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Abstract. Pazuki and Pengo defined a Northcott property for special values of zeta functions of number

fields and certain motivic L-functions. We determine the values for which the Northcott property holds over

function fields with constant field Fq outside the critical strip. We then use a case by case approach for

some values inside the critical strip, notably Re(s) < 1
2
− log 2

log q
and for s real such that 1/2 ≤ s ≤ 1, and

we obtain a partial result for complex s in the case 1/2 < Re(s) ≤ 1 using recent advances on the Shifted

Moments Conjecture over function fields.

1. Introduction

The Northcott property [14] implies that a set of algebraic numbers with bounded height and bounded
degree must be finite. In [15], Pazuki and Pengo study a variant of the Northcott property for number fields
using special values of the Dedekind zeta function to measure the height. For a field K and s ∈ C denote

ζ∗K(s) := lim
t→s

ζK(t)

(t− s)ords(ζK(t))
,

the first nonzero coefficient of the Taylor series for ζK(s) around s.
For a fixed s = n ∈ Z, Pazuki and Pengo consider, for B a fixed positive real number, the set of

isomorphism classes of number fields

(1) {[K] : |ζ∗K(n)| ≤ B},

and discuss the finiteness of this set under various conditions of B and n. For number fields, they prove that
a Northcott property holds for n located at the left of the critical strip, but does not hold for n to the right
of the critical strip, and they show that such a property does not hold for n = 1, but holds for n = 0. They
also estimate the size of this set when the Northcott property holds.

We are interested in exploring the Northcott property for global function fields, more precisely, we consider
the set of isomorphism classes of function fields K with constant field Fq, and we aim at considering the
value of its zeta function at any complex number s ∈ C. To this end, we define

Sq,s,B = {[K] : |ζ∗K(s)| ≤ B},

where [K] denotes the isomorphism class of K, a global function field in one variable over a finite constant
field Fq with q elements, where q is fixed. The Northcott property of Fq at s is equivalent to having Sq,s,B
finite for all B ∈ R>0. More generally, we consider the following definition.

Definition 1.1. Let q be a power of a prime, s ∈ C, and I ⊂ R≥0. We say that the triple (q, s, I) has the
Northcott property if the set Sq,s,B is finite for all B ∈ I. We say that (q, s, I) is non-Northcott if the set
Sq,s,B is infinite for all B ∈ I.

The Riemann hypothesis implies that the zeros of ζK(s) are included in Re(s) = 1/2. While working
with the Northcott property on s such that Re(s) = 1/2 we will sometimes replace ζ∗K(s) by ζK(s) in the
definition of Northcott property. This will allow us to conclude that the Northcott property is not satisfied
when there are infinitely many zeros. More precisely, we consider the following definition.
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Figure 1. For the base field Fq, the Northcott property holds in the area in blue. Bright
red indicates that Sq,s,B is infinite for all B. This involves the real segment [1/2, 1], where
for s = 1/2, we take the Northcott property with ζK(1/2). Light red means that Sq,s,B is
infinite for B greater than a certain constant. The dashed line at Re(s) = 1 indicates the
boundary of the critical strip. More elementary results are available for Re(s) > 1. Remark

that the white gap corresponding to 1
2 −

log 2
log q ≤ σ <

1
2 disappears as q →∞.

Definition 1.2. Let q be a power of a prime, s ∈ C such that Re(s) = 1/2, and I ⊂ R≥0. We say that the
triple (q, s, I) has the Northcott property with ζK(s) if the set

(2) {[K] : |ζK(s)| ≤ B}

is finite for all B ∈ I. We say that (q, s, I) is non-Northcott with ζK(s) if the set (2) is infinite for all
B ∈ I.

We prove the following results.

Theorem 1.3. Let σ = Re(s).

a) If q > 4, then (q, 0,R>0) satisfies the Northcott property.

b) When σ < 1
2 −

log 2
log q , then (q, s,R>0) satisfies the Northcott property.

c) Let σ > 1 and

B =
1

(1− q−σ)(1− q1−σ)2
.

Then (q, s,R≥B) is non-Northcott.
d) For q ≡ 1 (mod 4), (q, 1,R>0) is non-Northcott.
e) For q ≡ 1 (mod 4) and 1/2 < σ < 1, (q, σ,R>0) is non-Northcott.
f) (q, 1/2,R>0) is non-Northcott with ζK(1/2) (as opposed to ζ∗K(1/2)).
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g) For q ≡ 1 (mod 4) and 1/2 < σ (but s 6= 1), let

B =

∣∣∣∣ 1

(1− q−s) (1− q1−s)

∣∣∣∣
×

∏
P monic

irreducible

[
1

2

((
1− 1

|P |s− 1
2

)−1(
1− 1

|P |s− 1
2

)−1
+

(
1 +

1

|P |s− 1
2

)−1(
1 +

1

|P |s− 1
2

)−1)
+

1

|P |

]1/2

×
(

1 +
1

|P |

)−1/2
.

Then (q, s,R>B) is non-Northcott.

In the list of Theorem 1.3, statements d), e), and f) depend on deep results on the distribution of quadratic
Dirichlet L-functions due to Lumley [12,13] and Li [10], while g) for σ < 1 depends on the Shifted Moments
Conjecture for quadratic Dirichlet L-functions, which was formulated by Andrade and Keating [2] for the
function field case, and has been recently proven under certain constraints by Bui, Florea, and Keating [4].
The result of g) for σ ≥ 1 follows directly from a moment computation and improves upon the set given in
c). The result of f) is with ζK(1/2) as it rests on the existence of infinitely many [K] such that ζK(1/2) = 0,
instead of working with ζ∗K(1/2).

In addition, we discuss bounds for #Sq,s,B in the cases of a) and b). More precisely, we use a result of
Couveignes [6] to prove that there is an absolute computable constant Q (independent of q) such that

(3) #Sq,s,B ≤ qQcσ(logB)3B ,

where

cσ =
1

(log q) log
(
q

1
2−σ − 1

) .
(We recall that the cases a) and b) only occur when σ 6= 1/2, and therefore the value for cσ above is
well-defined.)

Pazuki and Pengo [15] study the Northcott, Bogomolov, and Lehmer properties for special values of L-
functions evaluated at n ∈ Z. They prove that the Northcott property holds at the left of the critical strip
for a general family of motivic L-functions (assuming meromorphic continuation and functional equation),
which can be compared to our result of Theorem 1.3 b). They also focus on the Northcott property for
Dedekind zeta functions of number fields evaluated at integer numbers and prove that it is not satisfied for
n ∈ Z≥1, in a result analogous to our Theorem 1.3 c). When n ∈ Z≤0, they obtain bounds for the size of
the set given in (1) which are better than (3) in the case of n < 0, but worse than (3) in the case of n = 0.
Our results are limited by the lack of understanding on the number of smooth, projective curves of genus g
over a fixed finite field.

This article is organized as follows. Section 2 covers standard background on the zeta function attached
to a global function field. Sections 3 and 4 treat the left and right sides of the critical strip, while Section 5
considers the critical strip.
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2. Some background on ζK(s)

In this section we recall some background on function fields with constant field Fq. More details can be
found in [18].

Let K be a global function field in one variable with a finite constant field Fq with q elements. A prime
of K is a discrete valuation ring R with maximal ideal P such that Fq[T ] ⊂ R and the quotient field of R
equals K. The degree of a prime P , denoted by deg(P ) is the (finite) dimension of R/P over Fq. The group
of divisors of K is the free abelian group generated by the primes. Thus, a divisor is an element of the form
A =

∑
P a(P )P . In this case,

∑
P a(P ) deg(P ) is called the degree of A, denoted deg(A). The norm of A is

equal to qdeg(A) and is denoted by |A|. The divisor A is said to be effective if a(P ) ≥ 0 for all P . We write
A ≥ 0 to indicate that A is effective.

The zeta function of K is defined for Re(s) > 1 by

ζK(s) :=
∑
A≥0

1

|A|s
=

∞∑
n=0

bn
qns

,

where the sum is taken over all the effective divisors, and bn is the number of effective divisors of degree n.
Notice that ζK(s) satisfies an Euler product

ζK(s) =
∏
P

(
1− 1

|P |s

)−1
,

where the product takes over the primes of K.
From this, we have

(4) log ζK(s) =
∑
P

∞∑
j=1

1

j|P |js
=
∑
A≥0

Λ(A)

deg(A)|A|s
,

where Λ(A) is the von Mangoldt function, equal to deg(P ) if A = P j (or A = jP if written additively) for
P prime and 0 otherwise.

By the Weil conjectures ([18, Theorem 5.9]), there is a polynomial LK(u) ∈ Z[u] of degree 2g, where g is
the genus of the curve whose function field is K, such that

(5) ζK(s) =
LK(q−s)

(1− q−s)(1− q1−s)
.

The right hand side provides a meromorphic continuation for s ∈ C. We immediately see that ζK(s) has
simple poles at s = 0, 1. If we set

ξK(s) = q(g−1)sζK(s),

then we have the functional equation

(6) ξK(1− s) = ξK(s).

The Riemann Hypothesis, which is known to be true in this context, implies that the zeros of ζK(s) occur
only at Re(s) = 1/2.

The function ζK(s) admits certain symmetry inherited from the functional equation. This symmetry
centers on the critical line Re(s) = 1/2. It is natural to analyze the behavior of |ζK(s)| depending on the
position of s respect to the critical strip.

After making the change of variables u = q−s, we can write

(7) LK(u) =

2g∏
j=1

(1− πju),

where |πj | =
√
q. In addition, it is known that LK(0) = 1 and LK(1) = hK , the class number of K. By the

functional equation, the πj ’s can be separated in pairs of complex conjugates, so that πj = π2g−j . Notice
that we also have ([18, Theorem 5.12])

(8)

2g∑
j=1

π`j = q` + 1−
∑
d|`

dad,
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where

(9) ad = #{P : deg(P ) = d}.

Thus, we can write the Euler product for ζK(s) as

(10) ζK(s) =

∞∏
n=1

(
1− 1

qns

)−an
.

In particular for K = Fq(T ) we have

ζFq(T )(s) =
∏
P

(
1− 1

|P |

)−1
,

where the product is over all the primes of Fq(T ), namely, the monic irreducible polynomials and the prime

at infinity. When P is a monic irreducible polynomial, we have that |P | = qdeg(P ), while the prime at infinity
has norm q, since its degree is 1. Notice that

ζFq(T )(s) =
1

(1− q−s)(1− q1−s)
.

We will also denote by ζFq [T ] the zeta function without the prime at infinity. In this case

ζFq [T ](s) =
1

1− q1−s
.

Throughout this paper we will write s = σ + iτ , where σ, τ are real numbers.

3. The left side of the critical strip

Starting with the left side of the critical strip, we obtain a positive result for a large subset of Cσ<1/2 that
contains Cσ≤0 (for q > 4). More precisely, we prove in Theorems 3.3 and 3.4 that for s in the blue area of
Figure 1, (q, s,R>0) has the Northcott property.

Lemma 3.1. The polynomial LK(u) ∈ Z[u] satisfies the following bounds

(
√
q|u| − 1)

2g ≤ |LK(u)| ≤ (
√
q|u|+ 1)

2g
.(11)

Proof. This follows immediately from equation (7) and the triangle inequality on each factor. �

Lemma 3.2. Let q be a power of a prime p. For a fixed g there are finitely many isomorphism classes of
global function fields over Fq with genus g.

Proof. The statement follows from the fact that there exists a moduli stack Mg over Fp classifying smooth
proper curves of genus g ≥ 2. (See for example [7].) �

We are ready to prove the main result of this section. First we treat the case s = 0 separately.

Theorem 3.3. Let q be a power of a prime such that q > 4. We have that (q, 0,R>0) satisfies the Northcott
property.

Proof. We remark that

ζ∗K(0) = lim
s→0

sLK(q−s)

(1− q−s)(1− q1−s)
=

hK
1− q

lim
s→0

s

1− q−s
=

hK
(1− q) log q

.

By Lemma 3.1, we have that

(
√
q − 1)2g

(q − 1) log q
≤ |ζ∗K(0)|.(12)

Since q > 4,
√
q − 1 > 1, and we conclude that |ζ∗K(0)| → ∞ as long as g → ∞. Therefore, if [K] ∈ Sq,0,B ,

we must have that g(K) is bounded. By Lemma 3.2, there are only finitely many [K] for each g, and we
conclude that Sq,0,B must be finite. �
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Theorem 3.4. Let s = σ + iτ ∈ C∗ such that

σ < 1/2− log 2

log q
,

then (q, s,R>0) satisfies the Northcott property.

Proof. First notice that if σ < 1/2− log 2
log q , then we have that 2 < q

1
2−σ. From here, we deduce that

√
q|u| − 1 > 1.

By Lemma 3.1, we conclude that |LK(u)| → ∞ as long as g →∞. We reach the same conclusion as long as
s 6= 0, since the denominator in ζK(s) is non-zero and bounding |ζK(s)| is therefore equivalent to bounding
|LK(u)|. Thus, if [K] ∈ Sq,s,B , we must have that g(K) is bounded. By Lemma 3.2, there are only finitely
many [K] for each g, and we conclude that Sq,s,B must be finite.

�

A natural question is to bound the size of Sq,s,B in the cases when it is finite. We will need the following
result of Couveignes [6].

Theorem 3.5. [6, Theorem 2 (simplified version)] There exists an absolute and computable constant Q such
that the following is true. Let K = Fq(T )(C) = Fq(T,X) be a function field of genus g ≥ 2 and degree
[Fq(T,X) : Fq(T )] = n. Then K is determined by at most

Q(log n)2(g + n(1 + logq n))

parameters of Fq.

Although Couveignes does not give the value of Q, this constant is only related to the technicalities of
the proof and is independent of the base field. In our context this means that it is independent of q.

Using Theorem 3.5, we can prove the following bound.

Theorem 3.6. Let ε > 0 and s ∈ C such that σ < 1/2− log 2
log q . Then, as B →∞, we have

#Sq,s,B ≤ qQcσ(logB)3B ,

where

cσ =
1

(log q) log
(
q

1
2−σ − 1

) .
Proof. By Theorem 3.5, the number of possible fields K of genus g and degree n is bounded by

qQ(logn)2(g+n(1+logq n)).

We need to count over all possible values of n. We can take n as the gonality of the curve C, defined
as the smallest possible degree of a dominant map C −→ P1(Fq(T )), and known to be bounded by 2g − 2
when g > 1 (see [16, Proposition A.1]). For g = 1, we have an elliptic curve, and we can bound the degree
of the function field by 2. Thus, we have a bound for the number of isomorphism classes of fields under
consideration with fixed genus g given by

2g−2∑
n=2

qQ(logn)2(g+n(1+logq n)) ≤qQ(log(2g−2))2(g+(2g−2)(1+logq(2g−2))+1 (g ≥ 2).

For g = 1 this number is bounded by

1 + qQ(log 2)2(1+2(1+logq 2)),

and for g = 0, we have just one field.
We proceed to let g vary. First consider the case s = 0 with q > 4. By equation (12), we have

(
√
q − 1)2g

(q − 1) log q
≤ B,
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and this gives

g ≤ log((q − 1)(log q)B)

2 log(
√
q − 1)

= a0 logB + b0,

where a0 = 1

2 log(
√
q−1)

and b0 = log((q−1)(log q))
2 log(

√
q−1)

denote constants that are only dependent on q.

Now consider the case s 6= 0 such that σ < 1/2− log 2
log q . By equation (11),(

q
1
2−σ − 1

)2g
|(1− q−σ−iτ ) (1− q1−σ−iτ )|

≤ B,

and this gives

g ≤
log
(∣∣(1− q−σ−iτ) (1− q1−σ−iτ)∣∣B)

2 log
(
q

1
2−σ − 1

) ≤ aσ logB + bσ,

where aσ = 1

2 log
(
q

1
2
−σ−1

) and bσ =
log((1+q−σ)(1+q1−σ))

2 log
(
q

1
2
−σ−1

) are constants that are only dependent on σ and q.

Finally, we need to consider the bound summing all the possible values g up to aB + b. This gives

2 + qQ(log 2)2(1+2(1+logq 2)) +
∑

2≤g≤aB+b

qQ(log(2g−2))2(g+(2g−2)(1+logq(2g−2))+1

≤ 2 + qQ(log 2)2(1+2(1+logq 2)) + qQ(log(2(aB+b−1)))2(aB+b+2(aB+b−1)(1+logq(2(aB+b−1)))+2.

As B →∞ the above is bounded by

≤ qQ
2a(1+o(1))

log q (logB)3B .

We conclude by noticing that the formula for a0 is simply the result of specializing aσ at σ = 0. �

Remark 3.7. Lipnowski and Tsimerman [11, Lemma 2.1, Corollary 2.2] estimate the number of possible

LK(u) of fixed genus g to be at most (2g)gq
1
4 g(g+1). In the same article, [11, Eq. (28)] gives a bound for the

number of isomorphism classes on each isogeny class of p
33
4 g

2(1+o(1)). Combining these two estimates gives
a bound of

(2g)gq
1
4 g(g+1)p

33
4 g

2(1+o(1))

for the number of isomorphism classes of fields under consideration with fixed genus g. While this formula
is more explicit than the bound given by Theorem 3.5, the final bound for #Sq,s,B is asymptotically worse
as it has g2 in the exponent. In fact, this leads to

#Sq,s,B ≤ q
17
2 a

2
σ(1+o(1))B

2

.

Remark 3.8. The result of Theorem 3.6 can be in principle improved if we use the argument by de Jong
and Katz [7], which claims that the number of smooth proper curves of genus g ≥ 2 is bounded by

gc1gqc2g,

where c1, c2 are (non-effective) positive constants. This leads to

#Sq,s,B ≤ qc1aσ(1+o(1))(logB)B ,

This bound has a slightly better asymptotic than the result of Theorem 3.6, but it has the disadvantage that
we can not compute c1.

4. The right side of the critical strip

We now consider the right side of the critical strip, that is, Cσ>1, where we obtain a result conditionally
on the value of B. More precisely, we prove that for the s in the pale shade of red of Figure 1, the Northcott
property does not hold for B sufficiently large.

The first result allows us to compare ζK(s) with ζK(σ).

Lemma 4.1. Let s = σ + iτ ∈ C with σ > 1. Then

1

ζK(σ)
≤ |ζK(s)| ≤ ζK(σ).
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Proof. We start by proving the upper bound. Since σ > 1, the Dirichlet series for ζK(s) converges and we
can directly bound

|ζK(σ + iτ)| =

∣∣∣∣∣
∞∑
n=1

bn
qn(σ+iτ)

∣∣∣∣∣ ≤
∞∑
n=1

∣∣∣∣ bn
qn(σ+iτ)

∣∣∣∣ =

∞∑
n=1

bn
qnσ

= ζK(σ).

Now we proceed to prove the lower bound. Notice that for any θ, 1 + cos(θ) ≥ 0. By considering the
logarithm of the Euler product (4), we have that

log ζK(σ) + Re log ζK(σ + iτ) =
∑
P

∞∑
j=1

1 + cos(τ log |P j |)
j|P |jσ

≥ 0.

Taking the exponential, we conclude that

(13) ζK(σ)|ζK(s)| ≥ 1

as desired. �

Corollary 4.2. For σ > 1,
1 ≤ ζK(σ).

Proof. This follows directly from setting s = σ in (13). �

Lemma 4.1 shows that if we can control ζK(σ), then we can also control |ζK(s)|. We now focus on
estimating ζK(σ).

Lemma 4.3. Let a` be defined by equation (9). Then

a` ≤
q`

`
+ q`/3 +

2g

`
q`/2 + 2gq`/4.

Proof. This proof follows from combining various elements from [18, Theorem 5.12]. By applying Möbius
inversion to (8), we have, for ` > 1,

(14) `a` =
∑
d|`

µ(d)q`/d +
∑
d|`

µ(d)

 2g∑
j=1

π
`/d
j

 .

We focus on the first term. The highest power of q is q` and the second highest power is q`/2 that only appears
when 2 | ` and in that case, it has coefficient −1. All the other powers are at most q`/3. The total number
of terms is bounded by

∑
d|` |µ(d)|, which is seen to be 2ω(`), where ω(`) is the number of distinct prime

divisors of `. If p1, . . . , pω(`) are the distinct primes dividing `, then one has that 2ω(`) ≤ p1 · · · pω(`) ≤ `.
Combining all of this, we obtain

(15)
∑
d|`

µ(d)q`/d ≤ q` + `q`/3.

Similarly, we have

(16)

∣∣∣∣∣∣
∑
d|`

µ(d)

 2g∑
j=1

π
`/d
j

∣∣∣∣∣∣ ≤ 2gq`/2 + 2g`q`/4.

The result follows by combining equations (15) and (16). �

We use the previous estimate to give an upper bound for ζK(σ).

Remark 4.4. By employing a better estimate for ω(`) given by Robin in [17, Theorem 11]

ω(`) ≤ 1.3841
log `

log log `
` ≥ 3,

one can actually prove

(17)
∑
d|`

µ(d)q`/d ≤ q` + `
0.96

log log ` q`/3,
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and we remark that the above bound is true for ` ≥ 1. This leads to

a` ≤
q`

`
+

q`/3

`1−
0.96

log log `

+
2g

`
q`/2 + 2gq`/4.

This is a much better bound when ` is large. For our purposes, the biggest terms will come from g → ∞,
and therefore we will continue to work with the inequality from Lemma 4.3.

Proposition 4.5. Let σ > 1. Then we have

ζK(σ) ≤

exp

(
1

qσ−
1
3−1

+ 2g

qσ−
1
4−1

)
(1− q1−σ)(1− q 1

2−σ)2g


qσ

qσ−1

.

Proof. We apply Lemma 4.3 to the Euler product (10) and obtain

log ζK(σ) =−
∞∑
n=1

an log

(
1− 1

qnσ

)

≤−
∞∑
n=1

(
qn

n
+ qn/3 +

2g

n
qn/2 + 2gqn/4

)
log

(
1− 1

qnσ

)
.

By using the estimate 1− 1
x ≤ log(x) for x ∈ R≥0, we obtain

log ζK(σ) ≤
∞∑
n=1

(
qn

n
+ qn/3 +

2g

n
qn/2 + 2gqn/4

)
1

qnσ − 1
.

Now we further use the bound
qnσ

qnσ − 1
≤ qσ

qσ − 1

and get

log ζK(σ) ≤ qσ

qσ − 1

∞∑
n=1

(
qn

n
+ qn/3 +

2g

n
qn/2 + 2gqn/4

)
q−nσ

=
qσ

qσ − 1

(
− log(1− q1−σ)− 2g log(1− q 1

2−σ) +
1

qσ−
1
3 − 1

+
2g

qσ−
1
4 − 1

)
,

and thus

ζK(σ) ≤

exp

(
1

qσ−
1
3−1

+ 2g

qσ−
1
4−1

)
(1− q1−σ)(1− q 1

2−σ)2g


qσ

qσ−1

.

�

The result of Proposition 4.5 gives an upper bound for ζK(σ) when σ > 1. This upper bound tends to
infinity as g →∞, and therefore it gives a weak result in terms of the Northcott property.

We close this section by focusing on the case of quadratic fields, where we obtain a better upper bound,
independent of g.

Proposition 4.6. Let σ > 1 and K be a quadratic extension of Fq(T ) with constant field Fq. Then

|ζK(σ)| ≤ 1

(1− q−σ)(1− q1−σ)2
.

Proof. Since K is quadratic, we can write

(18) ζK(s) =
L(s, χD)

(1− q−s)(1− q1−s)
,

9



where χD is the quadratic character associated to the extension and

L(s, χD) =
∑

fmonic

χD(f)

|f |s
.

To be concrete, we can think of χD(f) :=
(
D
f

)
2
, the Legendre symbol, with D ∈ H2g+1, the set of monic

square-free polynomials of degree 2g + 1. Furthermore, we can think of K = Fq(T )(
√
D).

We have

|L(s, χD)| ≤
∑

fmonic

∣∣∣∣χD(f)

|f |s

∣∣∣∣ ≤ ∑
fmonic

1

|f |σ
= ζq(σ) =

1

1− q1−σ
.

Considering the denominator of ζK(s) in (18), we obtain the result.
�

Theorem 4.7. Let σ > 1, and

B ≥ 1

(1− q−σ)(1− q1−σ)2
.

Then (q, s, B) does not satisfy the Northcott property.

Proof. By Proposition 4.6, |ζK(σ)| ≤ B for all quadratic fields provided thatB is larger than 1
(1−q−σ)(1−q1−σ)2 .

This gives an infinite family of quadratic fields with |ζK(σ)| ≤ B.
For complex s, we use the upper bound in Lemma 4.1 to conclude. �

5. Inside the critical strip

In this section we use results of Lumley [12,13], Li [10], and Bui, Florea, and Keating [4] to get information
on some specific values inside the critical strip. Unless otherwise stated, we assume that q ≡ 1 (mod 4). This
is a common assumption made in [2, 12, 13] that allows cleaner formulas as quadratic reciprocity becomes
trivial.

5.1. The Northcott property at the pole s = 1. Here we treat the case of s = 1, corresponding to the
right bold point in red of Figure 1. We consider the following result of Lumley.

Theorem 5.1. [12, Corollary 1.8] For g large and 1 ≤ τ ≤ log g − 2 log(log g)− log(log(log g)), the number
of D ∈ H2g+1 such that

hD
qg

<
ζFq [T ](2)

eγτ
is given by

(19) (#H2g+1) exp

(
−C1(q{log κ(τ)})

qτ−C0(q
{log κ(τ)})

τ

(
1 +O

(
log τ

τ

)))
.

Above, we have written hD instead of hFq(T )(
√
D) for short, and γ denotes the Euler—Mascheroni constant.

We will not discuss κ, C0, and C1. It suffices to say that C0(q{log κ(τ)}) and C1(q{log κ(τ)}) are positive
functions depending on τ .

Theorem 5.2. Let B > 0. Then (q, 1, B) does not satisfy the Northcott property.

Proof. Given B > 0, fix τ large enough such that

ζFq [T ](2)

eγτ
· q

(1− q−1) log q
< B.

Since τ is fixed, we can evaluate the exponential factor in (19) and it gives a fixed positive constant c(τ)
(that can be very small).

We have that (see for example, [18, Proposition 2.3])

(20) #Hn =

{
qn(1− q−1) n ≥ 2,

qn n = 0, 1.
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Applying this, we get that for g large enough (so that τ satisfies the right conditions) there are at least

q2g+1(1− q−1)c(τ)

possible D ∈ H2g+1 satisfying that

hDq
−g

(1− q−1) log q
< B.

We will combine this with the fact that

ζ∗K(1) = lim
s→1

(s− 1)LK(q−s)

(1− q−s)(1− q1−s)
=
LK(q−1)

1− q−1
lim
s→0

s− 1

1− q1−s
=

LK(q−1)

(1− q−1) log q
=

hKq
−g

(1− q−1) log q
,

where the equality LK(q−1) = hkq
−g follows from the functional equation (6).

Finally, we obtain

ζ∗K(1) < B.

Letting g →∞, we have that Sq,1,B is infinite for any choice of B > 0. �

5.2. The segment of the real line inside the right side of the critical line. For 1/2 < σ < 1 we use
another result of Lumley that is very similar to the result we had at the pole s = 1. This corresponds to the
red segment in Figure 1.

Theorem 5.3. [13, Theorem 1.3, partial statement] Let N be large and 1/2 < σ < 1 be fixed. There exist a
constant βq(σ) > 0 and an irreducible polynomial P of degree N , such that

log(L(σ, χP )) ≤ −βq(σ)
(logq |P |)1−σ

(logq logq |P |)σ
.

With this, we can prove the following.

Theorem 5.4. Let B > 0 and 1/2 < σ < 1. Then (q, σ,B) does not satisfy the Northcott property.

Proof. Given B > 0 and σ ∈ ( 1
2 , 1) we can choose N such that

|ζKP (σ)| ≤ 1

|(1− q−σ)(1− q1−σ)|
e
−βq(σ)

(logq |P |)
1−σ

(logq logq |P |)σ ≤ B.

Then, we can construct a sequence of irreducible polynomials Pk where P0 is a polynomial of degree N and
Pk is of degree N + k such that for all the polynomials in the sequence

|ζKPk (σ)| ≤ B.

Thus, we see that Sq,σ,B is infinite for any choice of B > 0.
�

5.3. The Northcott property at s = 1/2. Now we consider the case of s = 1/2, more precisely, we look
at ζK(1/2). For this case, we use the following result of Li.

Theorem 5.5. [10, Theorem 1.3, simplified version] For any ε > 0 there exist nonzero constants Bε and Nε
such that if N > Nε,

#{D ∈ Fq[T ] : Dmonic, square-free, |D| < N,L( 1
2 , χD) = 0} ≥ BεN1/5−ε.

The above result immediately implies the following.

Theorem 5.6. Let B > 0. Then (q, 1/2, B) does not satisfy the Northcott property with ζK(1/2).

Proof. By Theorem 5.5, there are infinitely many K for which |ζK(1/2)| = 0 and therefore we obtain infinitely
many K such that |ζK(1/2)| < B. �

Remark 5.7. The above result does not cover the case of ζ∗K(1/2). To do this, we would have to consider
the first nonzero coefficient of the Taylor series for ζK(s) around s = 1/2.
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Remark 5.8. It would be interesting to see if Theorem 5.6 has a counterpart in the number field case. This
is not clear, as there is no vanishing result analogous to Theorem 5.5 in the number field case. We speculate
that understanding the result over number fields is equivalent to understanding the standard Northcott
property with ζ∗K(1/2) as opposed to the current results involving the Northcott property with ζK(1/2).

Theorem 5.6 can be extended to a more general class of s. An algebraic integer α is called a Weil integer
if |α| = √q under every complex embedding.

Theorem 5.9. For any B > 0 and qs a Weil integer, the triple (q, s, B) does not satisfy the Northcott
property with ζK(1/2).

Proof. The statement follows from the fact that for any Weil integer qs, there exist infinitely many function
fields K such that ζK(s) = 0.

By the theory of Honda–Tate, for every Weil integer qs, there exists an abelian variety A/Fq such that
qs is a Frobenius eigenvalue for A. By the work of Gabber [9, Corollay 2.5], for any abelian variety A/Fq,
there exists a smooth projective curve C/Fq such that A is an isogeny factor of the Jacobian of C (see also
[3] for an effective statement). Hence ζKC (s) = 0 where KC is the function field of C. The theorem follows
from the fact that ζL(s) = 0 for any field L which is an extension of K with constant field Fq. �

5.4. The Northcott property in the right of the critical line. Here we consider the set 1/2 < Re(s) <
1. This case will be studied in the context of the Shifted Moments Conjecture, formulated over function
fields by Andrade and Keating [2] and recently proven for products of up to three factors and Re(s) < 1 by
Bui, Florea, and Keating [4].

For simplicity of notation we will write ζq(s) instead of ζFq [T ](s). Here, as before, it is assumed that
q ≡ 1 (mod 4) for simplicity.

We start by recalling a simplified version of one of the results of Bui, Florea, and Keating.

Theorem 5.10. [4, Theorem 1.2, simplified version of a particular case] Let α1, α2 ∈ C such that |Re(αj)| <
1/2. Denote A = {α1, α2}. For a set A ⊆ A, let A− = {−a : a ∈ A} and q−2gA = q−2g

∑
a∈A a. We have

1

#H2g+1

∑
D∈H2g+1

L( 1
2 + α1, χD)L( 1

2 + α2, χD) =
∑
A⊆A

q−2gAS(A\A)∪A− + E2,

where if C = {γ1, γ2},

SC = AC(1)
∏

1≤i≤j≤2

ζq(1 + γi + γj),

AC(u) =
∏

P monic
irreducible

∏
1≤i≤j≤2

(
1− u2 deg(P )

|P |1+γi+γj

)(
1 +

(
1 +

1

|P |

)−1 ∞∑
`=1

τC(P 2`)

|P |`
u2` deg(P )

)
,

(21) τC(f) =
∑

f=f1f2
fimonic

1

|f1|γ1 |f2|γ2

and, for ε > 0,

E2 �ε q
−(1+2min{|Re(α1)|,|Re(α2)|})g+εg.

Remark that the various sets of the form (A \ A) ∪ A− should be taken as multi-sets in the case where a
parameter is repeated. Therefore, in our case, they always have cardinality 2.

We stress that the result of Bui, Florea, and Keating is much more general than Theorem 5.10, as it
considers a product of k factors of the form L( 1

2 + α, χD) and it includes a twist by χD(h), where h is a
polynomial of degree� g. We have written a simplified version that is sufficient for our purposes. The error
term that we give in Theorem 5.10 is more detailed than the term in the original statement in [4] and has
been taken from the proof.
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Theorem 5.11. Let 0 < Re(α) < 1
2 be fixed and

B >

∣∣∣∣∣∣ 1(
1− q− 1

2−α
)(

1− q 1
2−α

)
∣∣∣∣∣∣

×
∏

P monic
irreducible

[
1

2

((
1− 1

|P | 12+α

)−1(
1− 1

|P | 12+α

)−1
+

(
1 +

1

|P | 12+α

)−1(
1 +

1

|P | 12+α

)−1)
+

1

|P |

]1/2

×
(

1 +
1

|P |

)−1/2
.

Then (q, 1/2 + α,B) does not satisfy the Northcott property.

Proof. In Theorem 5.10 we fix α = α1, α2 = α. Since Re(α) > 0 is fixed, we have that Re(α)g → ∞ as
g →∞, and therefore the dominant term occurs when A is the empty set. We have

1

#H2g+1

∑
D∈H2g+1

|L( 1
2 + α, χD)|2 =

∏
P monic

irreducible

(
1 +

(
1 +

1

|P |

)−1 ∞∑
`=1

τ{α,α}(P
2`)

|P |`

)
(1 + o(1)).(22)

We can give a more precise expression for the Euler product above. Notice that

1

2

((
1− 1

|P | 12+α

)−1(
1− 1

|P | 12+α

)−1
+

(
1 +

1

|P | 12+α

)−1(
1 +

1

|P | 12+α

)−1)

=
1

2

 ∞∑
j1=0

1

|P |j1( 1
2+α)

∞∑
j2=0

1

|P |j2( 1
2+α)

+

∞∑
j1=0

(−1)j1

|P |j1( 1
2+α)

∞∑
j2=0

(−1)j2

|P |j2( 1
2+α)


= 1 +

1

2

( ∞∑
`=1

τ{α,α}(P
`)

|P | `2
+

∞∑
`=1

(−1)`τ{α,α}(P
`)

|P | `2

)
.

This allows us to write
1

#H2g+1

∑
D∈H2g+1

|L( 1
2 + α, χD)|2 = Cα(1 + o(1)),

where

Cα =
∏

P monic
irreducible

[
1

2

((
1− 1

|P | 12+α

)−1(
1− 1

|P | 12+α

)−1
+

(
1 +

1

|P | 12+α

)−1(
1 +

1

|P | 12+α

)−1)
+

1

|P |

]

×
(

1 +
1

|P |

)−1
.

In other words, the average value of |L( 1
2 + α, χD)|2 is given by Cα(1 + o(1)).

Finally, given ε > 0, we can guarantee that for g large enough, there is a D ∈ H2g+1 such that

|L( 1
2 + α, χD)| ≤ C1/2

α + ε.

Taking ε arbitrarily small we can construct an infinite sequence of D’s satisfying this property, and leading
to bounded |ζK( 1

2 + α)|. This implies that Sq,1/2+α,B is infinite.
�

5.5. The Northcott property at Re(s) = 1. In this section we examine the behaviour at the boundary
of the critical strip, namely Re(s) = 1. We need a result along the lines of Theorem 5.10. Since we have not
found this in the literature, we start by computing the average of |L( 1

2 + α, χD)|2 where Re(α) ≥ 1
2 . When

Re(α) > 1
2 this also gives an alternative better bound for Theorem 4.7.

In this section we will use M to denote the monic polynomials in Fq[T ], Mn to denote the monic
polynomials of degree n, and M≤n to denote those of degree up to n.
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Our main result here is the following.

Theorem 5.12. Let Re(α) ≥ 1
2 . Then for ε > 0,

1

#H2g+1

∑
D∈H2g+1

|L( 1
2 + α, χD)|2 =

∏
Pmonic

irreducible

(
1 +

(
1 +

1

|P |

)−1 ∞∑
`=1

τ{α,α}(P
2`)

|P |`

)

+O(q(ε−Re(α))g + min{q(ε−1)g, q−g + 4gq(ε−2Re(α))g}),
where for a set C, τC is defined by (21).

We remark that the main term in the above formula is the same as in equation (22), with a difference in the
conditions, namely that we now have Re(α) ≥ 1

2 . In the above result we do not assume that q ≡ 1 (mod 4).
Before proceeding to the proof of Theorem 5.12, we consider some auxiliary results.

Lemma 5.13. [4, Lemma 2.1, particular case] We have

|L( 1
2 + α, χD)|2 =

∑
f∈M≤2g

τ{α,α}(f)χD(f)

|f | 12
+ q−4gRe(α)

∑
f∈M≤2g−1

τ{−α,−α}(f)χD(f)

|f | 12
,

where for a set C, τC is defined by (21).

Proof. This follows from [4, Lemma 2.1] by setting k = 2 and α1 = α, α2 = α. �

Lemma 5.14. [8, Lemma 2.1] Let χf be a non-trivial Dirichlet character modulo f . Then for n < deg(f),∣∣∣∣∣ ∑
B∈Mn

χf (B)

∣∣∣∣∣ ≤
(

deg(f)− 1

n

)
q
n
2 .

Lemma 5.15. [5, Lemma 3.7] For f ∈M we have

1

#H2g+1

∑
D∈H2g+1

χD(f2) =
∏

Pmonic
irreducible

P |f

(
1 +

1

|P |

)−1
+O(q−2g).

Lemma 5.16. For any ε > 0,

(23) |τ{α,α}(f)| � |f |ε−Re(α)

and similarly

(24) |τ{−α,−α}(f)| � |f |ε+Re(α).

Proof. We have that

|τ{α,α}(f)| =

∣∣∣∣∣∣∣∣
∑

f=f1f2
fimonic

1

|f1|α|f2|α

∣∣∣∣∣∣∣∣ ≤
d2(f)

|f |Re(α)
,

where d2 is the divisor function. We can use that d2(f) = o(|f |ε). The bound for τ{−α,−α}(f) is proven
similarly. �

We are now ready to proceed with the proof of the main result of this section.

Proof of Theorem 5.12. By Lemma 5.13, we can split the sum under consideration in two Dirichlet sums of
approximate length 2g as follows

1

#H2g+1

∑
D∈H2g+1

|L( 1
2 + α, χD)|2 =

1

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g

τ{α,α}(f)χD(f)

|f | 12

+
q−4Re(α)g

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g−1

τ{−α,−α}(f)χD(f)

|f | 12

=S2g,α + S2g−1,−α.
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We can further split each of the above sums into a sum where the character is evaluated in squares and a
sum where it is not as follows

S2g,α =
1

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g

f=�

τ{α,α}(f)χD(f)

|f | 12
+

1

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g

f 6=�

τ{α,α}(f)χD(f)

|f | 12

=S2g,α(�) + S2g,α(6= �),

S2g−1,−α =
q−4Re(α)g

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g−1

f=�

τ{−α,−α}(f)χD(f)

|f | 12
+
q−4Re(α)g

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g−1

f 6=�

τ{−α,−α}(f)χD(f)

|f | 12

=S2g−1,−α(�) + S2g−1,−α( 6= �).

The main term comes from S2g,α(�), while the other three terms are smaller. We do not need to estimate
them for our purposes, so we will bound them to get an error term.

We start by focusing on the main term, coming from S2g,α(�). We apply Lemma 5.15 and obtain

1

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g

f=�

τ{α,α}(f)χD(f)

|f | 12
=

∑
h∈M≤g

τ{α,α}(h
2)

|h|
1

#H2g+1

∑
D∈H2g+1

χD(h2)

=
∑

h∈M≤g

τ{α,α}(h
2)

|h|

∏
P |h

(
1 +

1

|P |

)−1
+O(q−2g)

 .

We remark that there are qn monic polynomials of degree n. Applying inequality (23), we obtain

∑
h∈M≤g

|τ{α,α}(h2)|
|h|

O(q−2g) ≤
g∑

n=1

q2n(ε−Re(α))O(q−2g)� O(q−2g).

Now we consider the generating function

A(u) =
∑
h∈M

τ{α,α}(h
2)

|h|
∏
P |h

(
1 +

1

|P |

)−1
udeg(h) =

∏
Pmonic

irreducible

(
1 +

(
1 +

1

|P |

)−1 ∞∑
`=1

τ{α,α}(P
2`)

|P |`
u2` deg(P )

)
.

Since |τ{α,α}(P 2`)| ≤ 2`+1
|P |2`Re(α) , it can be seen that A(u) converges for |u| < qRe(α).

By Perron’s formula, for r < 1,

∑
h∈M≤g

τ{α,α}(h
2)

|h|
∏
P |h

(
1 +

1

|P |

)−1
=

1

2πi

∮
|u|=r

A(u)

ug(1− u)

du

u
.

We move the integral to the circle |u| = qRe(α)−ε encountering the pole at u = 1. This gives

∑
h∈M≤g

τ{α,α}(h
2)

|h|
∏
P |h

(
1 +

1

|P |

)−1
=− Resu=1

A(u)

ug+1(1− u)
+O(q(ε−Re(α))g) = A(1) +O(q(ε−Re(α))g).

Putting all of the above together, we finally write

(25) S2g,α(�) =
∏

Pmonic
irreducible

(
1 +

(
1 +

1

|P |

)−1 ∞∑
`=1

τ{α,α}(P
2`)

|P |`

)
+O(q(ε−Re(α))g).
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Now we consider S2g−1,−α(�). Following similar steps as before and applying (24),∣∣∣∣∣∣∣∣
1

#H2g+1

∑
D∈H2g+1

∑
f∈M≤2g−1

f=�

τ{−α,−α}(f)χD(f)

|f | 12

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

h∈M≤g−1

τ{−α,−α}(h
2)

|h|
∏
P |h

(
1 +

1

|P |

)−1∣∣∣∣∣∣+O(q−2g)

�
∑

h∈M≤g−1

|h|2Re(α)−1+ε +O(q−2g)

�q(2Re(α)+ε)g.

Combining with the term q−4Re(α)g, this gives

(26) S2g−1,−α(�)� q(ε−2Re(α))g.

Our next step is to bound S2g,α(6= �). We follow the proof of [1, Lemma 3.2].

∑
D∈H2g+1

∑
f∈M≤2g

f 6=�

τ{α,α}(f)χD(f)

|f | 12
=

2g∑
n=0

q−
n
2

∑
f∈Mn

f 6=�

τ{α,α}(f)
∑

D∈H2g+1

χD(f)

=

2g∑
n=0

q−
n
2

∑
f∈Mn

f 6=�

τ{α,α}(f)
∑

D∈M2g+1

∑
A∈M
A2|D

µ(A)χD(f)

=

2g∑
n=0

q−
n
2

∑
f∈Mn

f 6=�

τ{α,α}(f)(−1)
(q−1) deg(f)

2

∑
A∈M≤g
(A,f)=1

µ(A)
∑

B∈M2g+1−2 deg(A)

χf (B),(27)

where in the last line we have applied quadratic reciprocity and the fact that deg(B) is odd.
We can apply Lemma 5.14 in the innermost sum when 2g + 1− 2 deg(A) < deg(f). Note that the sum is

zero otherwise, since it is a full character sum. Also applying (23), we obtain∣∣∣∣∣∣∣∣
∑

D∈H2g+1

∑
f∈M≤2g

f 6=�

τ{α,α}(f)χD(f)

|f | 12

∣∣∣∣∣∣∣∣ ≤
2g∑
n=0

q−
n
2

∑
f∈Mn

f 6=�

|τ{α,α}(f)|
∑

A∈M≤g

(
deg(f)− 1

2g + 1− 2 deg(A)

)
q

2g+1−2 deg(A)
2

�qg
2g∑
n=0

q−
n
2

∑
f∈Mn

|f |ε−Re(α)2deg(f)−1

�qg
2g∑
n=0

2nq(
1
2−Re(α)+ε)n

�qg + 22gq(2−2Re(α)+ε)g.

Combining with equation (20), we get

(28) S2g,α( 6= �)� q−g + 22gq(ε−2Re(α))g.

When q = 3 and Re(α) is close to 1
2 , the bound above is sub-optimal, since it becomes � qcg for some

positive c. To solve this, we bound the innermost sum in (27) using the Riemann Hypothesis instead, to
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obtain ∣∣∣∣∣∣∣∣
∑

D∈H2g+1

∑
f∈M≤2g

f 6=�

τ{α,α}(f)χD(f)

|f | 12

∣∣∣∣∣∣∣∣ ≤
2g∑
n=0

q−
n
2

∑
f∈Mn

f 6=�

|τ{α,α}(f)|
∑

A∈M≤g

q(1+ε)
2g+1−2 deg(A)

2

�q(1+ε)g
2g∑
n=0

q−
n
2

∑
f∈Mn

|f |ε−Re(α)

�q(1+ε)g
2g∑
n=0

q(
1
2−Re(α)+ε)n

�q(1+ε)g.

This gives

(29) S2g,α(6= �)� q(ε−1)g.

Finally we consider S2g−1,−α(6= �). The computation is similar as before and applying the Riemann
Hypothesis gives∣∣∣∣∣∣∣∣

∑
D∈H2g+1

∑
f∈M≤2g−1

f 6=�

τ{−α,−α}(f)χD(f)

|f | 12

∣∣∣∣∣∣∣∣�q
(1+ε)g

2g−1∑
n=0

q−
n
2

∑
f∈Mn

|τ{−α,−α}(f)|

�q(1+ε)g
2g−1∑
n=0

q−
n
2

∑
f∈Mn

|f |ε+Re(α)

�q(2+2Re(α)+ε)g,

where we have used equation (24). Again, combining with the extra factor q−4Re(α)g

#H2g+1
, this leads to

(30) S2g−1,−α(6= �)� q(ε−2Re(α))g.

The result follows by combining equations (25), (26), (28), (29), and (30)
�

With Theorem 5.12 proven, we can now proceed to study the corresponding Northcott property.

Theorem 5.17. Let Re(α) ≥ 1
2 with α 6= 1

2 and

B >

∣∣∣∣∣∣ 1(
1− q− 1

2−α
)(

1− q 1
2−α

)
∣∣∣∣∣∣

×
∏

P monic
irreducible

[
1

2

((
1− 1

|P | 12+α

)−1(
1− 1

|P | 12+α

)−1
+

(
1 +

1

|P | 12+α

)−1(
1 +

1

|P | 12+α

)−1)
+

1

|P |

]1/2

×
(

1 +
1

|P |

)−1/2
.

Then (q, 1/2 + α,B) does not satisfy the Northcott property.

Proof. The proof follows the same lines as the proof of Theorem 5.11. �

Remark 5.18. As a final remark, for Re(α) > 1
2 , Theorem 5.17 provides a better result than Theorem

4.7. In the case of Theorem 4.7, the bound is chosen to control all the quadratic ζK(s), while in the case of
Theorem 5.17 the bound is chosen according to the average, and is, therefore, less resctricted.

17



References

[1] Julio Andrade, A note on the mean value of L-functions in function fields, Int. J. Number Theory 8 (2012), no. 7,

1725–1740.
[2] J. C. Andrade and J. P. Keating, Conjectures for the integral moments and ratios of L-functions over function fields, J.

Number Theory 142 (2014), 102–148.
[3] Juliette Bruce and Wanlin Li, Effective bounds on the dimensions of Jacobians covering abelian varieties, Proc. Amer.

Math. Soc. 148 (2020), no. 2, 535–551.

[4] Hung M. Bui, Alexandra Florea, and Jonathan P. Keating, The ratios conjecture and upper bounds for negative moments
of L-functions over function fields, arXiv:2109.1039.

[5] H. M. Bui and Alexandra Florea, Zeros of quadratic Dirichlet L-functions in the hyperelliptic ensemble, Trans. Amer.

Math. Soc. 370 (2018), no. 11, 8013–8045.
[6] Jean-Marc Couveignes, Short models of global fields, arXiv:2011.01759.

[7] A. J. de Jong and N. M. Katz, Counting the number of curves over a finite field.

[8] Dmitry Faifman and Zeév Rudnick, Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite
field, Compos. Math. 146 (2010), no. 1, 81–101.

[9] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192–1200.

[10] Wanlin Li, Vanishing of hyperelliptic L-functions at the central point, J. Number Theory 191 (2018), 85–103.
[11] Michael Lipnowski and Jacob Tsimerman, How large is Ag(Fq)?, Duke Math. J. 167 (2018), no. 18, 3403–3453.

[12] Allysa Lumley, Complex moments and the distribution of values of L(1, χD) over function fields with applications to class
numbers, Mathematika 65 (2019), no. 2, 236–271.

[13] , Moments and distribution of values for L-functions over function fields inside the critical strip, Acta Arith. 201

(2021), no. 4, 329–369.
[14] D. G. Northcott, An inequality in the theory of arithmetic on algebraic varieties, Proc. Cambridge Philos. Soc. 45 (1949),

502–509.

[15] Fabien Pazuki and Riccardo Pengo, On the Northcott property for special values of L-functions, arXiv:2012.00542.
[16] Bjorn Poonen, Gonality of modular curves in characteristic p, Math. Res. Lett. 14 (2007), no. 4, 691–701.

[17] Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction

ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), no. 4, 367–389.
[18] Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York,

2002.
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