
DYNAMICAL MAHLER MEASURE: A SURVEY AND SOME RECENT RESULTS
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Abstract. We study the dynamical Mahler measure of multivariate polynomials and present dynamical
analogues of various results from the classical Mahler measure as well as examples of formulas allowing

the computation of the dynamical Mahler measure in certain cases. We discuss multivariate analogues of
dynamical Kronecker’s Lemma and present some improvements on the result for two variables due to Carter,

Laĺın, Manes, Miller, and Mocz.

1. Introduction

The inspiration for our investigation comes from the following result which relates the canonical height

ĥf (see Definition 2.6) of a point α ∈ P1(Q) relative to some polynomial f ∈ Q[z] with an integral of the
minimal polynomial of α relative to an invariant measure defined by f .

Theorem 1.1 ([PST05]). Let f ∈ Q[z] be a polynomial, and let Jf denote the Julia set of f . Let K be a
number field with α ∈ P1(K), and let P ∈ Z[x] be the minimal polynomial for α. Then:

(1.1) [Q(α) : Q]ĥf (α) =

∫
Jf

log |P (z)|dµf (z).

Compare this with a standard formula relating the Mahler measure of the minimal polynomial P and the
height of a root of that polynomial:

(1.2) [Q(α) : Q]h(α) =
1

2πi

∫
T1

log |P (z)| dz
z︸ ︷︷ ︸

m(P )

.

The tantalizing similarities in these formulas lead naturally to questions about extending classical results
of Mahler measure to this new “dynamical Mahler measure” relative to a fixed polynomial f . In [CLM+21],
the authors define a multivariate dynamical Mahler measure and prove several preliminary results with this
flavor. This survey article presents background, motivation, examples, and strengthening of those results,
both illustrating and expanding on the work begun in [CLM+21].

In Section 2, we provide background on Mahler measure, arithmetic dynamics, and equilibrium measures.
In Section 3, we define the multivariate dynamical Mahler measure and give examples where it is possible
to compute it exactly. Section 4 provides a summary of results from [CLM+21], drawing explicit connec-
tions between classical Mahler measure and the dynamical setting. In Section 5, we prove the existence of
dynamical Mahler measure as defined in the previous section; these proofs also appear in [CLM+21] but
are reiterated here (with a bit more detail) to provide a self-contained reference to the subject. Section 6
contains a survey of recent results on properties that are either known or conjectured to be equivalent to a
multivariate polynomial having dynamical Mahler measure zero. Section 7 contains the proof of a new impli-
cation of this sort, and Section 8 contains strengthening of one of the results from [CLM+21]. In particular,
in the proof of the two-variable Dynamical Kronecker’s Lemma, we replace the (rather strong) assumption
of Dynamical Lehmer’s Conjecture with an assumption about the preperiodic points for the polynomial f .
Finally, Section 9 investigates that condition on polynomials f .
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2. Basic Notions

In this section, we provide preliminary material on both Mahler measure and arithmetic dynamics. We
refer the interested reader to [BL13] for a more comprehensive article describing the history and applications
of Mahler measure in arithmetic geometry and to [BIJ+19] for background and motivation from the arithmetic
dynamics perspective.

2.1. Mahler Measure. The (logarithmic) Mahler measure of a non-zero polynomial P ∈ C[x], originally
defined by Lehmer [Leh33], is a height function given by

(2.1) m(P ) = m

a∏
j

(x− αj)

 = log |a|+
∑
j

log max{1, |αj |}.

If P ∈ Z[x], the formula above makes it clear that m(P ) ≥ 0. In such a case, it is natural to ask which
polynomials P ∈ Z[x] satisfy m(P ) = 0. A result of Kronecker [Kro57] gives the answer.

Lemma 2.1 (Kronecker’s Lemma). Let P ∈ Z[x]. Then m(P ) = 0 if and only if P is monic and can be
decomposed as a product of a monomial and cyclotomic polynomials.

Lehmer [Leh33] computed

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) = log(1.176280818 . . . ) = 0.162357612 . . .

and asked the following:

Question 2.2 (Lehmer’s question, 1933). Is there a constant C > 0 such that for every polynomial P ∈ Z[x]
with m(P ) > 0, then m(P ) ≥ C?

Lehmer’s question remains open, and his degree-10 polynomial remains the integer polynomial with the
smallest known positive measure.

Jensen’s formula [Jen99] relates an average of a linear polynomial over the unit circle with the size of its
root:

(2.2)
1

2πi

∫
T1

log |x− α| dx
x

= log max{1, |α|}.

Applying Jensen’s formula to the definition of Mahler measure in (2.1), we find a formula that can be
extended naturally to multivariate polynomials and rational functions. Following Mahler [Mah62], we have:

Definition 2.3. The (logarithmic) Mahler measure of a non-zero rational function P ∈ C(x1, . . . , xn) is
defined by

m(P ) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1
· · · dxn

xn
,

where Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}.

The above integral converges, and for P ∈ Z[x1, . . . , xn], we still have m(P ) ≥ 0 (see Proposition 5.6).
It is natural, then, to consider whether Kronecker’s Lemma has an extension to multivariate polynomials.
Recall that a polynomial in Z[x1, . . . , xn] is said to be primitive if the coefficients have no non-trivial factor.
We have the following result.

Theorem 2.4. [EW99, Theorem 3.10] For any primitive polynomial P ∈ Z[x1, . . . , xn], we have m(P ) = 0
if and only if P is the product of a monomial and cyclotomic polynomials evaluated on monomials.
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A connection between the single-variable case and the multivariate case is given by a result due to
Boyd [Boy81] and Lawton [Law83].

Theorem 2.5. [Law83, Theorem 2] If P ∈ C(x1, . . . , xn)×, then

(2.3) lim
q(k)→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)),

where

q(k) = min

H(s) : s = (s2, . . . , sn) ∈ Zn−1, s 6= (0, . . . , 0), and

n∑
j=2

sjkj = 0


and H(s) = max{|sj | : 2 ≤ j ≤ n}.

Intuitively, the second equation says that the limit is taken while k2, . . . , kn go to infinity independently
from each other.

Mahler measure often yields special values of interesting number-theoretic functions, such as the Riemann
zeta function and L-functions associated to arithmetic-geometric objects such as elliptic curves. For more
on these connections, see [BL13, BZ20].

2.2. Arithmetic Dynamics. A discrete dynamical system is a set X together with a self-map: f : X → X,
allowing for iteration. Here we focus on polynomials f : C → C. For such an f and for L ∈ Aut(C) (so
L = az + b ∈ C[x]), we write

(2.4) fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n-fold composition

, and fL := L−1 ◦ f ◦ L.

We will say that fL and f are affine conjugate over K when L ∈ K[x]. This conjugation is a natural
dynamical equivalence relation because it respects iteration: (fL)n = (fn)L.

A fundamental goal of dynamics is to study the behavior of points of X under iteration. For example, a
point α ∈ X is said to be:

• periodic if fn(α) = α for some n > 0,
• preperiodic if fn(α) = fm(α) for some n > m ≥ 0, and
• wandering if it is not preperiodic.

We write

PrePer(f) = {α ∈ X : α is preperiodic under f}.
As usual, we say that α is a critical point if f ′(α) = 0. Critical points play an important role in analyzing

the dynamics of the function f .
Questions in arithmetic dynamics are often motivated by an analogy between arithmetic geometry and

dynamical systems in which, for example, rational and integral points on varieties correspond to rational and
integral points in orbits, and torsion points on abelian varieties correspond to preperiodic points. It should
be no surprise, then, that heights are an essential tool in the study of arithmetic dynamics.

We recall that the classical (logarithmic) height of a rational number α = a
b ∈ Q, written in lowest terms,

is h(α) = log max{|a|, |b|}. This can be extended naturally to a height on algebraic numbers.
One way of making such an extension is to consider the näıve height. Let α be an algebraic number. We

consider its minimal polynomial Pα(z) =
∑n
j=0 ajz

n normalized such that it has integral coefficients and is
primitive. Then

hnäıve(α) := log max
j
|aj |.

Another possible extension of the classical height is given by the Weil height. For α ∈ K, with K a
number field, the (absolute logarithmic) Weil height is given by

(2.5) hWeil(α) =
1

[K : Q]

∑
v∈MK

v|p

[Kv : Qp] log max{||α||v, 1},
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where MK is an appropriately normalized set of inequivalent absolute values on K, so that the product
formula is satisfied: ∏

v∈MK

v|p

||x||
[Kv :Qp]

[K:Q]
v = 1.

More concretely, for K = Q we can take | · |∞ to be the usual absolute value and | · |p to be the p-adic
absolute value, normalized so that |p|p = 1/p. Then for v ∈MK lying over a prime p,

||x||v = |NKv/Qp
(x)|

1
[Kv :Qp]

p .

The factor of [K : Q] in (2.5) ensures that hWeil(α) is well-defined, with the same answer for any field K
containing α.

While the näıve height is very natural to consider, the Weil height is the canonical height for the power
map z 7→ zd. The two heights are commensurate in the sense that for α ∈ P1(Q), there is a constant C(d)
depending only on the degree d of α such that

(2.6) |hnäıve(α)− hWeil(α)| ≤ C(d).

If f(x) ∈ K(x) is a rational function of degree d, then h (f(α)) should be approximately dh(α). The
dynamical canonical height makes this an equality. The definition is reminiscent of the Néron–Tate height
on an abelian variety, and the proofs of the statements below follow exactly as in this more familiar case.

Definition 2.6. If f ∈ Q(z) is a rational map of degree d (i.e. the maximum of the degrees of the numerator
and denominator is d), and α ∈ P1(Q), we then define:

ĥf (α) = lim
n→∞

h(fn(α))

dn
,

where h may be taken as either the näıve height hnäıve or the Weil height hWeil by equation (2.6)

It is known that this limit exists, that ĥf (f(α)) = dĥf (α), and that ĥf (α) = 0 if and only if α is a
preperiodic point for f . See Section 3.4 of [Sil07] for details.

Definition 2.7. Let f ∈ C[z]. The filled Julia set of f is

Kf = {z ∈ C : fn(z) 6→ ∞ as n→∞}.

The Julia set Jf of f is the boundary of the filled Julia set. That is, Jf = ∂Kf .

It follows from these definitions that for a polynomial f ∈ C[z], both Kf and Jf are compact. We denote
by F∞ the complement of Kf in P1(C), which is also the attracting basin of ∞ for f , that is, the set of
points in P1(C) whose orbits go off to ∞.

For example, for f(z) = zd, we see that fn(z) = zd
n

. So for d ≥ 2, we have three cases:

• If |α| > 1 then |αdn | → ∞ with n.
• If |α| < 1 then |αdn | → 0 with n.
• If |α| = 1 then |αdn | = 1 for all n.

So for pure power maps, we can understand the Julia sets completely: Kf is the unit disc, and Jf is the
unit circle. In general, however, these sets are quite complex. (See Figure 1.)

It is clear from Definition 2.7 that PrePer(f) ⊆ Kf . When all of the critical points of a polynomial f have
unbounded orbits, the Julia set Jf is totally disconnected, while Jf is connected if and only if all the critical
orbits are bounded [Fat20, Jul22]. A polynomial of degree 2 has a unique critical point, and we have only
these two cases (see Figure 1). This situation is known as the Fatou–Julia dichotomy. However, for higher
degree polynomials the situation is complicated by having more than one critical point, and there are cases
of polynomials f for which Jf is disconnected but not totally disconnected (see Figure 2).

We saw in equations (1.1) and (1.2) that the Julia set Jf for a polynomial f will play the role of the unit
torus T1 when studying dynamical Mahler measure.
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(a) Filled Julia set for
f(z) = z2

(b) Filled Julia set for
f(z) = z2 − 1

(c) (Filled) Julia set for
f(z) = z2 + 0.3

Figure 1. The black area shows the filled Julia set Kf , and its boundary is the Julia set
Jf . In the third case, the Julia set has empty interior, so Kf = Jf .

Figure 2. The filled Julia set for f(z) = z3 − z + 1. The Julia set Jf is disconnected but
not totally disconnected.

2.3. Equilibrium Measures.

Definition 2.8. Given a compact subset K ⊆ C, an equilibrium measure for K is a Borel probability
measure µ on K which has maximal energy

I(µ) :=

∫
K

∫
K

log |z − w| dµ(z) dµ(w)

among all Borel probability measures on K.

Every compact set K ⊆ C has an equilibrium measure [Ran95, Theorem 3.3.2], and if f denotes a
polynomial of degree d ≥ 2, then the equilibrium measure µf on its Julia set Jf is unique (this is the
consequence of a more general result that states that the equilibrium measure of any compact, non-polar set
is unique [Ran95, Theorem 3.7.6]; the Julia set Jf of any polynomial f is non-polar [Ran95, Theorem 6.5.1]),
which is to say that there is a non-trivial finite Borel measure with compact support such that I(µ) > −∞.
In fact we can characterize the equilibrium measure µf as follows:

Theorem 2.9 ([Ran95, Theorem 6.5.8]). Let w ∈ Jf , and for n ≥ 1, define the Borel probability measures

µn :=
1

dn

∑
fn(ζ)=w

δζ ,

where δζ denotes the unit mass at ζ, and the preimages ζ of w under fn are taken with multiplicity. Then

µn
w∗→ µf (weak∗-convergence) as n→∞.

3. Dynamical Mahler Measure: Definition and Examples

Inspired by Definition 2.3 and the parallels between Mahler measure and the dynamical setting in equa-
tions (1.1) and (1.2), we define the following:
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Definition 3.1. Let f ∈ Z[z] be a monic polynomial of degree d ≥ 2, and let P ∈ C(x1, . . . , xn)×. The
f-dynamical Mahler measure of P is the number

(3.1) mf (P ) :=

∫
Jf

· · ·
∫
Jf

log |P (z1, . . . , zn)| dµf (z1) · · · dµf (zn).

Note that as µf is a probability measure, the value of this integral is not affected by omitted variables, so in
this sense the value of mf is independent of n.

It is not clear a priori that the integral in (3.1) converges—it does, and we prove this in Proposition 5.6—
but before discussing these details we provide some examples where the dynamical Mahler measure can be
explicitly computed. The following lemmas will prove useful throughout.

Lemma 3.2. If f ∈ Z[z] and P,Q ∈ C(x1, . . . , xn)×, then

mf (PQ) = mf (P ) + mf (Q).

Proof. This follows immediately from the corresponding fact about logarithms. �

Lemma 3.3. If f and g are nonlinear polynomials that commute under composition, then mf = mg.

Proof. If f and g commute, then they have the same Julia set (see [AH96]), and the equilibrium measure is
determined by this set. �

Proposition 3.4. If f(z) = zd with d ≥ 2, then mf (P ) = m(P ) for P ∈ C(x)×.

Proof. In this case, we have seen that Jf is given by the circle T1, and Theorem 2.9 tells us that the
equilibrium measure is the uniform measure on the circle:

χT1dz

2πiz
,

where χT1 is the characteristic function on the unit circle. Taking z = eiθ, we then have

mf (P ) =
1

2π

∫ 2π

0

log |P (eiθ)| dθ =
1

2πi

∫
T1

log |P (z)|dz
z

= m(P ). �

Proposition 3.5. Define the dth Chebyshev polynomial to be the polynomial Td(z) ∈ Z[z] that satisfies

(3.2) Td(z + z−1) = zd + z−d.

Then

mTd
(P ) = m(P ◦ w)

for P ∈ C(x)×, where w(z) = z + z−1.

Proof. Note that Td ◦ w = w ◦ f , where f(z) = zd (and note the analogy with Proposition 3.8 below). The
function w maps the Julia set Jf onto the Julia set JTd

, so that JTd
is the segment [−2, 2] (traversed twice

as z proceeds around the unit circle). It follows from Theorem 2.9 that the equilibrium measure on JTd
is

the pushforward w∗µf of the equilibrium measure on Jf , so

mf (P ) =

∫
JTd

log |P (z)| dµTd
(z)

=

∫
w(Jf )

log |P (z)| dw∗µf (z)

=

∫
Jf

log |P (w(z))| dµf (z)

= mf (P ◦ w)

= m(P ◦ w)

by Proposition 3.4. �
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Remark 3.6. Incidentally, writing u = z + z−1 = eiθ + e−iθ = 2 cos θ, we have du = −2 sin θ dθ, which is
to say

− du√
4− u2

= dθ.

Thus we can write

mTd
(P ) =

1

π

∫ π

0

log |P (eiθ + e−iθ)| dθ

=
1

π

∫ 2

−2

log |P (u)| du√
4− u2

,

from which we see that the equilibrium measure on the segment [−2, 2] is

χ[−2,2]dz

π
√

4− z2
.

More generally, we have:

Proposition 3.7. Let α, β ∈ C, and let f(z) = β−α
4 Td

(
4z−2(α+β)

β−α

)
+ α+β

2 where Td is a Chebyshev polyno-

mial defined in equation (3.2) for d ≥ 2. For P ∈ C[x], we have

(3.3) mf (P ) = m

(
P ◦

(
β − α

4
(z + z−1) +

α+ β

2

))
.

Proof. A change of variables shows that the Julia sets of these polynomials are given by Jf = [α, β], where
this is to be understood as the line segment connecting α and β in the complex plane. The equilibrium
measure is then given by

χ[α,β]dz

π
√

(z − α)(β − z)
,

where χ[α,β] is the characteristic function on the segment [α, β]. This gives

mf (P ) =
1

π

∫ β

α

log |P (z)| dz√
(z − α)(β − z)

.

Setting z = β−α
2 cos(πθ) + α+β

2 gives

mf (P ) =

∫ 1

0

log

∣∣∣∣P (β − α2
cos(πθ) +

α+ β

2

)∣∣∣∣ dθ
=

1

2

∫ 1

−1

log

∣∣∣∣P (β − α2
cos(πθ) +

α+ β

2

)∣∣∣∣ dθ.
Substituting w = eiθ, we turn the domain of integration into the unit circle, and we conclude that mf is
given by (3.3). �

We provide the details of Proposition 3.7 because it is so difficult, in general, to calculate dynamical Mahler
measure exactly. However, we note that the result can also be viewed as a consequence of Proposition 3.5
about Chebyshev polynomials and the following result on dynamical Mahler measure for conjugate maps.

Proposition 3.8. Let f ∈ C[z] and P ∈ C[z], and let L(z) = az + b ∈ C[z] with a 6= 0. Then

mfL(P ) = mf (P ◦ L−1).

Proof. Note first that the Julia sets of f and fL are related by

JfL = L−1(Jf ).

Next, fixing w ∈ Jf , observe that by Theorem 2.9, the measure µfL is the limit in the weak∗ topology of
the sequence of measures

d−n
∑

(fL)n(ζ)=w

δζ = d−n
∑

fn(L(ζ))=L(w)

(L−1)∗δL(ζ),
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where d denotes the degree of f and (L−1)∗δL(ζ) denotes the measure defined by (L−1)∗δL(ζ)(X) = δL(ζ)(L(X)).

But by Theorem 2.9, this sequence also has weak∗-limit (L−1)∗µf . So µfL = (L−1)∗µf . Making the substi-
tution w = L(z), we then have

mfL(P ) =

∫
JfL

log |P (z)| dµfL(z)

=

∫
L−1(Jf )

log |P (z)| d(L−1)∗µf (z)

=

∫
Jf

log |P (L−1(w))| dµf (w)

= mf (P ◦ L−1),

as desired. �

4. Dynamical versions of classical results

In this section, we summarize results from [CLM+21], focusing on the connections between these results
and classical Mahler measure as outlined in Section 2.1. We provide more detail and refine some of these
results in the next sections.
Jensen’s formula gave us an equivalent definition of Mahler measure that extended naturally to higher
dimensions:

m (P ) = log |a|+
∑
|αi|>1

log |αi| =
1

2πi

∫
T1

log |P (z)| dz
z
.

Dynamical Jensen’s formula [CLM+21, Lemma 3.1] plays a similar role, allowing us to prove that the
integral in (3.1) converges, and that when P ∈ Z[x1, . . . , xn], we have mf (P ) ≥ 0. Here pµf

is the potential
function (see Definition 5.1 and Proposition 5.2).

mf (P ) = log |a|+
∑
i

pµf
(αi) = log |a|+

∫
Kf

log |z − w| dµf (w).

Kronecker’s Lemma tells us which integer polynomials have Mahler measure zero: Let P ∈ Z[x]. If
m(P ) = 0, then the roots of P are either zero or roots of unity. Conversely, if P is primitive and its roots
either zero or roots of unity, then m(P ) = 0.

Dynamical Kronecker’s Lemma [CLM+21, Lemmas 1.2 and 4.3] answers the same question for dynamical
Mahler measure. Recalling the driving analogy of arithmetic dynamics, that preperiodic points are like
torsion points in arithmetic geometry, the result feels natural.

Lemma 4.1 (Dynamical Kronecker’s Lemma). Let f ∈ Z[z] be monic of degree d ≥ 2 and let P ∈ Z[x].
Then we have mf (P ) = 0 if and only if P (x) = ±

∏
i(x− αi) with each αi a preperiodic point of f .

The Boyd-Lawton Theorem relates single-variable and multivariate Mahler measure. For P ∈ C(x1, . . . , xn)×,

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn))

with k2, . . . , kn →∞ independently from each other.

The Weak Dynamical Boyd-Lawton Theorem [CLM+21, Proposition 1.3] provides a partial analogue
in the dynamical setting for polynomials in two variables.

Proposition 4.2 (Weak Dynamical Boyd-Lawton). Let f ∈ Z[z] monic of degree d ≥ 2 and let P ∈ C[x, y].
Then

lim sup
n→∞

mf (P (x, fn(x))) ≤ mf (P (x, y)).
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Lehmer’s Question asks if there are integer polynomials with arbitrarily small Mahler measure, or if the
Mahler measure of P ∈ Z[x] with mf (P ) 6= 0 is bounded away from zero.

Dynamical Lehmer’s Conjecture [Sil07, Conjecture 3.25] asks the same question for dynamical Mahler
measure.

Conjecture 4.3 (Dynamical Lehmer’s Conjecture). There is some δ = δf > 0 such that any single-variable
polynomial P ∈ Z[x] with mf (P ) > 0 satisfies mf (P ) > δ.

Higher dimensional Kronecker’s Lemma could be stated quite simply, and had a similar feel to the
one-dimensional version:

Theorem 2.4. [EW99, Theorem 3.10] For any primitive polynomial P ∈ Z[x1, . . . , xn], m(P ) = 0 if and
only if P is the product of a monomial and cyclotomic polynomials evaluated on monomials.

The main result of [CLM+21] provides a partial two-variable Kronecker’s Lemma for dynamical Mahler
measure, but the statement and hypotheses are significantly more delicate than in the one-variable case.

Theorem 4.4. [CLM+21, Theorem 1.5] Assume the Dynamical Lehmer’s Conjecture.
Let f ∈ Z[z] be a monic polynomial of degree d ≥ 2 which is not conjugate to zd or to ±Td(z), where

Td(z) is the dth Chebyshev polynomial. Then any polynomial P ∈ Z[x, y] which is irreducible in Z[x, y] (but
not necessarily irreducible in C[x, y]) with mf (P ) = 0 and which contains both variables x and y divides a
product of complex polynomials of the following form:

f̃n(x)− L(f̃m(y)),

where m,n ≥ 0 are integers, L ∈ C[z] is a linear polynomial commuting with an iterate of f , and f̃ ∈ C[z]
is a non-linear polynomial of minimal degree commuting with an iterate of f (with possibly different choices

of L, f̃ , n, and m for each factor).
As a partial converse, suppose there exists a product of complex polynomials Fj such that

(1) each Fj has the form f̃n(x)−L(f̃m(y)), where L and f̃ are as above (with possibly different choices

of L, f̃ , n, and m for each j);
(2)

∏
Fj ∈ Z[x, y]; and

(3) P divides
∏
Fj in Z[x, y].

Then mf (P ) = 0.

In Section 6, we discuss several other statements that are either known or conjectured to be equivalent to
having dynamical Mahler measure 0, and in Section 7 we prove a new implication in this family of results. In
Section 8, we prove a new version of Theorem 4.4 in which we replace the assumption of Dynamical Lehmer’s
Conjecture with the assumption that PrePer(f) ⊆ Jf . This is a strengthening of the result in some respects,
since the hypothesis on the preperiodic points is much easier to check, when it holds, than Dynamical
Lehmer’s Conjecture. However, there are certainly polynomials f ∈ Z[z] for which that assumption does not
hold. This is discussed in Section 9.

5. Convergence and Positivity

In this section we give an introduction to potentials, and then use them to prove the existence of the
dynamical Mahler measure.

Definition 5.1. The potential of a finite Borel measure µ with compact support K is the function pµ :
C→ [−∞,∞) given by

pµ(z) =

∫
K

log |z − w| dµ(w).

We can see the relationship between potentials and dynamical Mahler measure in the following result,
which should be considered the dynamical analogue of Jensen’s formula:

9



Proposition 5.2. Suppose P (x) factors over C as P (x) = a
∏
i(x− αi). Then

mf (P ) = log |a|+
∑
i

pµf
(αi).

Proof. We have

mf (P ) =

∫
Jf

log

∣∣∣∣∣a∏
i

(z − αi)

∣∣∣∣∣ dµf
= log |a|+

∑
i

∫
Jf

log |z − αi| dµf

= log |a|+
∑
i

pµf
(αi). �

Remark 5.3. If f is a monic polynomial, the potential pµf
of the equilibrium measure on its Julia set is

equal to the Green’s function gF∞(z,∞) on F∞, the complement of the filled Julia set Kf in the Riemann
sphere. (See [Ran95, Theorem 6.5.1] and the proof of [Ran95, Theorem 4.4.2].)

Let us make a few more observations about potentials before returning to dynamical Mahler measure.

Proposition 5.4. Let f ∈ C[z] be a nonlinear polynomial. Then the potential pµf
is continuous.

Proof. First, the potential is harmonic, and thus continuous, on C \ Kf [Ran95, Theorem 3.1.2]. As F∞ is
a regular domain [Ran95, Corollary 6.5.5], we have pµf

(z) = I(µf ) for all z ∈ Jf [Ran95, Theorem 4.2.4],
and it is shown in the proof of [Ran95, Corollary 6.5.5] that

lim
z→ζ
z/∈Kf

pµf
(z) = I(µf )

for all ζ ∈ Jf . Finally, it follows from Frostman’s Theorem [Ran95, Theorem 3.3.4] that pµf
(z) = I(µf ) on

the interior of Kf also. �

Proposition 5.5. Let f ∈ C[z] be a nonlinear, monic polynomial. Then pµf
(z) ≥ 0 for all z ∈ C, and

pµf
(z) = 0 if and only if z ∈ Kf .

Proof. It follows from [Ran95, Theorem 6.5.1] that I(µf ) = 0 if f is monic. The proof of Proposition 5.4
then shows that pµf

(z) = 0 for z ∈ Kf , while pµf
(z) > 0 for z /∈ Kf [Ran95, Theorem 4.4.3]. �

We now return to the dynamical Mahler measure.

Proposition 5.6. Let f ∈ Z[z] be a monic, nonlinear polynomial, and let P ∈ C(x1, . . . , xn)×. Then the
integral defining the f -dynamical Mahler measure of P converges, and if P is furthermore a nonzero integer
polynomial, then mf (P ) ≥ 0.

Remark 5.7. This result appears in [CLM+21, Proposition 3.2]. In the interest of providing a self-contained
introduction to the key ideas in the subject, we present here an expanded and more detailed proof. The
argument is based on the proof of [EW99, Lemma 3.7] for the classical Mahler measure.

Proof. It suffices to consider the case of P a polynomial, since mf (F/G) = mf (F )−mf (G) by Lemma 3.2.
We induct on the number of variables. When n = 1, we can factor P over C as a

∏
i(x − αi). By

Proposition 5.2, we have

mf (P ) = log |a|+
∑
i

pµf
(αi).

Since the potential pµf
is nonnegative on C, we can immediately conclude that the integral defining mf (P )

converges and that it is nonnegative when P has integer coefficients.
Now assume the result holds for polynomials in n− 1 variables, and let P ∈ C[x1, . . . , xn]. Write P as a

polynomial in x1 with coefficients in C[x2, . . . , xn]:

P (x1, . . . , xn) = ad(x2, . . . , xn)xd1 + · · ·+ a0(x2, . . . , xn).
10



Factor this as

ad(x2, . . . , xn)

d∏
j=1

(x1 − gj(x2, . . . , xn))

for some algebraic functions gj . We then have

mf (P ) = mf (ad) +

∫
Jf

· · ·
∫
Jf

log

∣∣∣∣∣∣
d∏
j=1

(z1 − gj(z2, . . . , zn))

∣∣∣∣∣∣ dµf (z1) · · · dµf (zn)

= mf (ad) +

∫
Jf

· · ·
∫
Jf

d∑
j=1

pµf
(gj(z2, . . . , zn)) dµf (z2) · · · dµf (zn).(5.1)

By the induction hypothesis, mf (ad) exists and is nonnegative if P , and thus ad, has integer coefficients.
While the gj may not be continuous, the multiset of values {gj(z2, . . . , zn)} is, so it follows from Proposi-
tions 5.4 and 5.5 that the integrand

d∑
j=1

pµf
(gj(z2, . . . , zn))

is nonnegative and continuous away from any poles of the gj . On the other hand, as Jf is compact, the
polynomial P (z1, . . . , zn) is bounded above on J nf , so the integral defining mf (P ) is also. The same can
then be said for the integral∫

Jf

· · ·
∫
Jf

d∑
j=1

pµf
(gj(z2, . . . , zn)) dµf (z2) · · · dµf (zn)

by the finiteness of mf (ad); it follows that this integral converges, despite the presence of any poles of the
gj , and therefore the integral defining mf (P ) does also. �

6. Multivariable Analogues of Dynamical Kronecker’s Lemma

Multivariate dynamical Mahler measure was defined in [CLM+21], but similar ideas have appeared in the
literature in recent years. In this section, we present a summary of some results in arithmetic dynamics.
These statements, which include the statement that a polynomial has dynamical Mahler measure zero, are
all known or conjectured to be equivalent.

Assume as usual that f ∈ Z[x] is monic of degree d, and P ∈ Z[x1, . . . , xn]. As in the statement of

Theorem 4.4, L always denotes a linear polynomial in C[z] commuting with an iterate of f , and f̃ always
denotes a non-linear polynomial in C[z] of minimal degree commuting with an iterate of f .

(a) mf (P ) = 0.

(b) h({P = 0} ⊆ X) = 0, where {P = 0} is the Zariski closure of the hypersurface {P = 0} ⊆ An ⊆ X,
X is either (P1)n or (Pn), and h is a dynamical height for subvarieties of X of the type introduced
in [Zha95].

(c) The hypersurface {P = 0} ⊆ An(C) is preperiodic under the map (x1, . . . , xn) 7→ (f(x1), . . . , f(xn)).
(A subvariety V of a variety X is preperiodic for a map Φ : X → X if Φm(V ) = Φn(V ) for some
m 6= n.)

(d) The hypersurface {P = 0} ⊆ An(C) contains a Zariski dense subset of points that are preperiodic
for the map (x1, . . . , xn) 7→ (f(x1), . . . , f(xn)) (equivalently, with all coordinates preperiodic for f).

(e1) P is primitive (gcd of coefficients = 1) and, inside the ring C[x1, . . . , xn], P (x) divides some polyno-

mial in C[x1, . . . , xn] which is a product of factors of the form f̃n(xi)−L(f̃m(xj)) (here i can equal
j).

(e2) Inside the ring Z[x1, . . . , xn], P (x) divides some polynomial in Z[x1, . . . , xn] which is a product of

factors of the form f̃n(xi)−L(f̃m(xj)) (the factors do not need to be in Z[x], but the product does).

The known relationships among these statements are summarized in Figure 3.
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(a) (e2)

(d) (e1)

(c)(b)

[CLM+21]

[CLM+21],
Theorem 8.1

[Zha95]

Theorem 7.9

[GNY19]

[GNY19] [MS14]

[Zha95]

Known implication
Conditional on some assumptions
Conjectural

Figure 3. The known relationships between statements (a–e), with references.

6.1. Subvarieties with many preperiodic points and preperiodic subvarieties. Historically, one of
the first of these properties to be studied was property (d), as a special case of the following more general
question in the field of unlikely intersections: For an algebraic variety X with a self map Φ : X → X, which
subvarieties Y of X contain a Zariski dense subset of preperiodic points for Φ?

This question was raised by Zhang [Zha95], who conjectured that Y has such a subset if and only if
Y is preperiodic for Φ. This conjecture is a generalization of the Manin–Mumford conjecture (proved by
Raynaud [Ray83a, Ray83b]) on subvarieties of abelian varieties containing infinitely many torsion points,
and so Zhang in [Zha06] calls this the Dynamical Manin–Mumford Conjecture.

Conjecture 6.1 (Dynamical Manin–Mumford Conjecture). For any variety X and dominant map Φ : X →
X, a subvariety Y of X contains a Zariski dense subset of preperiodic points if and only if Y is preperiodic.

In terms of our diagram, this is saying that (d) ⇐⇒ (c). However most of the study of this conjecture
has been focused on the implication (d) =⇒ (c), which has generally been the harder direction.

The Dynamical Manin–Mumford Conjecture has been studied in various contexts, and is now known not
to hold in full generality as originally stated (counterexamples, and a refined statement, have been given in
[GTZ11]). However, in the case of interest for our application, it is known to be true:

Theorem 6.2 (Ghioca, Nguyen, Ye [GNY19, GNY18]). If Φ : (P1)n → (P1)n is of the form f × · · · × f ,
where f is a non-exceptional rational map (not conjugate to a power map, a Chebyshev polynomial, or a
Lattès map), then the Dynamical Manin–Mumford conjecture holds for the pair ((P1)n,Φ).

Note that although this theorem is for (P1)n, the result also holds for the restriction to An, since An is
Zariski dense in (P1)n. Ghioca, Nguyen, and Ye actually show a more general statement, which includes
the case Φ = f1 × · · · × fn where f1, . . . , fn are non-exceptional and all of the same degree. Dujardin and
Favre [DF17] have shown a related result: that Dynamical Manin–Mumford holds for (A2,Φ), where Φ is
any automorphism of Hénon type.

The set of invariant subvarieties for maps Φ : An → An of the form (x1, . . . , xn) 7→ (f1(x1), . . . , fn(x)) was
first determined by Medvedev and Scanlon [MS14], and their work can be extended to give all preperiodic
subvarieties. We are only interested in the case where f1 = · · · = fn and of preperiodic hypersurfaces.
(However, it turns out that f1 = · · · = fn is the most interesting case, and also that all lower-dimensional
preperiodic subvarieties are generated as intersections of preperiodic hypersurfaces.) We compile the relevant
results in the theorem statement below:

Theorem 6.3 (Medvedev, Scanlon [MS14]). If Φ : (P1)n → (P1)n is of the form f × · · · × f , where f is
a non-exceptional rational map (not conjugate to a power map, a Chebyshev polynomial, or a Lattès map),
then any hypersurface in An that is preperiodic for Φ is of the form {P = 0} where P (x) divides some

polynomial in C[x1, . . . , xn] which is a product of factors of the form f̃n(xi)− L(f̃m(xj)).
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In terms of Figure 3, Theorem 6.3 says that (c) implies (e1).
The proof of Dynamical Manin–Mumford by Ghioca, Nguyen, and Ye similarly proceeds by explicitly

describing the subvarieties of (P1)n that have infinitely many preperiodic points for Φ, proving that (d)
implies (e1) in Figure 3. They combine this with an argument for (c) implies (d) to give an independent
proof of (c) implies (e1).

6.2. The Connection with Heights. From equations (1.1) and (1.2), we see that single-variable Mahler
measure is directly related to heights of points in Pn(Q). It is natural to ask if multivariate Mahler measure
is also given by a height.

A very strong candidate for this is the dynamical height of subvarieties introduced by Zhang in [Zha95].
Zhang shows that this dynamical height vanishes on both preperiodic subvarieties and on subvarieties with
infinitely many preperiodic points, and he conjectures the converse. Since dynamical Mahler measure also
detects polynomials whose zero locus is preperiodic or has infinitely many preperiodic points, it is natural
to conjecture that mf (P ) is equal to the dynamical height of the hypersurface {P = 0} with respect to the
map f×· · ·×f . This conjecture is also supported by work of Chambert-Loir, and Thuillier [CLT09] showing
that ordinary multivariate Mahler measure agrees with the dynamical height for hypersurfaces in Pn under
the map f × · · · × f , where f is a power map.

A promising direction for future work would be to prove this relationship between dynamical Mahler
measure and dynamical height, which would provide an additional connection between (a) and (b) in Figure 3.
Zhang’s height is too technical to define here, but we give a general overview of the main ideas.

Let X be a projective variety with a line bundle L, and Φ : X → X a dominant endomorphism (that
acts compatibly with the line bundle: Φ∗L ∼= Ld, where d should be thought of as the degree of Φ). Zhang
defined a height hΦ on subvarieties of X (or more generally, cycles on X) which, like the dynamical height
we saw earlier, behaves nicely under pushforward: hΦ(Φ(Y )) = dhΦ(Y ).

The dynamical height of a subvariety is always non-negative. If Y is preperiodic, then a formal consequence
of the compatibility with pushforward is that hΦ(Y ) = 0 ([Zha95, Theorem 2.4(b)]). The converse implication
is conjectured [Zha95, Conjecture 2.5]. Zhang also shows that if hΦ(Y ) > 0, then there is a Zariski open
subset U ⊆ Y which contains no preperiodic subvarieties, hence in particular no preperiodic points. So the
preperiodic points of Y are not Zariski dense. Taking the contrapositive, we have the following result:

Proposition 6.4 (Zhang [Zha95]). If the preperiodic points of Y are Zariski dense, then hΦ(Y ) = 0.

In our situation, we are interested in polynomials P (x1, . . . , xn) ∈ C[x1, . . . , xn]. These polynomials
naturally cut out hypersurfaces in An, not projective varieties. However, we can solve this problem by
completing An to a projective variety: either to Pn (as in the work of Chambert-Loir and Thullier [CLT09]),
or to (P1)n (as is the work of Ghioca, Nguyen, and Ye [GNY19, GNY18]). We conjecture that the heights
given by the two options are equal to each other, as well as to the dynamical Mahler measure.

In terms of Figure 3, [Zha95, Theorem 2.4(b)] gives the implication (c) implies (b), [Zha95, Conjecture
2.5] would give (b) implies (c), and Proposition 6.4 gives (d) implies (b).

6.3. New results. Here we highlight the equivalences and implications from Figure 3 proved in [CLM+21]
and in Sections 7 and 8 of the current work.

(a) implies (d): This result for two-variable polynomials, conditional on the Dynamical Lehmer Conjecture,
is the main result of [CLM+21]. (See Theorem 4.4 here for a complete statement.) The proof proceeds in
two main steps, first obtaining (a) implies (d) conditional on the Dynamical Lehmer Conjecture, and then
using the two-variable case of Theorem 6.2 from [GNY19] for the (d) implies (e) step. More specifically, in
[CLM+21, Propostion 7.6] we show that (a) implies (d) conditional on Dynamical Lehmer for pairs (P, f)
satisfying a technical condition that we call the bounded orders property, which we then show holds in all
cases.

In Section 8 of this paper, we strengthen the two-variable result by showing that (a) implies (d) without
Dynamical Lehmer’s conjecture for polynomials f such that PrePer(f) ⊆ J (f). Again, combining this
with the implication (d) implies (e) from [GNY19] gives us a two-variable Kronecker’s Lemma for these
polynomials. The implication (a) implies (d) for polynomials in more than two variables is still open.
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(e2) implies (a): This was shown in [CLM+21, Corollary 6.4]. The strategy for the proof consists of
noticing that mf (x− y) = 0 for arbitrary f ∈ Z[x] monic, and then using the fact that the Mahler measure
is invariant under composition with any polynomial commuting with f .

(e1) implies (e2): This is shown in Section 7 by studying integrality of polynomials that satisfy certain
commutative properties. A key step is to prove that a polynomial commuting with some monic f ∈ Z[x]
(and satisfying certain technical conditions) must have coefficients in Z[x]. (See Proposition 7.8.)

7. An integrality property of commuting polynomials

To show that (e1) implies (e2) in Figure 3, we need to know that we can choose our product of factors

of the form f̃n(xi)− L(f̃m(xj)) to have integer coefficients. We will do this by showing that f̃ and L have
algebraic integer coefficients, hence the product also has algebraic integer coefficients, and the coefficients of
the product can be then assumed to be rational integers by enlarging the set of factors, if necessary, to be
stable under the Galois action.

Let Z be the ring of algebraic integers, which has fraction field Q and unit group Z×. First we show that
f̃ ∈ Z[x].

Lemma 7.1. If g, h ∈ Q[x] are polynomials of positive degree with leading coefficients in Z× such that
f = g ◦ h ∈ Z[x], then the polynomials g(x+ h(0)) and h(x)− h(0) both lie in Z[x].

Proof. We follow the method of proof of [Gus08, Theorem 2.1].
By replacing g(x) and h(x) with g(x+ h(0)) and h(x)− h(0) respectively, we may assume that h(0) = 0.

In this case, it suffices to show that g(x), h(x) ∈ Z[x].

Write g(x) = a
∏
i(x− αi) and h(x) = b

∏
j(x− βj). By assumption a, b ∈ Z×. Note that the polynomial

f = g ◦ h has leading coefficient equal to a · bdeg g ∈ Z×. Hence, the roots of f are all algebraic integers, and
we can factor f(x) in Z[x] as f(x) = a · bdeg g

∏
k(x− γk) with γk ∈ Z. We have another factorization:

f(x) = g(h(x)) = a
∏
i

(h(x)− αi).

By unique factorization, we must have h(x) − αi = b
∏
k∈Si

(x − γk) for some subset Si of the γk, and so

in particular h(x) − αi ∈ Z[x] has algebraic integer coefficients. Since we have assumed that h(0) = 0,
we conclude that αi ∈ Z and h(x) ∈ Z[x]. Then also g(x) = a

∏
i(x − αi) ∈ Z[x], and this concludes the

proof. �

Proposition 7.2. Suppose that f ∈ Q[x] has degree > 1 and that the n-fold iterate fn = f ◦ · · · ◦ f is a
monic polynomial in Z[x]. Then in fact f ∈ Z[x].

Proof. Since the leading coefficient of fn is 1, we see that f must have leading coefficient in Z× (in fact, it
must be a root of unity, but we do not need this). The same is true for any iterate of f .

Write c = f(0). We now apply Lemma 7.1 to the composition fn = (fn−1) ◦ f , and conclude that
f(x)− c ∈ Z[x].

Hence, if we write f(x) = adx
d+ · · ·+a1x+c, we have shown that all aj with j > 0 are algebraic integers.

It remains to show that also c is an algebraic integer. For this, we note that

(7.1) fn(c)− c = fn+1(0)− c = f(fn(0))− c = ad(f
n(0))d + · · ·+ a1(fn(0)),

where the constant terms cancel out. The right hand side lies in Z because all the ai do, as does fn(0) since
fn ∈ Z[x].

Hence c is a root of a polynomial of the form fn(x) − x − A = 0, where A ∈ Z is the right hand side of
(7.1). Since f has degree > 1, this is a monic polynomial with algebraic integer coefficients, hence c ∈ Z
also, as desired. �

Before proving our next statement, we need the following result:
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Theorem 7.3. [Jul22, Rit23] If two polynomials f and g commute under composition, then up to conju-
gation with the same linear polynomial, either both are power functions, both are plus or minus Chebyshev
polynomials, or an iterate of one is equal to an iterate of the other.

Corollary 7.4. If f ∈ Z[x] is a monic polynomial of degree > 1 that is not conjugate (over C) to a power
function or plus or minus a Chebyshev polynomial, and g ∈ Q[x] of degree > 1 commutes with some iterate
of f , then in fact g ∈ Z[x].

Proof. By assumption, g commutes with fk for some k. It follows from Theorem 7.3 that ga = (fk)b for some
positive integers a and b. Hence ga ∈ Z[x] and is monic. By Proposition 7.2, we conclude that g ∈ Z[x]. �

Remark 7.5. It would be worth investigating if Corollary 7.4 is still true even when f is conjugate to a
power function or plus or minus a Chebyshev polynomial. It would be also interesting to have a proof of the
statement that does not rely on Theorem 7.3.

We now show that the commuting linear function L has coefficients in the algebraic integers.

Proposition 7.6. If f in Z[x] is monic of degree > 1, and L ∈ Q[x] is a linear polynomial that commutes
with f , then L ∈ Z[x].

Proof. Write f(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0, and L(x) = ax+ b. First look at the leading coefficient

of L ◦ f = f ◦ L:

a = an,

so a is a root of unity, hence in Z.
Now look at the constant coefficient of L ◦ f = f ◦ L:

ac0 + b = f(b),

so b is a root of the equation f(x)− x− ac0 ∈ Z[x]. So L has algebraic integer coefficients. �

Lemma 7.7. If f in Q[x] has degree > 1, then any polynomial g ∈ C[x] commuting with f has coefficients
in Q[x].

Proof. Since f ∈ Q[x], the requirement that f ◦ g = g ◦ f gives algebraic conditions on the coefficients of
g. From Boyce [Boy72], we know that there are finitely many g of a fixed degree commuting with f , so
this combined with the algebraic conditions on the coefficients ensures that g ∈ Q[x]. More specifically, the
algebraic condition imposed by f ◦ g = g ◦ f guarantees that the lead coefficient of g is in Q, and Boyce
describes an algorithm due to Jacobsthal [Jac55] for computing all of the coefficients of g from this lead
coefficient. �

Combining the above, we have the following result.

Proposition 7.8. If f ∈ Z[x] is monic of degree > 1 and is not conjugate to a power function or plus or
minus a Chebyshev polynomial, then any polynomial g commuting with f has coefficients in Z[x].

We now prove our desired theorem.

Theorem 7.9. Let f ∈ Z[x] be a monic polynomial with integer coefficients.
Let P ∈ Z[x1, . . . , xn] be a primitive polynomial with integer coefficients. Suppose that, working in the

ring C[x1, . . . , xn], P divides some polynomial Q ∈ C[x1, . . . , xn] that is a product of factors of the form

f̃n(xi)− L(f̃m(xj)) where m,n ≥ 0 are integers, L ∈ C[x] is a linear polynomial commuting with an iterate

of f , and f̃ ∈ C[x] is a non-linear polynomial of minimal degree commuting with an iterate of f (with possibly

different choices of L, f̃ , n, and m for each factor).
Then, working in the ring Z[x1, . . . , xn], P (x) divides some polynomial R ∈ Z[x1, . . . xn] that is a product

of factors of the form f̃n(xi)− L(f̃m(xj)) where m,n, f̃ , and L are as above.

Proof. Let Q = Q1, . . . , Qn be all the Galois conjugates of Q. Since the property of commuting with the
polynomial f , which has Q-coefficients, is preserved by the action of Gal(Q/Q), the Qi all have factorizations
of our desired form.
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Now let R =
∏
iQi, which is also a product of factors of this form. Since all these factors have coefficients

in Z, so does R. But also R is invariant under the Galois action by construction, so R ∈ Q[x]; therefore,
R ∈ Z[x].

Finally, we need to check that P divides R in the ring Z[x1, . . . , xn]. From the above, we know that, inside
the ring C[x1, . . . , xn], P divides Q, so also R. Since both P and R have rational coefficients, the quotient
R/P does also, and P divides R in Q[x1, . . . , xn]. Since additionally P and R have integer coefficients, and
P is primitive, by Gauss’s Lemma P divides R in Z[x1, . . . , xn], as desired.

�

8. Dynamical Kronecker’s Lemma in some two-variable cases

In this section we prove that (a) implies (d) in Figure 3 for polynomials f that satisfy a certain condition.
More precisely, we give an alternate proof of the following key step in the proof of two-variable Dynamical
Kronecker, which replaces the assumption of the Dynamical Lehmer’s Conjecture with the assumption that
the preperiodic points of f belong to its Julia set:

Theorem 8.1. Assume that PrePer(f) ⊆ Jf . If P (x, y) ∈ Z[x, y] with mf (P ) = 0, then the graph of
P (x, y) = 0 passes through infinitely many points (α, β) for which α and β are both preperiodic for P .

Remark 8.2. The property PrePer(f) ⊆ Jf is a strong assumption. In Section 9 we discuss some conditions
that guarantee that this property is satisfied, and so Dynamical Kronecker’s Lemma holds unconditionally
for f .

Before proving Theorem 8.1, we consider two lemmas.

Lemma 8.3. Assume that PrePer(f) ⊆ Jf . If P (x, y) = a(x)yk + (lower order terms in y) ∈ Z[x, y] is a
two-variable polynomial with mf (P ) = 0, then

(i) mf (a) = 0;
(ii) the polynomial a(x) ∈ Z[x] is primitive (the gcd of its coefficients is 1);

(iii) a(x) divides the polynomial P (x, y) (in Z[x, y]).

Proof. (i) This result follows from the equality case of Proposition 5.6. In particular, from equation (5.1)
we see that mf (P ) can be zero if and only if the two (non-negative) summands are both zero, one of which
corresponds to mf (a) in this two-variable case.

(ii) This follows from (i) and the fact that non-primitive polynomials have positive dynamical Mahler
measure.

(iii) It is enough to show that a(x) divides P (x, y) in C[x, y], since if this is the case, the polynomial
P (x, y)/a(x) must have rational coefficients, and by Gauss’s Lemma, the coefficients must also be integers.

We argue by contradiction, somewhat in the style of [EW99, Lemma 3.20]. Suppose not: then there is a
root α of a(x) such that P (α, y) is not identically 0. By the single-variable Dynamical Kronecker’s Lemma
(Lemma 4.1), since mf (a) = 0, the roots of a(x) are in PrePer(f). By assumption, they are in Jf .

As in the proof of Proposition 5.6, we have a factorization

P (x, y) = a(x)

k∏
i=1

(y − gi(x)),

where the gi are algebraic functions which may have branch cuts or singularities. In particular, plugging in
the α above, we see that some gi(x) must have a pole at x = α. We will show this leads to a contradiction.

We can decompose the Mahler measure of P as

mf (P ) = mf (a) +

k∑
i=1

∫
Jf

pµ(gi(x))dµf (x).

Since all summands are non-negative, in order to have mf (P ) = 0 we must have
∫
Jf
pµ(gi(x))dµf (x) = 0

for each i.
On the other hand, if gi has a pole at α of order r ∈ Q, we have a power series expansion

gi(x) = (x− α)−r + · · ·
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where the first term dominates near x = α, so there must be some neighborhood U of α such that pµ(gi(x)) >
1 for x ∈ U .

Then,

0 =

∫
Jf

pµ(gi(x))dµf (x) ≥
∫
U∩Jf

pµ(gi(x))dµf (x) ≥
∫
U∩Jf

dµf (x) = µf (U ∩ Jf ) > 0,

which gives the desired contradiction. (The last step uses the fact that α lies in the support Jf of µ.) �

After factoring out the leading term, we are reduced to considering the case when

P (x, y) = yk + (lower order terms in y)

as a monic polynomial in y.

Lemma 8.4. If P (x, y) = yk + (lower order terms in y) ∈ Z[x, y] is a two-variable polynomial, monic
in y, with mf (P ) = 0, then for any α ∈ Jf the polynomial Pα ∈ C[y] given by Pα(y) = P (α, y) satisfies
mf (Pα) = 0.

Proof. The polynomial Pα ∈ C[y] is monic, so mf (Pα) ≥ 0 for all α.
However,

(8.1) 0 = mf (P ) =

∫
Jf

mf (Pα)dµf (α),

from which we can immediately deduce that mf (Pα) = 0 for almost all α ∈ Jf (that is, except possibly on
a set of invariant measure 0).

Next we prove that mf (Pα) is a continuous function of α. To do this, write P (α, y) =
∏
i(y−gi(α)) ∈ C[y],

where as above the gi are algebraic functions. By Jensen’s formula,

mf (Pα) =
∑
i

pµf
(gi(α)).

By Proposition 5.4, pµf
is continuous, and therefore mf (Pα) is continuous as a function of α ∈ C.

Since the support of µf is exactly Jf (as discussed in the proof of [Ran95, Theorem 6.5.8] or [Ste93,
Theorem 2, page 169]), equation (8.1) then implies that mf (Pα) = 0 for every α ∈ Jf . �

Proof of Theorem 8.1. Write P (x, y) = a(x)yk + (lower order terms in y) ∈ Z[x, y].
Case 1: a(x) is not constant. By the single-variable Dynamical Kronecker’s Lemma (Lemma 4.1), the

roots of a(x) are preperiodic for f , and by Part (iii) of Lemma 8.3, P (x, y) contains the vertical lines through
those preperiodic x-coordinates.

Case 2: a(x) is constant, so it equals ±1 by Part (i) of Lemma 8.3. By flipping the sign as necessary, we
may assume that a(x) = 1, so we are in the situation of Lemma 8.4.

Now let α be any preperiodic point for f , and let its Galois conjugates be α = α1, α2, . . . , αn. Consider
the polynomial Pα1Pα2 · · ·Pαn ∈ C[y]: this has algebraic integer coefficients since α is an algebraic integer
(here we are crucially using the fact that f is monic) and P ∈ Z[x, y], and in fact rational integer coefficients
since it is invariant under the Galois action. Since α1, . . . , αn ∈ PrePer(f), by our assumption they are also
in Jf , and by Lemma 8.4, mf (Pα1

Pα2
· · ·Pαn

) = 0.
From the single-variable Dynamical Kronecker’s Lemma, we conclude that all roots of Pα1Pα2 · · ·Pαn are

preperiodic for f . Hence any point on the curve P (x, y) = 0 with x-coordinate α = α1 also has preperiodic
y-coordinate. Since P (x, y) is monic in y, the polynomial P (α, y) is nonzero for any such α, and thus there
is some β for which P (α, β) = 0. Since there are infinitely many choices for the periodic point α we get
infinitely many points with both coordinates preperiodic. �

9. Conditions for the preperiodic points of f to lie in the Julia set Jf
Given the results of Section 8, it is natural to ask how restrictive the hypothesis is that PrePer(f) ⊆ Jf .

This seems to be a delicate question in general. In the case of unicritical polynomials — polynomials with a
unique critical point γ ∈ C — we can answer the question completely. We begin with some background on
the connection between Julia sets, filled Julia sets, and periodic points.

For f ∈ C[z], a fixed point z0 is
17



• repelling if |f ′(z0)| > 1,
• neutral if |f ′(z0)| = 1, and
• attracting if |f ′(z0)| < 1.

If |f ′(z0)| > 1, then the image under f of a small neighborhood around z0 expands so that z0 “repels” nearby
points. If |f ′(z0)| < 1, the image under f of small neighborhood around z0 shrinks, so that z0 “attracts”
nearby points. The number f ′(z0) is called the multiplier of the fixed point. These ideas generalize to
n-cycles by considering points on the cycle as fixed points of the iterated polynomial fn. So to study an
n-cycle containing the point z0 and determine whether it is repelling, neutral, or attracting, we consider the
absolute value of

dfn

dz

∣∣∣∣
z=z0

=
∏

zi on the cycle

f ′(zi).

The equality comes from applying the chain rule to the derivative of fn.
As noted in Section 2.2, all preperiodic points of a polynomial f lie in the filled Julia set Kf . But in

fact more is true: The Julia set Jf is the closure of the repelling periodic points of f [Bea00, Theorem
6.9.2]. Since the Julia set Jf is completely invariant under f—meaning that f(Jf ) = Jf = f−1(Jf ) [Bea00,
Theorem 3.2.4]—we need only determine when the nonrepelling cycles lie in the Julia set.

Notice that it suffices to check this when Jf ( Kf , since in the case of Jf = Kf , the preperiodic points
lie in Jf trivially. Observe that the condition Jf = Kf is guaranteed if Jf is totally disconnected.

The following two results will be useful in the sequel.
Theorem 9.1. [Sil07, Theorem 1.35 (a)] Let f(z) ∈ C[z] be a polynomial of degree d ≥ 2. Then f has at
most d− 1 nonrepelling periodic cycles in C.

Theorem 9.2. [Sut14, Corollary 8.2] If z0 is a periodic point with multiplier dfn

dz

∣∣∣
z=z0

= λ a root of unity,

then z0 ∈ Jf .

9.1. The degree-2 case. We start by considering the case of deg(f) = 2. In this case, we can completely
classify monic integer polynomials that fail to have all preperiodic points in the Julia set.

Proposition 9.3. Let f ∈ Z[z] be monic and quadratic. Then PrePer(f) ⊆ Jf unless f is affine conjugate
over Z to either z2 or z2 − 1.

To prove Proposition 9.3, we need a couple of tools. First, note that any quadratic polynomial f ∈ C[z]
is affine conjugate over C to a polynomial of the form z2 + c with c ∈ C. To see this, choose a conjugating
function L(z) = z

a − γ where a is the leading coefficient of f and γ is the unique critical point of f . Then

fL will be monic and have a critical point at zero, which gives it the desired form.
Let fc(z) = z2 + c. The Mandelbrot set is defined as

M2 = {c ∈ C : sup |fnc (0)| <∞} .

Figure 4. The Mandelbrot set.
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The Mandelbrot set is contained in the disk of radius 2; furthermore, M2 satisfies M2 ∩ R =
[
−2, 1

4

]
(see [CG13, Chapter VIII, Theorem 1.2]). It follows from the discussion of Julia sets in Section 2.2 that for
c 6∈ M2, the Julia set for fc is totally disconnected and PrePer(f) ⊆ Jf .

The Mandelbrot set completely classifies conjugacy classes of complex quadratic polynomials. In fact, the
conjugacy described above preserves the field of definition of a quadratic polynomial provided the field does
not have characteristic 2. However, to prove Proposition 9.3, we need to understand conjugacy classes of
monic integral quadratic polynomials, which is slightly more delicate.

Lemma 9.4. Let f ∈ Z[z] be monic and quadratic. Then f is affine conjugate over Z to an integral
polynomial of the form z2 + c or z2 + z + c.

Proof. Let f(z) = z2 + αz + β ∈ Z[z]. We will find a linear polynomial L(z) ∈ Z[z] such that

f = gL = L−1 ◦ g ◦ L

with g a polynomial as in the statement. We have two cases:
If α is even, take α1 ∈ Z such that α = 2α1. Then for L = z + α1 we have g(z) = z2 + β − α2

1 + α1.
If α is odd, take α1 ∈ Z such that α = 2α1 + 1. Then for L = z + α1 we have g(z) = z2 + z + β − α2

1. �

Proof of Proposition 9.3. By Theorem 9.1, a degree-2 polynomial has at most one nonrepelling periodic cycle
in C. It suffices to find one such cycle in each case.

First consider the case in which f(z) is conjugate to g(z) = z2 + c. SinceM2 ∩R =
[
−2, 1

4

]
, it suffices to

consider the cases of c = 0,−1,−2.
When c = 0, we immediately see that z0 = 0 is an attracting fixed point in Kf \ Jf .
When c = −2, we have g = T2 (the second Chebyshev polynomial), and Jf = [−2, 2] = Kf .

Finally, when c = −1, we find that {−1, 0} is an attracting cycle. Indeed g2(z) = z4 − 2z2 and dg2

dz =

4z3 − 4z. This gives
dg2

dz

∣∣∣∣
z=0

=
dg2

dz

∣∣∣∣
z=−1

= 0.

(This is a general phenomenon: When a critical point f is strictly periodic, one can show that the multiplier
of the cycle will be 0, and the cycle is called superattracting.)

Now we consider the case in which f is conjugate to g(z) = z2 + z+ c. Letting L(z) = z− 1
2 , we find that

gL = z2 + c + 1
4 ∈ Q[z]. Again using the fact that M2 ∩ R =

[
−2, 1

4

]
, we have Kf = Jf for c < − 9

4 and
c > 0 and we only need to check c = 0,−1,−2.

When c = 0, we have g(z) = z2 + z, and z0 = 0 is a neutral fixed point since g′(z) = 1 + 2z and g′(0) = 1.
Since the multiplier is 1, Theorem 9.2 implies 0 ∈ Jf .

When c = −1, we have g(z) = z2 + z − 1 and z0 = −1 is a neutral fixed point since g′(z) = 1 + 2z and
f ′(−1) = −1. Since the multiplier is −1, Theorem 9.2 implies −1 ∈ Jf .

Finally, when c = −2, we have g(z) = z2 +z−2. We claim that the roots of z3 +2z2−z−1 give a neutral
3-cycle with multiplier 1. First notice that

(9.1) g3(z)− z = (z2 − 2)(z3 + 2z2 − z − 1)2.

The roots of the first factor in (9.1) are (repelling) fixed points. Let z0 be a root of z3 +2z2−z−1 = 0. Since

z3 +2z2−z−1 has exponent 2 in the factorization of g3(z)−z, it must be a factor of the derivatived(g3(z)−z)
dz ,

but this implies that
d(g3(z)− z)

dz

∣∣∣∣
z=z0

= 0,

from which we get dg3

dz

∣∣∣
z=z0

= 1. Since the multiplier is 1, Theorem 9.2 implies z0 ∈ Jf . �

9.2. The family zd + c. A polynomial of the form fd,c(z) = zd + c has only one critical point, namely
z0 = 0. Therefore, in this family we have the dichotomy between connected and totally disconnected Julia
sets, and we can define the Mandelbrot or Multibrot set

Md =
{
c ∈ C : sup |fnd,c(0)| <∞

}
.
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(a) Multibrot set for d = 3. (b) Multibrot set for d = 4. (c) Multibrot set for d = 5.

Figure 5. Some Multibrot sets.

When d is odd and d > 1, Parisé and Rochon [PR17] proved

(9.2) Md ∩ R =

[
−d− 1

d
d

d−1

,
d− 1

d
d

d−1

]
,

and we remark that this implies Md ∩ Z = {0} for d > 1.
When d is even Parisé, Ransford, and Rochon [PRR17] proved

(9.3) Md ∩ R =

[
−2

1
d−1 ,

d− 1

d
d

d−1

]
,

and we remark that this implies Md ∩ Z = {−1, 0} for d > 2.

Theorem 9.5. Let f ∈ Z[z] be a monic polynomial that is affine conjugate over C to a polynomial of the
form zd + c with d > 2. Then PrePer(f) 6⊆ Jf if and only if either c = 0 or d is even and c = −1.

Proof. If f ∈ Z[x] is affine conjugate over C to zd + c, then f has a unique critical point γ ∈ C. Since f is
monic, the derivative factors over C as f ′(z) = d(z − γ)d−1. Integrating, we get f(z) = (z − γ)d + b where
γ, b ∈ C, but we also know that f(z) ∈ Z[z]. Of course, the derivative f ′(z) = d(z − γ)d−1 ∈ Z[z] as well.
The coefficient of zd−2 in f ′(z) is −d(d − 1)γ, so we see that γ ∈ Q. We claim that when d > 2, in fact
γ ∈ Z.

Looking at the coefficient of z in f(z), we have dγd−1 ∈ Z. Let p be a prime dividing the denominator of
γ. Since dγd−1 ∈ Z, we must have pd−1 | d. But this is impossible since pd−1 ≥ 2d−1 > d when d > 2. Now
consider the constant term of f , which is (−γ)d + b. Since γ ∈ Z, we have b ∈ Z as well.

Choose L(z) = z+ γ, and we see that fL(z) = zd + b− γ ∈ Z[z]. So f is conjugate to a polynomial of the
form zd + c with c ∈ Z.

We know that c 6∈ Md implies PrePer(f) ⊆ Jf . From equations (9.2) and (9.3), we deduce that for c ∈ Z,
c 6∈ Md iff c 6= 0 for d odd and c 6= 0,−1 for d even. Thus, it suffices to consider the exceptional cases c = 0
and c = −1.

We already know that for the power function zd + 0, the point z0 = 0 is an attracting fixed point in
Kf \ Jf .

Now consider g(z) = zd − 1 with d even. In this case we find that {−1, 0} is an attracting cycle. Indeed

g2(z) = (zd − 1)d − 1 and dg2

dz = d2zd−1(zd − 1)d−1. This gives dg2

dz

∣∣∣
z=0

= dg2

dz

∣∣∣
z=−1

= 0. �

One might hope that for f ∈ Z[z], if the coefficients of f are sufficiently large, then all critical points will
have unbounded orbit. In this case the Julia set would be totally disconnected, so that again PrePer(f) ⊆ Jf .
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