
A strategy following this idea is described in Section A, and this allows us to numerically prove that if
s = σ + iτ = −1 + reiθ is such that

−1.5 ≤ σ ≤ σ1,
where σ1 ≈ −0.68 is a solution to

(2eγ) 1
2−σ

ζ(1 − σ)
∣Γ(1 − σ)

Γ(σ)
∣
1
2

= 1

and
r > 9.260260274818 × 10−2,

then s satisfies the Northcott property for any B > 0, which complements the statement of Theorem 1.1. In
fact, we can be more precise about this, and give information in the interval −1.5 ≤ σ ≤ ε (see Remarks A.6
and A.7 and the discussions following them). Table 1 exhibits a comparison of the numerical results and the
results of Theorem 1.1.

In addition, we provide an estimate for the number of elements in SB,s in the cases considered in Theorem
1.1.

Theorem 1.2. Let s = σ + iτ such that any of the conditions in Theorem 1.1 are satisfied. Then, there are
constants bs, fs depending only on s such that

#SB,s ≤ exp (bs(logB) (log (fs logB))3) .

Theorem 1.2 is obtained by applying a result of Couveignes [4] giving a bound for the number of K of
fixed degree over Q and fixed discriminant. This strategy was already employed both in [18] and in [6], and
Theorem 1.2 has the same strength as the equivalent results obtained in these articles.

The simplest negative result to examine is the right side of the critical strip.

Theorem 1.3. The Northcott property does not hold for s = σ + iτ with σ, τ ∈ R, σ > 1 and B ≥ ζ(σ)2.

This follows from the fact that, for quadratic fields, ζK(σ + iτ) ≤ ζ(σ)2.
We also have negative results on the left side of the critical strip, in the neighborhood of negative integers,

but not on the negative integers themselves (where the Northcott property holds as proven in [18]).
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n

Figure 4. Illustration of the knowledge gap between Theorems 1.1 and 1.4. As usual, the
Northcott property is verified in the blue area (this includes the center of the circle), while
the red area is known to be non-Northcott.

Theorem 1.4. The Northcott property does not hold for s = σ + iτ = −n + reiθ with n ∈ Z>0, and satisfying
that

0 < r < 1

π
sinh−1

⎛
⎝

π

Γ (n + 3
2
)2 ζ (n + 1

2
)2
( 2π

DM
)
2n+2⎞
⎠
,

where

DM = 3
1
8 ⋅ 7

1
12 ⋅ 13

1
12 ⋅ 19

1
6 ⋅ 23

1
3 ⋅ 29

1
12 ⋅ 31

1
12 ⋅ 35509

1
6 = 78.4269 . . . .

Remark 1.5. We remark that the radii of the circles appearing in Theorems 1.1 and 1.4 are both tending
to zero as n→∞.

Theorem 1.4 is obtained by applying a result of Hajir, Maire, and Ramakrishna [9], which is an improve-

ment of results of Martinet [11] giving upper bounds for the inferior limit of the root discriminant ∣∆K ∣
1

[K∶Q]

as the degree [K ∶ Q] goes to infinity. We remark here that the set where we can prove that the Northcott
property is not verified is a punctured disc around each negative integer.

There is a ring representing a gap of knowledge between Theorems 1.1 and 1.4 (see Figure 4). This lack
of knowledge originates from the gap between the lower and upper bounds for the inferior limits of the root
discriminants of number fields. Also rough bounds for the Γ-factors contribute to this gap, but these in
principle could be improved.

Finally, inside the critical strip, we have the following result.

Theorem 1.6. Assume the Generalized Riemann Hypothesis. Then the Northcott property does not hold
for s = σ + iτ with 1/2 < σ < 1.

Moreover, unconditionally, there is a B(s) > 0 (given by (42)) such that s does not satisfy the Northcott
property for the values of ζK for B > B(s).

The first part of Theorem 1.6 is obtained by applying a result of Lamzouri [10] on the distribution
of extreme values in families of quadratic Dirichlet L-functions that allows to construct arbitrarily many
quadratic extensions with bounded Dirichlet L-function at s. A result of Sono [21] on the second moment
of quadratic Dirichlet L-functions allows us to prove the second part.
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The main difference between the results for number fields and the analogue results for function fields
from [6] lies when Re(s) < 0. While the function field case has a relatively straightforward verification of

the Northcott property for Re(s) < 1
2
− log 2

log q
, this verification fails in a neighborhood of each negative integer

in the number field case. This surprising difference comes from the Γ-factors in the functional equation.
Another difference lies in the interior of critical strip. More precisely, in the strip where 1/2 < Re(s) < 1,
we have, conditionally on the Generalized Riemann Hypothesis, non-Northcott for any B > 0 in the number
field case, as opposed to results that are partial (for B larger than certain value) for Im(s) /= 0 in the function
field case. This is due to the strength of the result in [10] and can likely be translated to the function field
case as well, where the Riemann Hypothesis is known.

This article is organized as follows. Section 2 includes some necessary background on the Dedekind
zeta function, the Γ function, and hyperbolic trigonometric functions. The right side of the critical strip
is considered in Section 3, while Section 4 treats the left side. Section 5 considers the behavior inside the
critical strip. Finally, we include an Appendix where the case −1.5 < σ is discussed with numerical methods.
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2. Some background

In this section we recall some background regarding the Dedekind zeta function ζK(s), the Gamma
function, and some inequalities involving trigonometric and hyperbolic functions. Let K be a number field,
that is, a finite extension of Q of degree dK = r1 + 2r2, where r1 denotes the number of real embeddings and
r2, the number of pairs of complex embeddings. The Dedekind zeta function of K is given by

(2) ζK(s) ∶= ∑
I⊆OK

I /=(0)

1

NK/Q(I)s
= ∏

P⊆OK

(1 −NK/Q(P )−s)−1, Re(s) > 1,

where the sum takes place over all the ideals in the integral domain OK and the Euler product goes over the
prime ideals of OK .

Let ∆K denote the discriminant of K/Q. The Dedekind zeta function ζK(s) satisfies the following
functional equation

ζK(s) = ζK(1 − s)
ΓR(1 − s)r1ΓC(1 − s)r2

ΓR(s)r1ΓC(s)r2
∣∆K ∣

1
2−s,

where

ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s).
Here

Γ(s) ∶= ∫
∞

0
xs−1e−xdx, Re(s) > 1

is the gamma function, which has a meromorphic continuation to the whole complex plane, with simple poles
at 0 and at the negative integers. When n is a positive integer, we have

Γ(n) = (n − 1)!
6
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The value at a complex number can be controlled by the value at a real argument. More precisely, writing
s = σ + iτ , we have,

∣Γ(s)∣ ≤∣Γ(σ)∣, (see [1, Eq. 6.1.26]);(3)

Γ(s)Γ(1 − s) = π

sin(πs)
, s /∈ Z, (Euler’s reflection formula [1, Eq. 6.1.17]);(4)

Γ(s)Γ(s + 1

2
) =21−2s

√
πΓ(2s), (Lagrange’s duplication formula [1, Eq. 6.1.18]);(5)

∣Γ(s)∣ ≥ Γ(σ)
∣ cosh(πτ)∣ 12

, σ ≥ 1

2
, (see [5, Eq. 5.6.7]);(6)

1

Γ(z)
=zeγz

∞
∏
k=1
(1 + z

k
) e−z/k, (Euler’s infinite product [1, Eq. 6.1.3]).(7)

In the last formula, γ is the Euler–Mascheroni constant γ = 0.577215 . . . given by (1).
The digamma function is the logarithmic derivative of the gamma function:

(8) ψ(s) = d

ds
log(Γ(s)).

It can be expressed with the following series ([1, Eq. 6.3.16])

(9) ψ(s + 1) = −γ +
∞
∑
k=1
(1
k
− 1

k + s
) ,

for s /= −1,−2, . . . .
We will need some bounds relating trigonometric functions and hyperbolic functions. For example, we

have

(10) ∣ sin(s)∣ ≥ ∣ sinh(τ)∣.

(See [1, Eq. 4.3.83].)
The following result will be used to bound ∣ sin(z)∣ and ∣ cos(z)∣ in terms of ∣z∣.

Lemma 2.1. For any z ∈ C, we have

∣ sin(∣z∣)∣ ≤ ∣ sin(z)∣,(11)

∣ sin(z)∣ ≤ sinh(∣z∣).(12)

Similarly we have

∣ cos(∣z∣)∣ ≤ ∣ cos(z)∣,(13)

∣ cos(z)∣ ≤ cosh(∣z∣).(14)

Proof. Notice that the upper bound on ∣ sin(z)∣ and ∣ cos(z)∣ are well-known (see for example [1, Eq. 4.3.87,
Eq. 4.3.86]).

Write for simplicity z = reit, where r ≥ 0 and t ∈ [0,2π). Consider

∣ sin(z)∣2 = ∣ sin(reit)∣2 = sin(r cos(t))2 cosh(r sin(t))2 + cos(r cos(t))2 sinh(r sin(t))2 =∶ f(t).

The derivatives with respect to t give

f ′(t) =r sinh(2r sin(t)) cos(t) − r sin(2r cos(t)) sin(t),

f ′′(t) =2r2 cosh(2r sin(t)) cos(t)2 + 2r2 cos(2r cos(t)) sin(t)2

− r sinh(2r sin(t)) sin(t) − r sin(2r cos(t)) cos(t).

We can focus on [0,2π). Studying the derivatives, we find minima at 0 and π as well as maxima at 1
2
π and

3
2
π. Thus, we obtain

sin(r)2 ≤ f(t) ≤ sinh(r)2.
By taking square roots everywhere in the above inequality we obtain the result.
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Similarly, consider

∣ cos(z)∣2 = ∣ cos(reit)∣2 = cos(r cos(t))2 cosh(r sin(t))2 + sin(r cos(t))2 sinh(r sin(t))2 =∶ g(t).
As before, we have

g′(t) =r sinh(2r sin(t)) cos(t) + r sin(2r cos(t)) sin(t),

g′′(t) =2r2 cosh(2r sin(t)) cos(t)2 − 2r2 cos(2r cos(t)) sin(t)2

− r sinh(2r sin(t)) sin(t) + r sin(2r cos(t)) cos(t).

We study the derivatives on [0,2π), and we find minima at 0 and π and maxima at 1
2
π and 3

2
π. This gives

cos(r)2 ≤ g(t) ≤ cosh(r)2.
By taking square roots everywhere in the above inequality we obtain the result. □

3. The right side of the critical strip

To begin, we consider the Northcott property on the right side of the critical strip, that is, Cσ>1, where
we obtain a result conditionally on the value of B. The result will follow from a comparison between ζK(s)
and ζ(σ)dK , where dK is the degree of the extension K/Q.

Lemma 3.1. Let s = σ + iτ with σ > 1. Then
1

ζ(σ)dK
≤ ∣ζK(s)∣ ≤ ζ(σ)dK .

Notice that this result bounds ∣ζK(s)∣ by small constants except near σ = 1. In addition, since dK can be
arbitrary, the above bounds are not absolute for s.

Proof. We start by proving bounds in terms of ζK(σ). Since σ > 1, we have

(15) ∣ζK(σ + iτ)∣ =

RRRRRRRRRRRRRRRRR

∞
∑
n=1

∑
I⊆OK

NK/Q(I)=n

1

nσ+iτ

RRRRRRRRRRRRRRRRR

≤
∞
∑
n=1

∑
I⊆OK

NK/Q(I)=n

1

nσ
= ζK(σ),

and this yields an upper bound.
To get a lower bound, we take the logarithm of the Euler product (2) and use the fact that 1+ cos(θ) ≥ 0

for any θ to get

log ζK(σ) +Re log ζK(σ + iτ) =∑
P

− log(1 −NK/Q(P )−σ) −Re log(1 −NK/Q(P )−σ−iτ)

=∑
P

∞
∑
j=1

1 +Re(NK/Q(P )−iτj)
j∣NK/Q(P )j ∣σ

=∑
P

∞
∑
j=1

1 + cos(τ log ∣NK/Q(P )j ∣)
j∣NK/Q(P )j ∣σ

≥ 0.(16)

By combining (15) and the exponential of (16), we conclude that

(17)
1

ζK(σ)
≤ ∣ζK(σ + iτ)∣ ≤ ζK(σ).

Finally, using the fact that NK/Q(P ) is a power of the prime p ∈ Z lying under the prime ideal P ⊆ OK , we
have that

ζK(σ) = ∏
P⊆OK

(1 −NK/Q(P )−σ)−1 ≤∏
p

(1 − p−σ)−dK = ζ(σ)dK ,

since there are at most dK prime ideals P lying over each p. By combining with (17), we get the desired
result. □

Combining the above, we arrive at the following result.

Theorem 3.2. Let s = σ + iτ with σ > 1. Then the Northcott property does not hold at s for any B ≥ ζ(σ)2.
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Proof. Fix B ≥ ζ(σ)2. The upper bound in Lemma 3.1 implies that for any quadratic field K,

∣ζK(s)∣ = ∣ζK(σ + iτ)∣ ≤ ζ(σ)2.

This gives an infinite family of isomorphism classes of number fields with ∣ζK(s)∣ ≤ B and the result follows.
□

4. The left side of the critical strip

We now turn our attention to the left side of the critical strip, namely, Cσ<0. In this set, Pazuki and
Pengo [18] proved that the Northcott property is satisfied at the negative integers and zero. We will extend
this result to show that the Northcott property is satisfied away from the negative integers. We will then see
that the Northcott property is not satisfied in a neighborhood around each negative integer that excludes
the integer itself.

Before proceeding to these considerations, we recall some results giving bounds to discriminants in terms
of degrees, and prove some basic lemmas. We start by recalling the following statement.

Theorem 4.1 ([16],[9]). Consider

δ(n) = min
dK=n

∣∆K ∣,

that is, the minimum of the absolute values of the discriminants of all the numbers fields of fixed degree n
over Q. Let

D = lim inf
n→∞

δ(n)1/n.

Then we have

Dm ≤D ≤DM ,

where

Dm ∶=4πeγ = 22.3816 . . . ,

DM ∶=3
1
8 ⋅ 7

1
12 ⋅ 13

1
12 ⋅ 19

1
6 ⋅ 23

1
3 ⋅ 29

1
12 ⋅ 31

1
12 ⋅ 35509

1
6 = 78.4269 . . . ,

and γ is the Euler–Mascheroni constant γ = 0.577215 . . . given by (1).

Remark 4.2. The lower bound appeared as a culmination of a series of articles by Odlyzko [14–16]. (See
also the surveys of Poitou [19] and Odlyzko [17].) Odlyzko’s method is a refinement, using ideas of Serre [20],
of an analytic method of Stark [22]. This method was a substantial improvement over previous ideas coming
directly from Minkowski’s bounds. A better lower bound, 8πeγ , is known under the Generalized Riemann
Hypothesis.

The upper bounds come from constructing infinite towers of fields with controlled root discriminant. This

idea was due to Martinet [11], and for a long time, his bound of 23/2 ⋅ 114/5 ⋅ 23 1
2 = 93.38 . . . was the best

known. It was later improved by Hajir and Maire [8] and finally by Hajir, Maire, and Ramakrishna [9].
The bound in question is obtained by constructing an infinite tower of fields over the totally imaginary field
k = Q(α) with α a root of x12 + 339x10 − 19752x8 − 2188735x6 + 284236829x4 + 4401349506x2 + 15622982921,
that has degree dk = 12 and discriminant ∣∆k ∣ = 7 ⋅ 13 ⋅ 192 ⋅ 234 ⋅ 29 ⋅ 31 ⋅ 355092.

We begin with a simple lemma that transforms the bounds under consideration from field dependent to
degree dependent. Together with Lemma 3.1, the following statement gives bounds for each of the three
factors involved in the functional equation of ζK(s).

Lemma 4.3. Let s ∈ C and

Γm(s) =min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣ΓR(1 − s)

ΓR(s)
∣ ,

¿
ÁÁÀ∣ΓC(1 − s)

ΓC(s)
∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We have the following bound

Γm(s)dK ≤ ∣ΓR(1 − s)r1ΓC(1 − s)r2
ΓR(s)r1ΓC(s)r2

∣ .
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We remark that the above bound is only dependent on the degree of the extension K/Q and the number
of complex and real embeddings, but it is independent of the field itself.

Proof. To show this, we consider two cases. Writing γR(s) = ∣ΓR(1−s)
ΓR(s) ∣ and γC(s) = ∣

ΓC(1−s)
ΓC(s) ∣

1
2
, we first suppose

that γR(s) ≤ γC(s) so that Γm(s) = γR(s). Then
∣γr1R (s)γ

2r2
C (s)∣ ≥ ∣γ

r1
R (s)γ

2r2
R (s)∣ = Γm(s)dK .

Similarly, if γC(s) ≤ γR(s), we find

∣γr1R (s)γ
2r2
C (s)∣ ≥ ∣γ

r1
C (s)γ

2r2
C (s)∣ = Γm(s)dK .

□

The combination of Lemmas 3.1 and 4.3 yields the following key result, which gives a sufficient condition
for having the Northcott property on the left side of the critical strip.

Proposition 4.4. Let s = σ + iτ with σ < 0, and suppose that we have

Γm(s)
ζ(1 − σ)

D
1
2−σ
m > 1.(18)

Then the Northcott property holds at s for any B > 0.

Proof. Let s ∈ Cσ<0 such that condition (18) is true. Then, for ε > 0 sufficiently small, we have that

(19)
Γm(s)
ζ(1 − σ)

(Dm − ε)
1
2−σ > 1.

By Theorem 4.1 there are only finitely many number fields such that

∆K ≤ (Dm − ε)dK .

Combining this with (19), we conclude that for all but finitely many fields K, we have that

∣ζK(s)∣ ≥ ∣ζK(1 − s)∣Γm(s)dK ∣∆K ∣
1
2−σ ≥ Γm(s)dK

ζ(1 − σ)dK
(Dm − ε)dK( 12−σ),(20)

where we have applied Lemmas 3.1 and 4.3. The statement follows from the fact that for large enough
degrees, the number on the right hand side of (20) is arbitrarily large and that for a fixed degree, there are
only finitely many fields with discriminant bounded by any constant. □

Remark 4.5. We remark that inequality (18) is never satisfied when s ∈ Z<0. Thus, the s ∈ Cσ<0 for which
(18) is true satisfy that ζK(s) = ζ∗K(s).

A natural question is to bound the size of SB,s in the cases when it is finite. This was done by Pazuki
and Pengo [18] for the case s = n ∈ Zn<0 using the following result of Couveignes [4].

Theorem 4.6. [4, Theorem 4, simplified version] There exists an absolute and computable constant Q such
that the following is true. Let K be a number field of degree d ≥ Q and discriminant ∆K . Then, there are at
most

(dd∣∆K ∣)Q(log d)
2

possibilities for K.

Although Couveignes does not give the value of Q, this constant is only related to the technicalities of
the proof and is independent of the field.

Using Theorem 4.6, we can prove the following bound, which extends the result of [18].

Theorem 4.7. Let s = σ + iτ with σ < 0 and suppose that

(21)
Γm(s)
ζ(1 − σ)

D
1
2−σ
m > 1.

Then, we have

#SB,s ≤ exp(2Q(
1

1
2
− σ
+ cs
as
(1 + logDm)) (logB) (log (

cs
as

logB))
3

)

10



where

as = log
⎛
⎝
Γm(s)D

1
2−σ
m

ζ(1 − σ)
⎞
⎠
,

and cs is a constant depending on s and chosen so that

c2/3s as (1 −
1

cs
) > 8.6(1

2
− σ) .

Proof. By Theorem 4.6, we have that

#{[K] ∶ ∣∆K ∣ = x, dK = d} ≤ dQd(log d)2xQ(log d)
2

.

Thus, we have

#{[K] ∶ ∣∆K ∣ ≤X,dK ≤D} ≤
X

∑
x=1

D

∑
d=1

dQd(log d)2xQ(log d)
2

≤DQD(logD)2+1XQ(logD)
2+1

≤ exp (2QD(logD)3 + 2Q(logX)(logD)2) .
Now suppose that

∣ζK(s)∣ ≤ B.
By equation (20), we must have

∣ζK(1 − s)∣Γm(s)dK ∣∆K ∣
1
2−σ ≤ B.

Combining the above with (21), we must have

∣ζK(1 − s)∣
⎛
⎝
ζ(1 − σ)

D
1
2−σ
m

⎞
⎠

dK

∣∆K ∣
1
2−σ ≤ B.

Now we apply Lemma 3.1 to conclude

(22)
∣∆K ∣

1
2−σ

D
dK( 12−σ)
m

≤ B.

From the lower bound

log ∣∆K ∣ ≥ dK log(Dm) + r1(K) − 8.6d1/3K ,

(see [19, Equation 22]) and Lemma 3.1, one can deduce that

B ≥ ∣ζK(1 − s)∣Γm(s)dK ∣∆K ∣
1
2−σ ≥

⎛
⎝
Γm(s)D

1
2−σ
m

ζ(1 − σ)
⎞
⎠

dK

e−8.6d
1/3
K
( 12−σ).

The term involving d
1/3
K in the exponent decreases at a much lower speed than the other term.

Letting

as ∶= log
⎛
⎝
Γm(s)D

1
2−σ
m

ζ(1 − σ)
⎞
⎠
,

we have

dKas ≤ logB + 8.6d1/3K (
1

2
− σ) .

Suppose that dKas > cs logB. Then we have

d
2/3
K as (1 −

1

cs
) ≤ 8.6(1

2
− σ) .

But this implies that for B ≥ e,

c2/3s as (1 −
1

cs
) ≤ (cs logB)2/3as (1 −

1

cs
) ≤ 8.6(1

2
− σ) ,

which gives a contradiction if we choose cs sufficiently large (depending only on s).
11



Thus we have that

dK ≤
cs
as

logB and ∣∆K ∣ ≤ B
1

1
2
−σB

cs
as

logDm ,

where the second inequality comes from (22). Setting

D = cs
as

logB and X = B
1

1
2
−σ
+ cs

as
logDm

,

we obtain

#SB,s ≤ exp(2Q
cs
as
(logB) (log ( cs

as
logB))

3

+ 2Q( 1
1
2
− σ
+ cs
as

logDm)(logB) (log (
cs
as

logB))
2

)

≤ exp(2Q( 1
1
2
− σ
+ cs
as
(1 + logDm)) (logB) (log (

cs
as

logB))
3

)

□

4.1. Away from the real line. The next step is to give a general idea of the values of s that respect the
condition in Proposition 4.4. To do this, it is useful to search for lower bounds for Γm(s), which follow from

individual bounds for the ratios γR(s) = ∣ΓR(1−s)
ΓR(s) ∣ and γC(s) = ∣

ΓC(1−s)
ΓC(s) ∣

1
2
.

Lemma 4.8. Let s = σ + iτ ∈ C ∖Z with σ < 0. Then

γC(s) ≥
(2π)σ− 1

2

√
π

Γ(1 − σ) tanh(πτ)
1
2 .

and

γR(s) ≥
√
2
(2π)σ− 1

2

√
π

Γ (1 − σ) ∣tanh(πτ
2
)∣ .

Proof. First consider the bound for ΓC. By applying Euler’s reflection formula (4), we have

γC(s)2 = ∣
2(2π)s−1Γ(1 − s)
2(2π)−sΓ(s)

∣ = (2π)2σ−1∣Γ(1 − s)∣2 ∣ sin(πs)∣
π

.(23)

Now we apply inequalities (6) and (10) and we obtain

γC(s)2 ≥
(2π)2σ−1

π
Γ(1 − σ)2 ∣ sin(πs)

cosh(πτ)
∣(24)

≥ (2π)
2σ−1

π
Γ(1 − σ)2∣ tanh(πτ)∣.

Now consider the bound for ΓR. Again we apply Euler’s reflection formula (4) as well as inequalities (6)
and (10), together with Lagrange’s duplication formula (5).

γR(s) = πσ− 1
2

RRRRRRRRRRR

Γ ( 1−s
2
)

Γ ( s
2
)

RRRRRRRRRRR

= πσ− 1
2 ∣Γ(1 − s

2
)Γ(1 − s

2
)∣
∣sin(πs

2
)∣

π
(25)

≥ πσ− 1
2

Γ ( 1−σ
2
)

∣cosh (πτ
2
)∣

1
2

Γ (1 − σ
2
)

∣cosh (πτ
2
)∣

1
2

∣sin(πs
2
)∣

π

≥ π
σ− 1

2

√
π

2σΓ (1 − σ)
RRRRRRRRRRR

sin (πs
2
)

cosh (πτ
2
)

RRRRRRRRRRR
(26)

≥
√
2
(2π)σ− 1

2

√
π

Γ (1 − σ) ∣tanh(πτ
2
)∣ .

□
12



Figure 5. Illustration comparing condition (27) in the proof of Theorem 4.9 (in blue) and
condition (18) from Proposition 4.4 (in grey).

The previous results allow us to give a large region to the left of the critical strip where the Northcott
property is satisfied.

Theorem 4.9. Let s = σ + iτ such that

σ < σ0 ∶= −1.5 and ∣τ ∣ > τ0 ∶=
2

π
tanh−1

⎛
⎝
ζ ( 5

2
)

3
√
2e2γ

⎞
⎠
= 0.063666 . . . .

Then the Northcott property holds at s for any B > 0.

Proof. In fact, for such values of σ, τ we have that
√
2Γ(1 − σ)∣ tanh(πτ

2
)∣

√
πζ(1 − σ)

(Dm

2π
)

1
2−σ
> 1 and

Γ(1 − σ)∣ tanh(πτ)∣ 12√
πζ(1 − σ)

(Dm

2π
)

1
2−σ
> 1.(27)

Remark that the functions Γ(1 − σ), (Dm

2π
)

1
2−σ = (2eγ) 1

2−σ, and 1
ζ(1−σ) all increase as σ decreases in the

negative part of the real axis. Now ∣ tanh(πτ
2
)∣ = tanh(π∣τ ∣

2
) and ∣ tanh(πτ)∣ 12 = tanh(π∣τ ∣)

1
2 are increasing

functions of ∣τ ∣. Thus, the worse possible case is with σ = σ0 and τ = τ0. Fixing σ = σ0 ∶= −1.5, we evaluate in
σ0 and choose τ0 accordingly so that the inequalities in (27) are satisfied. Figure 6 illustrates the condition
(27).

We then combine the inequalities (27) with Proposition 4.4 and Lemma 4.8 to conclude.
□

4.2. The neighborhood of the real line and away from the integers. In this section we continue to
restrict to the condition σ < σ0 but we now focus on the case where ∣τ ∣ ≤ τ0. Since ΓR behaves very differently
on odd and even integers, we consider the two cases separately. To cover the remaining strip that has not
been covered in Section 4.1, we notice that it suffices to investigate the Northcott property in discs centered
at negative integers and such that the radii are large enough to cover the whole strip ∣τ ∣ ≤ τ0. In other words,

if s = −m + reiθ, it then suffices to consider r ≤
√

1
4
+ τ20 (see Figure 7).

The strategy is to determine a specific criterion on s so that it respects the condition in Proposition 4.4.

4.2.1. The negative even integers. When we look at even integers, both cases of Γm are small near −2n.
However, we will see that when we are sufficiently far from −2n, these terms can be compensated by large
terms in order to satisfy condition (18). This motivates us to write s = −2n + reiθ, with the goal to get a
criterion in terms of r. We proceed to establish these lower bounds.

13



Figure 6. Illustration of condition (27) in the proof of Theorem 4.9.

√
1
4
+ τ20

τ = τ0

τ0

1
2−n −n + 1

Figure 7. The minimal radius needed to cover the remaining strip ∣τ ∣ ≤ τ0 is
√

1
4
+ τ20 .

Lemma 4.10. Let s = σ + iτ = −2n + reiθ ∈ C be such that it lies in the rectangle −2n − 1
2
≤ σ ≤ −2n + 1

2
and

∣τ ∣ ≤ τ0, where τ0 > 0 is arbitrary. Then

γC(s) ≥
(2π)σ− 1

2

√
π

Γ(1 − σ) ∣ sin(πr)
cosh(πτ0)

∣
1
2

and

γR(s) ≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRR

sin (πr
2
)

cosh (πτ0
2
)

RRRRRRRRRRR
.

Remark 4.11. While Lemma 4.10 is true for τ0 > 0 arbitrary, it will be applied to the τ0 defined in Theorem
4.9. Because we have a precise formula for tanh (πτ0

2
) from Theorem 4.9, identities such as cosh(2α) =

1+tanh2(α)
1−tanh2(α) = 2 cosh

2(α) − 1 lead to

cosh(πτ0) =
18e4γ + ζ ( 5

2
)2

18e4γ − ζ ( 5
2
)2
= 1.020069 . . .

and

cosh(πτ0
2
) = 3

√
2e2γ

(18e4γ − ζ ( 5
2
)2)

1
2

= 1.005004 . . . .

14



Proof of Lemma 4.10. First we consider ΓC. By inequality (24), (11), and the increasing property of cosh(x)
for x > 0, we have

γC(s) ≥
(2π)σ− 1

2

√
π

Γ(1 − σ) ∣ sin(πs)
cosh(πτ)

∣
1
2

≥ (2π)
σ− 1

2

√
π

Γ(1 − σ) ∣ sin(πr)
cosh(πτ0)

∣
1
2

.

Now we consider ΓR. By inequality (26), we have

γR(s) ≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRR

sin (πs
2
)

cosh (πτ
2
)

RRRRRRRRRRR

≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRR

sin (πr
2
)

cosh (πτ0
2
)

RRRRRRRRRRR
.

where we have used again (11) and the fact that cosh(x) is an increasing function for x > 0. □

We have what we need to show the following result.

Proposition 4.12. Let s = σ + iτ = −2n + reiθ ∈ C be such that it lies in the rectangle −2n − 1
2
≤ σ ≤ −2n + 1

2
and ∣τ ∣ ≤ τ0. Define

ρ(−2n) =max{ sin
−1(CC(n))

π
,
2 sin−1(CR(n))

π
}

where

CC(n) = π (
2π

Dm
)
4n ζ (2n + 1

2
)2

Γ (2n + 1
2
)2
∣ cosh(πτ0)∣

and

CR(n) =
√
π√
2
( 2π

Dm
)
2n ζ(2n + 1

2
)

Γ(2n + 1
2
)
∣cosh(πτ0

2
)∣ .

Then if r > ρ(−2n), the Northcott property holds at s for any B > 0.

We refer to Table 1 for the values of ρ(−2n) at small positive integers n.

Proof. The result follows by combining the previous statements. More specifically, Proposition 4.4 together
with Lemma 4.10 give certain criteria for the Northcott property that apply under the conditions of the
statement. Here we take into account that σ ∈ [−2n − 1

2
,−2n + 1

2
] and the strategy will be to find bounds in

terms of n by taking the worst possible cases.
First we consider the complex case. It follows that a sufficient condition for s to satisfy the Northcott

property when Γm(s) = γC(s) is

1√
π
(Dm

2π
)

1
2−σ Γ (1 − σ)

ζ (1 − σ)
∣ sin(πr)
cosh(πτ0)

∣
1
2

> 1.

By considering the worst case in each factor, we find

1√
π
(Dm

2π
)
2n Γ (2n + 1

2
)

ζ (2n + 1
2
)
∣ sin(πr)
cosh(πτ0)

∣
1
2

> 1,

which is the same as requiring

CC(n) = π (
2π

Dm
)
4n ζ (2n + 1

2
)2

Γ (2n + 1
2
)2
∣ cosh(πτ0)∣ < sin(πr).(28)

15



In the real case, a sufficient condition for s to satisfy the Northcott property when Γm(s) = γR(s) is
√
2√
π
(Dm

2π
)

1
2−σ Γ(1 − σ)

ζ(1 − σ)

RRRRRRRRRRR

sin (πr
2
)

cosh (πτ0
2
)

RRRRRRRRRRR
> 1.

Considering the worst case in each factor gives
√
2√
π
(Dm

2π
)
2n Γ(2n + 1

2
)

ζ(2n + 1
2
)

RRRRRRRRRRR

sin (πr
2
)

cosh (πτ0
2
)

RRRRRRRRRRR
> 1,

which is the same as requiring

CR(n) =
√
π√
2
( 2π

Dm
)
2n ζ(2n + 1

2
)

Γ(2n + 1
2
)
∣cosh(πτ0

2
)∣ < sin(πr

2
) .(29)

With inequalities (28) and (29) in place, we immediately get the following constraints for r

(a)

sin−1(CC(n))
π

< r < 1 − sin−1(CC(n))
π

,

(b)

2 sin−1(CR(n))
π

< r < 2 − 2 sin−1(CR(n))
π

.

Note that as long as

(30)

√
1

4
+ τ20 <min{1 − sin−1(CC(n))

π
,2 − 2 sin−1(CR(n))

π
} ,

the upper conditions in (a) and (b) are automatically verified. The minimum from the right hand side of
(30) is achieved at n = 1, namely,

1 − 1

π
sin−1

⎛
⎝
ζ ( 5

2
)2 e−4γ

9
∣ cosh(πτ0)∣

⎞
⎠
= 1 − 1

π
sin−1

⎛
⎜
⎝

ζ ( 5
2
)2 (18 + e−4γζ ( 5

2
)2)

9 (18e4γ − ζ ( 5
2
)2)

⎞
⎟
⎠
= 0.993547 . . . ,

but we have √
1

4
+ τ20 = 0.504037 . . . ,

and therefore (30) is satisfied.
In conclusion, it suffices to define the function ρ by

max{ sin
−1(CC(n))

π
,
2 sin−1(CR(n))

π
} .

□

Remark 4.13. Proposition 4.12 gives the second item in Theorem 1.1.

Taking the worst case we have the following consequence.

Corollary 4.14. With the same notation as in Proposition 4.12, the Northcott property holds for −2n− 1
2
≤

σ ≤ −2n + 1
2
and

r > ρ(−2) = 2

π
sin−1

⎛
⎜
⎝

ζ ( 5
2
)

(18e4γ − ζ ( 5
2
))

1
2

⎞
⎟
⎠
= 0.063889 . . .

and any B > 0.

Remark 4.15. We observe that the ρ(n) given in Proposition 4.12 satisfy ρ(−2n) → 0 as n → ∞ and this
convergence is actually quite fast. Therefore the estimate from Corollary 4.14 is a very crude approximation
of the region in which the Northcott property is known to hold.

16



4.2.2. The negative odd integers. In this case the lower bound for the term involving ΓC will be similar to
what we had in Lemma 4.10, while the lower bound for the term involving ΓR will be different.

Lemma 4.16. Let s = σ + iτ = −2n + 1 + reiθ ∈ C be such that it lies in the rectangle −2n + 1
2
≤ σ ≤ −2n + 3

2
and ∣τ ∣ ≤ τ0, where τ0 > 0 is arbitrary. Then

γC(s) ≥
(2π)σ− 1

2

√
π

Γ(1 − σ) ∣ sin(πr)
cosh(πτ0)

∣
1
2

(31)

and

(32) γR(s) ≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRRRRRRRR

cos(π
2

√
1
4
+ τ20 )

cosh (πτ0
2
)

RRRRRRRRRRRRRRRRR

.

Remark 4.17. As in Remark 4.11, while Lemma 4.16 is true for τ0 > 0 arbitrary, it will be applied to the
τ0 defined in Theorem 4.9. The precise formula for tanh (πτ0

2
) from Theorem 4.9 gives us

cos
⎛
⎝
π

2

√
1

4
+ τ20
⎞
⎠
= cos

⎛
⎜⎜
⎝

1

2

¿
ÁÁÁÀπ2

4
+
⎛
⎝
log
⎛
⎝
3
√
2e2γ + ζ ( 5

2
)

3
√
2e2γ − ζ ( 5

2
)
⎞
⎠
⎞
⎠

2⎞
⎟⎟
⎠
= 0.702608 . . . .

Proof of Lemma 4.16. The inequality (31) is obtained by following the same steps as in the proof of Lemma
4.10. Remark that attempting to follow these ideas with ΓR produces

γR(s) ≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRRRRR

sin(π −2n+1+re
iθ

2
)

cosh (πτ0
2
)

RRRRRRRRRRRRRR
,

which is not small near odd integers. Actually we have

∣sin(π−2n + 1 + re
iθ

2
)∣ = ∣cos(π re

iθ

2
)∣ ≥ cos(πr

2
),

where the last inequality follows from (13).

Since the cosine function cos(πr
2
) decreases from 0 to 1, it will be the smallest at r =

√
1
4
+ τ20 < 1. We

find

γR(s) ≥
√
2√
π
(2π)σ−

1
2Γ (1 − σ)

RRRRRRRRRRRRRRRRR

cos(π
2

√
1
4
+ τ20 )

cosh (πτ0
2
)

RRRRRRRRRRRRRRRRR

,

which concludes the proof.
□

Since the lower bound (32) does not tend to 0 as r → 0, the fact that the Northcott property holds near
odd integers when Γm(s) = γR(s) will only depend on n and τ0. In fact

Proposition 4.18. Let s = σ+ iτ = −2n+1+reiθ ∈ C be such that it lies in the rectangle −2n+ 1
2
≤ σ ≤ −2n+ 3

2
and ∣τ ∣ ≤ τ0, where τ0 > 0 is arbitrary. Suppose that Γm(s) = γR(s). Then if

√
2√
π

Γ (2n − 1
2
)

ζ (2n − 1
2
)

RRRRRRRRRRRRRRRRR

cos(π
2

√
1
4
+ τ20 )

cosh (πτ0
2
)

RRRRRRRRRRRRRRRRR

(Dm

2π
)
2n−1

> 1,

the Northcott property holds for s and any B > 0.

Remark 4.19. We can see that in the worst case, namely n = 2, τ0 must be at least 0.85 for the above
condition to fail.
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Proposition 4.20. Let s = σ + iτ = −2n + 1 + reiθ ∈ C with σ < σ0 be such that it lies in the rectangle
−2n + 1

2
≤ σ ≤ −2n + 3

2
and ∣τ ∣ ≤ τ0, where τ0 > 0 is arbitrary. Suppose that Γm(s) = γC(s). Define

ρ(−2n + 1) = 1

π
sin−1

⎛
⎝
π ( 2π

Dm
)
4n−2 ζ (2n − 1

2
)2

Γ (2n − 1
2
)2
∣ cosh(πτ0)∣

⎞
⎠
.

Then if r > ρ(−2n + 1), then the Northcott property holds at s for any B > 0.

Refer to Table 1 for the values of ρ(−2n + 1) at small positive integers n.

Proof. The proof of this statement follows that sames lines as the proof of Proposition 4.12, although it
suffices to only consider ΓC this time. Combining Proposition 4.4 with Lemma 4.16 we find

1√
π
(Dm

2π
)
2n−1 Γ (2n − 1

2
)

ζ (2n − 1
2
)
∣ sin(πr)
cosh(πτ0)

∣
1
2

> 1,

giving the condition

sin(πr) > π ( 2π

Dm
)
4n−2 ζ (2n − 1

2
)2

Γ (2n − 1
2
)2
∣ cosh(πτ0)∣.

We reach the result with the same argument used at the end of the proof of Proposition 4.12. □

Remark 4.21. Propositions 4.18 and 4.20 together form the third item in Theorem 1.1.

4.3. The neighborhood of the negative integers. The goal of this section is to prove non-Northcott near

negative integers. To do this, we use the constant DM = 3
1
8 ⋅7 1

12 ⋅13 1
12 ⋅19 1

6 ⋅23 1
3 ⋅29 1

12 ⋅31 1
12 ⋅35509 1

6 = 78.4269 . . .
given by Hajir, Maire, and Ramakrishna in [9], and associated to a tower of totally complex fields. More
precisely, Hajir, Maire, and Ramakrishna give an infinite sequence of totally complex fields Kℓ satisfying

(33) lim
ℓ→∞
∣∆Kℓ

∣
1

dKℓ =DM .

The following result is a natural complement to Proposition 4.4.

Proposition 4.22. Let s = σ + iτ with σ < 0 and suppose that we have

γC(s)ζ(1 − σ)D
1
2−σ
M < 1.(34)

Then the Northcott property does not hold at s for any B > 0.

Figure 8 shows the region given by condition (34) in the case of σ = −1.

Proof. Using the sequence of totally complex fields Kℓ satisfying (33), and fixing an arbitrary ε > 0, we
notice that there are infinitely many Kℓ such that

∣ζKℓ
(s)∣ = ∣ζKℓ

(1 − s)∣ ∣ΓR(1 − s)r1ΓC(1 − s)r2
ΓR(s)r1ΓC(s)r2

∣ ∣∆
1
2−s
Kℓ
∣

≤ γC(s)dKℓ ζ(1 − σ)dKℓ (DM + ε)dKℓ
( 12−σ)(35)

Here we have used Lemma 3.1 together with the fact that the fields Kℓ are totally complex, and all but
finitely many must have root discriminant less than DM + ε. Now, by setting

fε(s) = γC(s)ζ(1 − σ)(DM + ε)
1
2−σ,

we can write (35) as

∣ζKℓ
(s)∣ < fε(s)dKℓ .

When inequality (34) is true, we can also find an ε > 0 such that it is still true with DM replaced by DM + ε.
Therefore we have fε(s) < 1, and we find that for every B > 0 there is a sufficiently large dB such that

∣ζKℓ
(s)∣ < f(s)dKℓ < B for all dKℓ

> dB .
□
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Figure 8. Depiction of the non-Northcott condition (34) around σ = −1.

Remark 4.23. The proof of Proposition 4.22 shows that the function [K] → ∣ζK(s)∣ does not satisfy the
Bogomolov property (in the sense of [18, Definition 2.8]) when condition (34) is true. The negation of the
Bogomolov property implies the negation of the Northcott property, as discussed in [18].

Since ΓC(s) has poles on the negative integers, the ratio ΓC(1−s)
ΓC(s) vanishes on them and we expect the

condition of Proposition 4.22 to hold in small discs around them. We will use similar ideas to those introduced
in Section 4.2.

Consider s = σ + iτ = −n+ reiθ ∈ C, where n ∈ Z>0 is chosen so that r is minimal. That is to say, we choose
n so that −n is the closest integer to σ, in other words, σ ∈ [−n − 1

2
,−n + 1

2
].

Theorem 4.24. Let s = σ + iτ = −n + reiθ ∈ C ∖Z<0 be such that it verifies −n − 1
2
≤ σ ≤ −n + 1

2
. If

r < 1

π
sinh−1

⎛
⎝

π

Γ (n + 3
2
)2 ζ (n + 1

2
)2
( 2π

DM
)
2n+2⎞
⎠
,

then the Northcott property does not hold at s for any B > 0.

Proof. Starting from (23), applying (12) and (3), we obtain

γC(s)ζ(1 − σ)D
1
2−σ
M = ∣Γ(1 − s)∣ ( ∣ sin(πs)∣

π
)

1
2

ζ(1 − σ) (DM

2π
)

1
2−σ

≤ Γ(1 − σ)( sinh(πr)
π

)
1
2

ζ(1 − σ) (DM

2π
)

1
2−σ

.

Our goal is to guarantee the condition in Proposition 4.22. Thus we want,

Γ(1 − σ)( sinh(πr)
π

)
1
2

ζ(1 − σ) (DM

2π
)

1
2−σ
< 1

⇐⇒ sinh(πr) < π

Γ(1 − σ)2ζ(1 − σ)2
( 2π

DM
)
1−2σ

.(36)

Since −n− 1
2
≤ σ ≤ −n+ 1

2
, we obtain the result by optimizing each term in (36) under these restrictions. □
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Figure 9. Depiction of points satisfying condition (18) corresponding to the Northcott
property (in blue).

These radii are rather small and decrease quickly. The first few values can be found in the third column
in Table 1. More values are available in [7].

4.4. The case of σ0 ≤ σ ≤ 0. We now turn our attention to the remaining area outside the critical strip,
that is, σ0 ≤ σ < 0. Remark that the restriction to σ < σ0 in the last sections originates from requiring that
Γ(1−σ) be sufficiently large for condition (18) in Proposition 4.4 to be satisfied when τ is sufficiently large.
As this is no longer the case we turn to other methods.

Direct calculation of condition (18) reveals that for fixed σ < 0, we expect the Northcott property to hold
for s = σ + iτ with ∣τ ∣ > Tσ for certain Tσ depending on σ. This is illustrated in Figure 9. We can provide an
effective result of this statement by slightly modifying the proof of Lemma 4.8. Before doing this, we need
the following auxiliary statements.

Lemma 4.25. Let s = σ + iτ with σ > 1. Then we have

∣Γ(σ + iτ)∣2 ≥ ∣Γ(σ)∣2 ∣ πτ

sinh(πτ)
∣ .(37)

Proof. By applying Euler’s infinite product (7), and by using that f(x) = x2

x2+τ2 is strictly increasing for
x > 0, we have

∣Γ(σ + iτ)
Γ(σ)

∣
2

=
∞
∏
k=0

(k + σ)2

(k + σ)2 + τ2
≥
∞
∏
k=0

(k + 1)2

(k + 1)2 + τ2
=
∞
∏
k=1

1

1 + τ2

k2

= ∣ πiτ

sin(πiτ)
∣ = ∣ πτ

sinh(πτ)
∣ .

□

Lemma 4.26. Let s = σ + iτ such that σ < 0. Then we have

γC(s)2 ≥ (2π)2σ−1Γ(1 − σ)2∣τ ∣(38)

γR(s)2 ≥ (2π)2σ−1Γ(1 − σ)2∣τ ∣ ∣tanh(
πτ

2
)∣ .(39)

Proof. Equation (38) follows immediately from equations (23), (10), and (37).
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Equation (39) follows similarly from (25) and the duplication formula (5) since

γR(s) =πσ− 1
2 ∣Γ(1 − s

2
)Γ(1 − s

2
)∣
∣sin(πs

2
)∣

π

=πσ−1 ∣2sΓ (1 − s)∣ ∣sin(πs
2
)∣

≥πσ− 1
2 2σ ∣Γ (1 − σ)∣

∣sin(πs
2
)∣

∣sinh(πτ)∣
1
2

∣τ ∣
1
2

≥πσ− 1
2 2σ ∣Γ (1 − σ)∣

∣sinh(πτ
2
)∣

∣sinh(πτ)∣
1
2

∣τ ∣
1
2

=(2π)σ−
1
2 ∣Γ (1 − σ)∣ ∣tanh(πτ

2
)∣

1
2

∣τ ∣
1
2 ,

Where we have used inequality (10) and the well-known duplication formula 2
sinh(πτ

2
)2

∣ sinh(πτ)∣ = ∣tanh(
πτ
2
)∣. □

Combining the result above with inequality (18), we have the following result.

Theorem 4.27. Let s = σ + iτ with σ < 0 and

(40) ∣τ ∣ > 1

tanh (π
2
(Dm

2π
)2σ−1 ζ(1−σ)2

Γ(1−σ)2 )
(Dm

2π
)
2σ−1 ζ(1 − σ)2

Γ(1 − σ)2
.

Then, the Northcott property holds at s for any B > 0.

Proof. It suffices to check inequality (18), and therefore, by Lemma 4.26, it suffices to check that

(41) ∣τ ∣min{1, ∣tanh(πτ
2
)∣} > (Dm

2π
)
2σ−1 ζ(1 − σ)2

Γ(1 − σ)2
.

This follows from the fact that

∣τ ∣ > 1

tanh (π
2
(Dm

2π
)2σ−1 ζ(1−σ)2

Γ(1−σ)2 )
(Dm

2π
)
2σ−1 ζ(1 − σ)2

Γ(1 − σ)2
> (Dm

2π
)
2σ−1 ζ(1 − σ)2

Γ(1 − σ)2
,

and therefore

∣tanh(πτ
2
)∣ ≥ tanh(π

2
(Dm

2π
)
2σ−1 ζ(1 − σ)2

Γ(1 − σ)2
) .

□

Remark 4.28. We remark that the region given by inequality (40) is much smaller than the region corre-
sponding to the inequality (41), since the right hand side of inequality (40) tends to a non-zero limit (namely,
2
π
) as σ → −∞. This discrepancy is illustrated in Figure (10).

Corollary 4.29. Let s = σ + iτ with σ < 0. There exists Tσ ∈ R>0 such that the Northcott property holds at
s for any B > 0 as long as ∣τ ∣ > Tσ.

5. Inside the critical strip

5.1. The case of s = 1. This case was established in [18] by using the asymptotics for the moment of the
class numbers hQ(

√
D), which are directly related to ζ∗Q(

√
D)(1) by the class number formula.

Another strategy is to employ the following result of Chowla.

Theorem 5.1. [2, Theorem 2] For any x sufficiently large, there is a x < d < 2x such that there is a real
primitive character χd modulo d satisfying

L(1, χd) ≤ (1 + o(1))
ζ(2)

eγ log(log d)
,

where γ denotes the Euler–Mascheroni constant.
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Figure 10. Depiction of conditions (40) and (41).

We then have the following result.

Theorem 5.2. s = 1 does not satisfy the Northcott property for any B > 0.

Proof. Recall that for a quadratic field K with corresponding quadratic character χ we have

ζ∗K(1) = lim
s→1
(s − 1)ζK(s) = lim

s→1
(s − 1)ζ(s)L(1, χ) = L(1, χ).

Given B > 0, choose x such that

(1 + o(1)) ζ(2)
eγ log(logx)

≤ B.

By choosing x progressively larger, we can construct an infinite sequence of fundamental discriminants
Dk ∈ Z>0 such that

∣ζ∗Q(√Dk)
(1)∣ ≤ B,

and this process can be applied to any B arbitrary. Therefore, the Northcott property is not satisfied in this
case.

□

Remark 5.3. Indeed, the above argument shows that Chowla’s result (Theorem 5.1) implies that the
Bogomolov property ([18, Definition 2.8]) fails at s = 1. From there, we deduce the failure of the Northcott
property.

5.2. The case of 1/2 < σ < 1. Let χp = ( ⋅p) denote the Legendre symbol modulo a prime p. We have the

following result of Lamzouri.

Theorem 5.4. [10, Theorem 1.8, partial statement] Assume the Generalized Riemann Hypothesis. Let
s = σ + iτ where 1/2 < σ < 1 and τ ∈ R. Then, there exits a constant xσ ∈ R>0 (where xσ depends on σ), such

that for every x ≥ xσ there are ≫ x
1
2 primes p ≤ x such that

log ∣L(s,χp)∣ ≤ −(β(s) + o(1))
(logx)1−σ

(log(logx))σ
,

where

β(σ) = (2 log 2)
σ−1

1 − σ
,

and for τ /= 0,

β(s) = β(σ)τ2

(1 − σ)2 + 4τ2
.

With this result we can prove the following.
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Theorem 5.5. Assume the Generalized Riemann Hypothesis for the Dirichlet L-functions associated to real
quadratic fields Q(√p) where p runs over the positive rational primes. Let s = σ + iτ with 1/2 < σ < 1, then
s does not satisfy the Northcott property for any B > 0.

Proof. We first remark that the assumption of the Generalized Riemann Hypothesis allows one to say that
ζQ(√p)(s) = ζ∗Q(√p)(s) for all the positive rational primes. Let B > 0 and s fixed with 1/2 < σ < 1. Choose

x ≥ xσ such that

∣ζ(s)∣ exp(−(β(s) + o(1)) (logx)
1−σ

(log(logx))σ
) ≤ B.

Thus, there are ≫ x
1
2 primes p ≤ x such that

∣ζQ(√p)(s)∣ ≤ B.
By choosing x progressively larger, we can construct an infinite sequence of primes pk such that

∣ζQ(√pk)(s)∣ ≤ B,
and this process can be applied to any B arbitrary. Therefore, the Northcott property is not satisfied in this
case. □

Remark 5.6. We remark that due to the above argument, Theorem 5.5 shows that, under the Generalized
Riemann Hypothesis, the Bogomolov property fails for every s ∈ C such that 1/2 < σ < 1.

We can also give an unconditional partial result. For this we need the following statement of Sono.

Theorem 5.7. [21, Theorem 2.2, simplified version] Let α1, α2 ∈ C such that ∣Re(αj)∣ < 1/2. Let Φ ∶ R>0 → R
be a smooth function supported in [1/2,3] and, for sufficiently large X > 0, set

F (x) = Φ( x
X
) .

Let χ8d = ( 8d⋅ ), where d is square-free and odd (8d is a fundamental discriminant). Then, for any ε > 0,

∑
d◻−free

odd

L ( 1
2
+ α1, χ8d)L ( 12 + α2, χ8d)F (d) = ∑

ε1,ε2∈{±1}
Aε1α1,ε2α2Γ

δ1
α1
Γδ2
α2

2F̃ (1 − δ1α1 − δ2α2)
3ζ(2)

+Oα1,α2 (X
1
2+ε) ,

where F̃ (w) = ∫
∞
0 F (x)xw−1dx is the Mellin transform of F ,

Aα1,α2 = ∑
(n,2)=1

σα1,α2(n2)
n

∏
p∣n
(1 + p−1)−1,

and

σα1,α2(n) = ∑
n1n2=n

1

nα1

1 nα2

2

.

We also have

δi =
⎧⎪⎪⎨⎪⎪⎩

0 εi = 1,
1 εi = −1.

Finally,

Γα = (
8

π
)
−α Γ ( 1−2α

4
)

Γ ( 1+2α
4
)
.

The statement of Theorem 5.7 is deduced from the recipe of Conrey, Farmer, Keating, Rubinstein, and
Snaith [3] and rigorously proven as an intermediate step in the estimate for the second moment of quadratic
Dirichlet L-functions at s = 1/2 with a square-root savings in the error term. The original ideas for the proof
are due to Young, who developed this method to obtain similar results for the first and third moments in
[24, 25]. In its original statement, Theorem 5.7 has the condition that the αj be in the rectangle ∣Re(s)∣ ≤

ε
logX

, ∣ Im(s)∣ ≤ Xε. However, as explained by Young in [24], this condition is imposed to claim uniformity

in terms of α. In our case, since the αj will be fixed, we do not need to impose this condition, but we still
need ∣Re(αj)∣ < 1/2 for all the terms Aε1α1,ε2α2 to converge.

We choose a concrete Φ(x) in the next statement to make the result explicit.
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Theorem 5.8. Let s ∈ C such that 1/2 < σ < 1 be fixed. Set

Φ(x) =
⎧⎪⎪⎨⎪⎪⎩

exp (− 1
(2x−1)(3−x))

1
2
< x < 3,

0 otherwise,
and I = ∫

∞

0
Φ(y)dy.

Then s does not satisfy the Northcott property for values of ζK for any

(42) B > ∣ζ (s) ∣ (exp(1
2
)As− 1

2 ,s−
1
2

8I

9
)

1
2

.

Proof. Let α = s − 1
2
. Then 0 < Re(α) < 1/2, and we set α1 = α2 = α in Theorem 5.7. We have

F̃ (1 − δ1α − δ2α) = ∫
∞

0
Φ( x

X
)x−δ1α−δ2αdx =X1−δ1α−δ2α ∫

∞

0
Φ (y) y−δ1α−δ2αdy.

Remark that the dominant term in the formula for the mixed moment given in Theorem 5.7 occurs with
δi = 0. This gives

∑
d◻−free

odd

∣L ( 1
2
+ α,χ8d)∣

2
F (d) = Aα,α

2I

3ζ(2)
X +O (X1−Re(α) +X

1
2+ε) .

Then we get

∑
d◻−free

odd
X≤d≤ 5

2X

∣L ( 1
2
+ α,χ8d)∣

2 ≤ exp(1
2
)Aα,α

2I

3ζ(2)
X +O (X1−Re(α) +X

1
2+ε) .

The number of d square-free, odd and such that X ≤ d ≤ 5
2
X is ∼ 3X

4ζ(2) (see [12, Ex. 3.2.1.6]).

Thus, given ε > 0, we can guarantee that for X large enough there is a d such that X ≤ d ≤ 5
2
X and for

which

∣L ( 1
2
+ α,χ8d)∣ ≤ (exp(

1

2
)Aα,α

8I

9
)

1
2

+ ε.

Taking ε arbitrarily small we can construct an infinite sequence of d’s satisfying this property, and leading
to bounded ∣L ( 1

2
+ α,χ8d)∣. The conclusion follows by writing

ζK ( 12 + α) = ζ (
1
2
+ α)L ( 1

2
+ α,χ8d) .

□

Remark 5.9. Notice that, for every rational prime p ∈ Z>0, we have that

1

2

⎛
⎝
(1 − 1

p
1
2+α
)
−1

(1 − 1

p
1
2+α
)
−1

+ (1 + 1

p
1
2+α
)
−1

(1 + 1

p
1
2+α
)
−1⎞
⎠

= 1

2

⎛
⎝

∞
∑
j1=0

1

pj1(
1
2+α)

∞
∑
j2=0

1

pj2(
1
2+α)

+
∞
∑
j1=0

(−1)j1

pj1(
1
2+α)

∞
∑
j2=0

(−1)j2

pj2(
1
2+α)

⎞
⎠

= 1 + 1

2
(
∞
∑
ℓ=1

σα,α(pℓ)
p

ℓ
2

+
∞
∑
ℓ=1

(−1)ℓσα,α(pℓ)
p

ℓ
2

) .

Thus, Aα,α can be expressed as

Aα,α =∏
p/=2
(1 + (1 + 1

p
)
−1 ∞
∑
ℓ=1

σα,α(p2ℓ)
pℓ

)

=∏
p/=2

⎡⎢⎢⎢⎢⎣

1

2

⎛
⎝
(1 − 1

p
1
2+α
)
−1

(1 − 1

p
1
2+α
)
−1

+ (1 + 1

p
1
2+α
)
−1

(1 + 1

p
1
2+α
)
−1⎞
⎠
+ 1

p

⎤⎥⎥⎥⎥⎦

× (1 + 1

p
)
−1
.
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5.3. The case of Re(s) = 1. In order to complete the analysis in this section, one should consider the
general case Re(s) = 1. This case was considered in [6, Section 5.5], where Theorem 5.17 shows in particular
that s with Re(s) = 1 does not satisfy the Northcott property for any B larger than a certain constant. We
expect a similar result to hold (at least conditional on the Generalized Riemann Hypothesis) over number
fields.

Appendix A. The left side neighborhood of zero

In the Subsection 4.4, Theorem 4.27 provided an answer for the Northcott property for the region σ0 ∶=
−1.5 ≤ σ < 0 but failed to capture the true boundary of condition (18) in Proposition 4.4. In particular, we
expect that for some σ ∈ [σ0,0), the Northcott property holds for all τ .

Using numerical methods, we can obtain substantially more precise results that are closer to the boundary
given by Proposition 4.4. Namely, we can describe a circle around s = −1 in the style of the circles described
in Propositions 4.12 and 4.20, and we can better describe the behavior for σ < 0 approaching the origin.
Furthermore, we can also obtain improvements for the circles in the first few cases of s = n with n a negative
integer. The results in this section are better than the ones given in Theorem 4.27 but require a large number
of steps, and ultimately rely on the help of a computer.

The strategy in this section is the following. We will numerically construct an approximation of a curve
that is close to the boundary of the red region in Figure 9, such that we will be able to guarantee that
the Northcott property is true for s = σ + iτ with ∣τ ∣ > t > 0 such that σ + it is on the curve. This curve
approximation will be made of small horizontal segments (see Figure 14 for an example). In order to construct
this approximation, we consider an interval around n, and we perform a sufficiently fine division into smaller
intervals [α,β] where we can numerically control the behavior of the factors involved in inequality (18) due
to monotonicity. To achieve this goal, we will need some auxiliary results about the growth of the factors
involved in (18).

The first result will allow us to understand the growth of ∣Γ(s)∣ as s moves in a horizontal line, outside a
circle of center 1

2
.

Lemma A.1. Let s = σ + iτ ∈ {z ∈ Cσ<0 ∶ ∣z − 0.5∣ ≥ 1.1}. We have

d

dσ
∣Γ(1 − s)∣2 ≤ 0.

Remark A.2. The constant 1.1 has been numerically chosen by numerically adjusting a circle centered at
0.5 so that it satisfies the following conditions.

● The circle encapsulates the region of Cσ<0 where d
dσ
∣Γ(1 − s)∣2 ≥ 0.

● The boundary of the red region of Figure 9 entirely lies outside this circle (see Figure 11 for more
detail).

Proof. After replacing 1−s by s, the statement to be proven is equivalent to d
dσ
∣Γ(σ+ iτ)∣2 ≥ 0 for s = σ+ iτ ∈

C ∶= {z ∈ Cσ>1 ∶ ∣z − 0.5∣ ≥ 1.1}. We have

d

ds
Γ(s)Γ(s) = (ψ(s) + ψ(s))∣Γ(s)∣2,

where ψ denotes the digamma function (8). Therefore, the desired derivative is given by

d

dσ
∣Γ(σ + iτ)∣2 = 2Re(ψ(σ + iτ))∣Γ(σ + iτ)∣2.

Our goal is to show that Re(ψ(σ + iτ)) is positive outside the circle C. We consider the series (9) and
truncate it to the first four terms:

Re(ψ(s)) = −γ +
∞
∑
k=1

k(σ − 1) + (σ − 1)2 + τ2

k((k + σ − 1)2 + τ2)
≥ −γ +

4

∑
k=1

k(σ − 1) + (σ − 1)2 + τ2

k((k + σ − 1)2 + τ2)
,(43)

where we have chosen to keep four terms because numerical estimates suggest this level of truncation yields
the needed precision.
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Figure 11. Depiction of the boundary of condition (18) and the circle of center 0.5 and
radius 1.1 employed in Lemma A.1

Next, since we want to prove that the right-hand side of (43) is positive outside the circle C, we consider
polar coordinates centered at 0.5. After the change of variables s = 0.5 + reix, we now have

−γ +
4

∑
k=1

4r2 + 4(k − 1)r cos(x) − 2k + 1
4kr2 + 4(2k2 − k)r cos(x) + 4k3 − 4k2 + k

.(44)

The derivative with respect to r of each term is

4 (4k(k − 1) cos (x) + (4r2 + 1) cos (x) + 4r(2k − 1))
(4r2 + 4(2k − 1)r cos (x) + 4k2 − 4k + 1)2

.

We see that the term above is always positive for x ∈ [−π/2, π/2]. Thus, if expression (44) is positive on
this half circle of fixed radius, the result will follow. To see this, we compute the derivative of (44) with
respect to x and remark that it can be expressed as sin(x)R(cos(x)), where R(t) is a rational function with
positive coefficients, and therefore R(cos(x)) ≥ 0 for x ∈ [−π/2, π/2]. From this we can deduce that for fixed
r, equation (44) reaches its minimum when x = 0. Now we evaluate at r = 1.1 and x = 0 to obtain

−γ +
4

∑
k=1

4(1.1)2 + 4(k − 1)(1.1) − 2k + 1
4k(1.1)2 + 4k3 + 4(2k2 − k)(1.1) − 4k2 + k

= 0.00133 . . . .

Thus, we conclude that Re(ψ(s)) ≥ 0 outside C, and therefore the same is true for d
ds
∣Γ(s)∣2. □

The next result allows us to understand the growth of γC(s) and γR(s) as s moves along a vertical line.

Lemma A.3. Let σ ≤ 1/2 be fixed. Then

d

dτ
γC(s)4 ≥ 0 and

d

dτ
γR(s)2 ≥ 0

for τ ∈ [0,∞).

Proof. Starting with the case of γC, it suffices to check the sign of the derivative. Thus, we can ignore the
positive constants and consider

d

dτ

∣Γ(1 − s)∣2

∣Γ(s)∣2
.
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The above expression has the same sign as

( d
dτ

Γ(1 − s)Γ(1 − s)) ∣Γ(s)∣2 − ( d
dτ

Γ(s)Γ(s)) ∣Γ(1 − s)∣2

=∣Γ(1 − s)∣2 (−iψ(1 − s) + iψ(1 − s)) ∣Γ(s)∣2 − ∣Γ(s)∣2 (iψ(s) − iψ(s)) ∣Γ(1 − s)∣2.

Ignoring positive terms once again, we are left to consider

(−iψ(1 − s) + iψ(1 − s)) − (iψ(s) − iψ(s)) ,

which is the same as

Im(ψ(s) + ψ(1 − s)).
Now, using (9), we reduce the problem to

∞
∑
k=1

τ

(k + σ − 1)2 + τ2
−
∞
∑
k=1

τ

(k − σ)2 + τ2
≥ 0.

We can show this by ignoring the sums and comparing the terms for each k. In doing so, we find
τ

(k + σ − 1)2 + τ2
≥ τ

(k − σ)2 + τ2
when σ ≤ 1/2 and τ ≥ 0.

The case of γR can be proven similarly. □

Corollary A.4. Suppose that for fixed t ≥ 0 and all σ ∈ [α,β] we have

Γm(σ + it)
ζ(1 − σ)

D
1
2−σ
m > 1.

Then, this inequality is also true for τ > t.

Proof. The statement follows directly from Lemma A.3. □

We are now ready to show the following key result.

Proposition A.5. Let s = σ + iτ ∈ {z ∈ Cσ<0 ∶ ∣z − 0.5∣ ≥ 1.1}. Furthermore, let τ be fixed and σ ∈ [α,β] ⊆ R
and n ∈ Z<0. The following statements are true:

(1) Suppose [α,β] ⊆ [n,n + 1
2
], then for all σ ∈ [α,β]

1√
π
(Dm

2π
)

1
2−β ∣Γ(1 − β − iτ)∣

ζ(1 − β)
∣sin(π(α + iτ))∣

1
2 > 1Ô⇒ γC(s)

ζ(1 − σ)
D

1
2−σ
m > 1.

(2) Suppose [α,β] ⊆ [n − 1
2
, n], then

1√
π
(Dm

2π
)

1
2−β ∣Γ(1 − β − iτ)∣

ζ(1 − β)
∣sin(π(β + iτ))∣

1
2 > 1 ⇐⇒ γC(s)

ζ(1 − σ)
D

1
2−σ
m > 1.(45)

(3) Suppose [α,β] ⊆ [2n,2n + 1], then
√
2√
π
(Dm

2π
)

1
2−β ∣Γ(1 − β − iτ)∣

ζ(1 − β)
∣sin(π

2
(α + iτ))∣ > 1Ô⇒ γR(s)

ζ(1 − σ)
D

1
2−σ
m > 1.

(4) Suppose [α,β] ⊆ [2n − 1,2n], then
√
2√
π
(Dm

2π
)

1
2−β ∣Γ(1 − β − iτ)∣

ζ(1 − β)
∣sin(π

2
(β + iτ))∣ > 1 ⇐⇒ γR(s)

ζ(1 − σ)
D

1
2−σ
m > 1.

Proof. The proof follows by studying the growth of the terms in condition (18).
The functions under consideration are (up to a positive constant) the following.

(1) The expression

(Dm

2π
)

1
2−σ ∣Γ(1 − σ − iτ)∣

ζ(1 − σ)
is monotonously decreasing as a function of σ when s ∈ {z ∈ Cσ<0 ∶ ∣z − 0.5∣ ≥ 1.1} by Lemma A.1.
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(2) The function ∣ sin(πσ)∣ is increasing in [n,n + 1
2
] and decreasing in [n − 1

2
, n] for n ∈ Z. For fixed

τ this function has the same increasing/decreasing intervals as ∣ sin(π(σ + iτ))∣ 12 . This follows from

the fact that ∣ sin(π(σ + iτ))∣ 12 = 4

√
sin(πσ)2 + sinh(πτ)2 and sinh(πτ)2 is constant when τ is fixed.

(3) Similarly, ∣sin(π
2
(σ + iτ))∣ is increasing in [2n,2n + 1] and decreasing in [2n − 1,2n] for n ∈ Z.

We get the result by combining the above facts together and by taking the minimum of each component
in the interval [α,β]. □

An application of Proposition A.5. We can construct an effective approximation of the boundary of
condition (18) by considering a very thin subdivision of the interval of interest and by applying Proposition
A.5 in each sub-interval. To illustrate this, Figures 14 and 15 have been constructed by subdividing the
intervals [−1.2,−0.8] and [−0.8,−0.5] respectively.

To obtain these results, we first subdivide the interval [−1.5,−0.1] into segments of length δ = 0.0025. For
each said segment [α,α+δ], we then find τα such that Proposition A.5 is satisfied. Since Lemma A.3 implies
that Proposition A.5 is also satisfied for ∣τ ∣ > ∣τα∣, we seek to find the smallest τα possible. In the case of
the sub-interval [−1.5,−0.68], the region where τα > 0 is close to a circle, and therefore we approximate its
boundary by above with a circle. We showcase these results in the following remark.

Remark A.6. Let s = σ + iτ with σ ∈ [−1.5, σ1], where σ1 ≈ −0.68 satisfies

(2eγ) 1
2−σ1

ζ(1 − σ1)
∣Γ(1 − σ1)

Γ(σ1)
∣
1
2

= 1.

(In other words, γC(σ1)
ζ(1−σ1)D

1
2−σ1

m = 1.) We define

R(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for σ ∈ [−1.5,−1 − ρ(−1))√
ρ(−1)2 − (σ + 1)2 for σ ∈ [−1 − ρ(−1),−1 + ρ(−1)]

0 for σ ∈ (−1 + ρ(−1), σ1]

where ρ(−1) ≈ 9.5 × 10−2. Then, as long as ∣τ ∣ ≥ R(σ) the Northcott property holds at s for any B > 0.

We stop at σ1 ≈ −0.68 because for σ > σ1 we will again need that ∣τα∣ > 0 for Proposition A.5 to be
satisfied. Figure 15 illustrates this phenomenon. The value of σ1 marks the beginning of the red region on
the right of Figure 9. The complete list of τα used for the interval [−1.5, σ1] is available here [7]. Notice that
in this list, the closest point to s = 0.5 is at a distance of 1.1227 > 1.1, in particular, this justifies our use of
Proposition A.5. Figure 12 illustrates a comparison between Theorem 4.27, Remark A.6, and the numerical
graph found with Proposition A.5 and more clearly depicted in Figure 14.

For the interval [σ1,−0.1], the boundary of the Northcott region is more difficult to describe. The
following remark aims at approximating the boundary described by bounding the segments by above with
continuous functions. A comparison among Theorem 4.27, Remark A.7, and the numerical results found
with Proposition A.5 is made in Figure 13.

Remark A.7. Let s = σ + iτ with σ ∈ [σ1,−0.1]. We define

R(σ) =
⎧⎪⎪⎨⎪⎪⎩

√
σ − σ1 + 0.1 for σ ∈ (σ1,−0.65]

0.82 (Dm

2π
)2σ−1 ζ(1−σ)2

Γ(1−σ)2 for σ ∈ (−0.65,−0.1].

Then, as long as ∣τ ∣ ≥ R(σ) the Northcott property holds at s for any B > 0.
The formula for R(σ) was constructed ad hoc from a modification of the formula in Theorem 4.27 aimed

at approximating the numerical graph from Figure 15 (from above) combined with a simpler formula for
values closer to σ1.

We have chosen to stop at −0.1 for the sake of clarity, as τα →∞ as α → 0. This method could have been
used for any interval [−1.5, ε] where ε > 0.

Remark A.8. Although the areas around the integers that do not satisfy the condition of Proposition 4.4 are
not circles, they are approximate circles well enough suggesting that one should fit them in circles centered
at the integers. Table 1 compares this numerical method based on Proposition A.5 with the previous results
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Figure 12. Comparison between Theorem 4.27 (purple), Remark A.6 (green) and the piece-
wise curve found with the methods of this section (blue).

Center Num. radius (Section A) Northcott radius (Section 4) Non-Northcott radius

−1 9.260260274818 × 10−2 - 3.415443142941 × 10−6

−2 2.105502084026 × 10−2 6.388919396319 × 10−2 1.330026824001 × 10−8

−3 4.474651495645 × 10−6 5.742868294706 × 10−5 9.877567910286 × 10−12

−4 1.135531168473 × 10−4 4.516050376141 × 10−4 3.572719521466 × 10−15

−5 6.138786399296 × 10−11 1.190762805871 × 10−9 8.022539291403 × 10−19

Table 1. In the first column, we showcase the radii of the Northcott region obtained using
the methods of this section. This means that the points outside of these circles satisfy the
Northcott property. The second column is similarly constructed using the methods given
by Propositions 4.12, 4.18 and 4.20 to calculate the radii. Finally, the third column shows
the radii of the non-Northcott circles, also computed from the results in Section 4. In this
case, the area inside these circles is proven to be non-Northcott.

based on Propositions 4.12, 4.18, and 4.20. We have used better precision than in Remarks A.6 and A.7,
leading to more precision in the radii.

The source code for these calculations is available here [7]. The computations were performed with the
aid of Sage [23].
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