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1. Lagrange’s Theorem

Theorem 1 Every positive integer is the sum of four squares.

For instance, 5 = 22 + 12 + 02 + 02, 21 = 42 + 22 + 11 + 02, 127 = 112 + 22 + 12 + 12.

Proof. We will use the following Euler’s identity:
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which is very easy to verify.
The conclusion is that the product of two numbers that are sum of four squares is also

sum of four squares. Hence, since the case of 1 is trivial, and since every natural number
> 1 can be decomposed as a product of prime numbers, it is enough to prove the result for
prime numbers. The first case is p = 2, but that follows from 2 = 12 + 12 + 02 + 02.

For the case of p odd, we are going to need the following:

Lemma 2 If p is an odd prime, then there are numbers x, y, and m such that

1 + x2 + y2 = mp 0 < m < p

So, for instance, for p = 3 we have 1 + 12 + 22 = 2 · 3, for p = 7 we have 1 + 22 + 42 = 3 · 7.

Proof. For x = 0, 1, . . . , p−1

2
, the numbers x2 have all of them different congruences modulo

p. This is because if x2
1 ≡ x2

2 (mod p), then

p | (x1 − x2)(x1 + x2) ⇒ x1 ≡ ±x2 (mod p)

which is a contradiction. So we have p+1

2
numbers which are incongruent modulo p.

For y = 0, 1, . . . , p−1

2
, the numbers −1 − y2 are all incongruent modulo p, using the

same idea as before. So we have another set of p+1

2
numbers incongruent modulo p.

But there are p + 1 numbers altogether in these two sets, and only p possible residues
modulo p. Then at least one number x2 in the first set must be congruent to a number
−1 − y2 in the second set. Hence,

x2 ≡ −1 − y2 (mod p) ⇒ x2 + 1 + y2 = mp

Now x2 <
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p
2

)2
and y2 <

(
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)2
so,

mp = 1 + x2 + y2 < 1 + 2 ·
(p

2

)2

< p2
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then m < p. ¤

It follows from the Lemma that, for p odd prime, there is an 0 < m < p such that

mp = x2
1 + x2

2 + x2
3 + x2

4

We are going to see that the least m with that property is m = 1. Let m0 be the least m

with the property. If m0 = 1 there is nothing to prove. Then we can suppose 1 < m0 < p.
If m0 is even, then either the xi are all even, or the xi are all odd, or two of them are

even and the other two are odd. In this case, say x1, x2 are even. Then in all the three
cases, x1 ± x2 and x3 ± x4 are all even and we can write
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(
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+

(
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and this contradicts the minimality of m0.
Now we choose yi such that

yi ≡ xi (modm0), |yi| <
m0

2

This can be done, since −m0−1

2
≤ y ≤ m0−1

2
is a complete set of residues. Now observe

that the xi are not all divisible by m0, since this would imply m2
0 |m0 p and m0 | p, a

contradiction. As a consequence, we get

y2
1 + y2

2 + y2
3 + y2

4 > 0

Then
y2
1 + y2

2 + y2
3 + y2

4 < m2
0 and y2

1 + y2
2 + y2

3 + y2
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Therefore,
x2

1 + x2
2 + x2

3 + x2
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where the zi come from Euler’s identity. But z1 = x1y1 + x2y2 + x3y3 + x4y4 ≡ x2
1 + x2

2 +
x2

3 + x2
4 ≡ 0 (mod m0) and similarly the other zi are also divisible by m0. We can write

then zi = m0wi. Dividing by m2
0, we get

m1 p = w2
1 + w2

2 + w2
3 + w2

4

and this contradicts again the minimality of m0. It follows that m0 = 1. ¤

We should also mention that it is possible to compute the number of such representa-
tions. We will state without prove the following

Theorem 3 Let Q(n) the number of solutions of

n = x2
1 + x2

2 + x2
3 + x2

4
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then, writing n = 2r(2t + 1)

Q(n) =

{

8 S(2t + 1) = 8S(n) for r = 0
24 S(2t + 1) for r 6= 0

where

S(n) =
∑

d|n

d

We have seen that four squares are enough to represent any natural number. Three
squares are not enough. Indeed, x2

i ≡ 0, 1 or 4 (mod 8), therefore,

x2
1 + x2

2 + x2
3 6≡ 7 (mod 8)

hence no number of the form 8t + 1 can be represented by three squares.
We have the following Theorem (which we won’t prove here).

Theorem 4 Let n be a positive integer. Then n can be expressed as the sum of three

squares if and only if n is not of the form 4r(8t + 7).

For the case of two squares,

Theorem 5 Let n be a positive integer. Then n can be expressed as the sum of two squares

if and only if all prime factors of n of the form 4t+3 have even exponents in the factorization

of n.

This Theorem can be proved in a similar way as we did for four squares, using the
identity

(x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2

2. Waring’s problem

Waring’s problem has to do with representing natural numbers as the sum of a fixed number
s of k-th powers, namely,

n = xk
1 + . . . + xk

s

If we fix k > 1 and s is too small, the problem cannot be solved for every n. Say that
s = 1, then we won’t get solutions unless n is a k-th power.

The first arising question is whether, for a given k, there is any s = s(k) such that

n = xk
1 + . . . + xk

s

is soluble for every n.
In 1770, Waring stated that every number is expressible as a sum of 4 squares, 9 cubes,

19 biquadrates, “and so on”, implying that s does exist. Hilbert was the first to prove this
assertion for every k, in 1909.

Clearly, given an s that works, any s′ > s will work the same. Hence there must be a
minimal s that works. It is ussually denoted by g(k). We have just proved that g(2) = 4.

It is not hard to prove
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Theorem 6 g(4) does exist and it is ≤ 53.

Proof. Let us denote by Bs a number which is the sum of s biquadrates. The identity

6(a2 + b2 + c2 + d2)2 = (a + b)4 + (a − b)4 + (c + d)4 + (c − d)4

+ (a + c)4 + (a − c)4 + (b + d)4 + (b − d)4

+ (a + d)4 + (a − d)4 + (b + c)4 + (b − c)4

shows us that
6(a2 + b2 + c2 + d2)2 = B12

Because of Lagrange’s Theorem, we get

6x2 = B12

for every x. Now every positive number is of the form n = 6t + r with 0 ≤ r ≤ 5, then
using Lagrange’s Theorem once again,

n = 6(x2
1 + x2

2 + x2
3 + x2

4) + r

implying
n = B12 + B12 + B12 + B12 + r = B48 + r = B53

Hence g(4) exists and it is at most 53. ¤

Theorem 7

g(k) ≥ 2k +

[

(

3

2

)k
]

− 2

Proof. Write q =
[

(

3

2

)k
]

. Consider the number

n = 2kq − 1 < 3k

which can be only represented by terms of the form 1k and 2k. Since,

n = (q − 1)2k + (2k − 1)1k

n requires 2k + q − 2 powers. ¤

It has been proved that g(k) = 2k +q−2 for every but finitely many k. It is conjectured
that this equality is always true.

There is another number that in a sense is more interesting that g(k). We define G(k)
as the least value of s for which it is true that every positive integer which is large enough
can be expressed as a sum of s k-th powers. Thus

G(k) ≤ g(k)

For k = 2, we get G(2) = 4 since we have proved that four squares are enough and we
have exhibited infinitely many numbers, the ones of the form 8t+7, that cannot we writen
as sum of only three squares.
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In general G(k) is much smaller than g(k). Take k = 3. It is known that g(3) = 9.
Every number can be represented by the sum of nine cubes. Indeed every number but

23 = 2 · 23 + 7 · 13 and 239 = 2 · 43 + 4 · 33 + 3 · 13

can be expressed by the sum of at most eight cubes. Moreover, there are only 15 integers
that require 8 cubes. This implies that G(3) ≤ 7.

G(k) is only known for the cases k = 2, 4. The best currently known bound for G(k) is

G(k) < c k log k

for some constant c.
On the other hand,

Theorem 8

G(k) ≥ k + 1

for k ≥ 2

Proof. Let A(N) be the number of n ≤ N which are representable as

n = xk
1 + . . . + xk

k

with xi ≥ 0. We may suppose

0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ N
1

k

If B(N) is the number of solutions of the inequality, then A(N) ≤ B(N). Clearly,

B(N) =

(

[N
1

k ] + 1 + k − 1

k

)

=

∏k
i=1

(

[N
1

k ] + i
)

k!
∼

N

k!

If G(k) ≤ k, all but finitely many numbers are representable as the sum of k kth powers
and

A(N) ≥ N − c

where c is just a constant (independent of N). Then,

N − c ≤ A(N) ≤ B(N) ∼
N

k!

and this is impossible when k > 1. ¤

Finally, the Table shows what is known for the first 20 values of k.
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k g(k) G(k)

2 4 4
3 9 ≤ 7
4 19 16
5 37 ≤ 18
6 73 ≤ 27
7 143 ≤ 36
8 279 ≤ 42
9 548 ≤ 55
10 1079 ≤ 63
11 2132 ≤ 70
12 4223 ≤ 79
13 8384 ≤ 87
14 16673 ≤ 95
15 33203 ≤ 103
16 66190 ≤ 112
17 132055 ≤ 120
18 263619 ≤ 129
19 526502 ≤ 138
20 1051899 ≤ 146
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