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Mahler measure and
elliptic curve L-functions at s D 3

By Matilde Lalín at Montreal

Abstract. We study the Mahler measure of some three-variable polynomials that are
conjectured to be related to L-functions of elliptic curves at s D 3 by Boyd. The connection
withL-functions can be explained with the use of a regulator and a result of Goncharov. Finally,
we prove a relationship between two formulas.

1. Introduction

Let P.x1; : : : ; xn/ 2 CŒx˙1 ; : : : ; x
˙
n � be a nonzero Laurent polynomial. The (logarith-

mic) Mahler measure of P.x1; : : : ; xn/ is given by

m.P.x1; : : : ; xn// D
Z 1

0

: : :

Z 1

0

log jP.e2�i�1 ; : : : ; e2�i�n/jd�1 : : : d�n:

The Mahler measure of the polynomial family Pk.x; y/ D x C 1
x
C y C 1

y
C k (where

k is a parameter) was studied by Boyd [4] who found numerically that

(1.1) m
�
x C

1

x
C y C

1

y
C k

�
‹
D
L0.EN.k/; 0/

sk
;

where k is an integer different from 0 and 4, sk is a rational number (often integer), and EN.k/
is the elliptic curve (of conductor N.k/) resulting from the zero set of the polynomial Pk .
From now on, the question mark stands for equalities that have been numerically verified up to
at least 28 decimal places.

The connection between the Mahler measure of Pk and L0.EN.k/; 0/ was predicted by
Deninger [9] who explained it in terms of Beı̆linson’s conjectures [1].

In [18], Rodriguez-Villegas expressed this Mahler measure as an Eisenstein–Kronecker
series:

m
�
x C

1

x
C y C

1

y
C k

�
D Re

 
16 Im �

�2

X0

m;n

��4.m/

.mC n4�/2.mC n4�/

!

D Re

 
��i� C 2

1X
nD1

X
d jn

��4.d/d
2 q
n

n

!
;
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2 Lalín, Mahler measure and elliptic curve L-functions at s D 3

where the parameters � and q are coming from

q D e2�i� D q

�
16

k2

�
D exp

 
��

2F1
�
1
2
; 1
2
I 1; 1 � 16

k2

�
2F1

�
1
2
; 1
2
I 1; 16

k2

� !
:

This formula can be connected to the elliptic dilogarithm (using ideas of Bloch [3]) which in
favorable cases relates to the special value of the L-function via Beı̆linson’s conjectures.

The question mark may be removed from equation (1.1) in instances where Beı̆linson’s
conjectures are known. For example, Rodriguez-Villegas [18] proved

(1.2) m
�
x C

1

x
C y C

1

y
C 4
p
2

�
D L0.E32; 0/:

It suffices that k2 be an integer for equation (1.1) to have an interpretation in terms of Beı̆lin-
son’s conjectures. In this particular case, the curve has complex multiplication.

Other examples were given by Rogers and Zudilin: in [20] they proved

(1.3) m
�
x C

1

x
C y C

1

y
C 1

�
D

15

4�2
L.E15; 2/ D L

0.E15; 0/;

and in [21] they proved

(1.4) m
�
x C

1

x
C y C

1

y
C 8

�
D
24

�2
L.E24; 2/ D 4L

0.E24; 0/:

These two examples also correspond to known cases of Beı̆linson’s conjectures (for modular
curves). Other identities of the same type in different polynomial families (also originated from
Boyd’s work [4]) were proved by Brunault [6, 7] and Mellit [17].

Before such equalities were proved, there was a surge of results (started by Rodriguez-
Villegas [19] and then continued by Bertin [2] and others) relating Mahler measures of different
polynomials in the same family via functional equations. From these equations, identities be-
tween Mahler measures (originally conjectured by Boyd in [4]) were finally proved, such as

(1.5) m
�
x C

1

x
C y C

1

y
C 8

�
D 4m

�
x C

1

x
C y C

1

y
C 2

�
;

proved in [14], and

(1.6) m
�
x C

1

x
C y C

1

y
C 5

�
D 6m

�
x C

1

x
C y C

1

y
C 1

�
;

proved in [13].
In this note, we work with the following numerical identities also found by Boyd [5]:

m.z C .x C 1/.y C 1// ‹D 2L0.E15;�1/;(1.7)

m..x C 1/z C .x2 C x C 1/y C .x C 1/2/ D m1 Cm2(1.8)

‹
D
1

3
L0.��3;�1/C

13�.3/

3�2
;

and the exotic numerical relation

(1.9) m1 �m2
‹
D L0.��3;�1/ � L

0.E15;�1/:
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 3

The termsm1 andm2 come from the way the integration is performed and will be made precise
in Section 3. The relationship between these polynomials and the elliptic curves of conductor 15
will be clarified in Section 2.

One of the goals of these notes is to prove a result in the spirit of equations (1.5)–(1.6):

Theorem 1. We have

m.z C .x C 1/.y C 1// D 2L0.��3;�1/C 2m2 � 2m1:

We stress that the result of Theorem 1 is exact, not numerical, and it corresponds to an
identity relating two formulas (in the style of equations (1.5) and (1.6)) where each side is
expected to involve L0.E;�1/ rather than L0.E; 0/.

Our techniques involve relating the Mahler measure to a regulator and comparing the
value of the regulator in two different elements of K4.E/ for E an elliptic curve. The relation-
ship withL0.E;�1/ can be explained by using a result conjectured by Deninger [8] and proved
by Goncharov [11].

For a field F , let
B2.F / D ZŒF ��=R2.F /

be the Bloch group, where R2.F / is the subgroup of ZŒF �� generated by the five-term relation

Œx�C Œy�C Œ1 � xy�C

�
1 � x

1 � xy

�
C

�
1 � y

1 � xy

�
:

We also set Œ0� D Œ1� D 0 when we need to work in P1.F /.
Remark that the five-term relation is expected to generate the rational functional equa-

tions of the Bloch–Wigner dilogarithm, defined later in (2.1) (see [10] for more details).
We are now ready to state our main result.

Theorem 2. Let P 2 QŒx; y; z� be nonreciprocal and let

¹Resz.P.x; y; z/; P.x�1; y�1; z�1// D 0º

correspond to an elliptic curve E. Assume that K4.E/ has rank 1 and that

¹jxj D jyj D jzj D 1º

corresponds to a real cycle in E. Suppose further that there exist xj ; yj such that

x ^ y ^ z D
X
j

xj ^ .1 � xj / ^ yj D 0 in
^3

Q.E/�

and that X
j

vz.yj /Œxj .z/� D 0 in B2.Q/ for all z 2 E.Q/:

Then there is a rational number q such that

m.P / D m.P �/C qL0.E;�1/;

where P � is a two-variable polynomial.
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4 Lalín, Mahler measure and elliptic curve L-functions at s D 3

Beı̆linson’s conjectures predict that the dimension of K4.E/ will be equal to the order of
vanishing of L.E; s/ at s D �1, which is 1 in our cases.

We will see in Section 4.1 that Theorem 2 implies that equation (1.7) is true up to a ra-
tional factor. In other words, we can prove that

m.z C .x C 1/.y C 1// D qL0.E15;�1/;

where q is a rational number, conditionally on the conjecture that, for the elliptic curve

E W Y 2 D X3 � 7X2 C 16X;

the dimension of K4.E/ is equal to 1. In addition, we conjecture that the rational factor q
equals 2.

2. Mahler measure and the regulator

2.1. The two-variable case. We briefly discuss the situation for the Mahler measure of
a two-variable polynomial P and its relation to L0.E; 0/. See [9, 18] for details.

By Jensen’s formula, one can write, for any such P ,

m.P / D m.P �/ �
1

2�

Z
0

�.x; y/;

where 0 D ¹P.x; y/ D 0º \ ¹jxj D 1; jyj � 1º,

�.x; y/ WD log jxjd argy � log jyjd arg x

is a multiplicative and antisymmetric closed form and P � is a one-variable polynomial. More
precisely, if we writeP.x; y/ D an.x/ynC� � �Ca0.x/ 2 CŒx�Œy�, thenP �.x/ D an.x/. In our
applications we will have that m.P �/ D 0 and this term will be ignored.

Let E=C be an elliptic curve. For example, it can be the curve determined by the condi-
tion Pk.x; y/ D 0. By Matsumoto’s theorem the K2-group can be built as

K2.C.E// Š ƒ
2C.E/�=¹x ˝ .1 � x/º:

Under certain conditions that will be verified in our cases (the triviality of tame symbols,
see [18]), we can think of K2.E/˝Q � K2.C.E//˝Q.

The regulator map is defined by

r W K2.E/˝Q! H 1.E;R/; ¹x; yº !

²
 !

Z


�.x; y/

³
for  2 H1.E;Z/.

Here we think ofH 1.E;R/ as the dual ofH1.E;Z/. The function is well defined because
�.x; 1 � x/ D dD.x/ where

(2.1) D.z/ D Im.Li2.z//C arg.1 � z/ log jzj

is the Bloch–Wigner dilogarithm.
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 5

We can summarize the above discussion by writing

(2.2) m.P / D m.P �/ �
1

2�
r.¹x; yº/Œ0�:

It remains to see how to compute r.¹x; yº/Œ0�.
Let E=C D C=ƒ an elliptic curve with complex period latticeƒ D Z!1 C Z!2 (where

Im.!2
!1
/ > 0). Let A.ƒ/ D !1!2�!1!2

2�i
(thus 2�iA.ƒ/ is the volume of ƒ). The Pontrjagin

pairing is defined between the elliptic curve and the lattice ƒ:

. � ; � / W C=ƒ �ƒ! S1; .P; / WD exp
�
P � P

A.ƒ/

�
:

In other words, if P D a!1 C b!2 and  D m!1 C n!2,

.P; / D e2�i.bm�an/:

This pairing can be extended to divisors in the obvious way. If x D
P
rj .Pj /, then

.x; / WD
Y
.Pj ; /

rj :

Following Bloch [3] and Beı̆linson [1], define the regulator function by an Eisenstein–
Kronecker series

(2.3) RE .P / D A.ƒ/
2
X0



.P; /

j j4
:

Then we have the following result.

Theorem 3 (Beı̆linson [1]). LetE=C be an elliptic curves, x; y 2 C.E/�, ! 2 �1.E/.
Then Z

E.C/
log jyjd arg x ^ ! D �RE ..x/ ˘ .y//;

where the diamond operation ˘ W C.E/� ˝C.E/� ! ZŒE.C/�� is defined on the divisors .x/
and .y/ as

.x/ ˘ .y/ D
X

risj .Pi �Qj /:

for
.x/ D

X
ri .Pi /; .y/ D

X
sj .Qj /:

From this, one can deduce a result at the level of the Mahler measure.

Corollary 4 ([14, Corollary 3.2]). Let E be the elliptic curve defined by P D 0. If x
and y are non-constant functions in C.E/ with trivial tame symbols, then

(2.4) m.P / �m.P �/ D
1

A.ƒ/
Im.�RE ..x/ ˘ .y///;

where � D
R
0
! and P � is a one-variable polynomial.

Thus, relationships among Mahler measures for polynomials in certain families defining
elliptic curves may be deduced from relationships for the divisors of x and y. Moreover, in
favorable cases, the right-hand side of equation (2.4) can be directly related to L.E; 2/, thus
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6 Lalín, Mahler measure and elliptic curve L-functions at s D 3

leading to formulas such as (1.2), (1.3), and (1.4). In that case the above discussion may be
summarized as

(2.5) m.P / �m.P �/ �Q
Im.�/
�R

L0.E; 0/;

where the symbol �Q means up to an unknown rational factor and �R D
R
E.R/ ! is the real

period of E.

2.2. The three-variable case and the proof of Theorem 2. Now suppose we have
a three-variable polynomial P . By application of Jensen’s formula,

m.P / D m.P �/ �
1

.2�/2

Z
�0

�.x; y; z/;

where �0 D ¹P.x; y; z/ D 0º \ ¹jxj D jyj D 1; jzj � 1º,

�.x; y; z/ D log jxj
�
d log jyj ^ d log jzj � d argy ^ d arg z

�
C log jyj

�
d log jzj ^ d log jxj � d arg z ^ d arg x

�
C log jzj

�
d log jxj ^ d log jyj � d arg x ^ d argy

�
;

and P � is a two-variable polynomial. More precisely, if we write the polynomial P in the form
P.x; y; z/ D an.x; y/z

n C � � � C a0.x; y/ 2 CŒx; y�Œz�, then

P �.x; y/ D an.x; y/:

In our cases we will have that m.P �/ D 0 and this term will be ignored. (See [12] for more
details.)

As in the two-variable case, this differential form is also multiplicative, antisymmetric,
closed, and it satisfies

�.x; 1 � x; y/ D d�.x; y/;

where

�.x; y/ D �D.x/d argy C
1

3
log jyj

�
log j1 � xjd log jxj � log jxjd log j1 � xj

�
:

Suppose that the following condition is satisfied:

(2.6) x ^ y ^ z D
X
j

xj ^ .1 � xj / ^ yj

in
V3

.C.S/�/˝Q where S D ¹P.x; y; z/ D 0º. In this case � is exact and we apply Stokes’
theorem to further compute the integral. Thus, we obtainZ

�0

�.x; y; z/ D
XZ

�0

�.xj ; 1 � xj ; yj / D
X
j

Z
@�0

�.xj ; yj /;

where
�0 D ¹P.x; y; z/ D 0º \ ¹jxj D jyj D 1; jzj � 1º:

The set @�0 may be obtained by setting jzj D 1 as described above and it may contain singu-
larities. Our goal is to desingularize and algebraically describe this set. We thus change our
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 7

point of view. Namely, assume that P 2 QŒx; y; z� and is nonreciprocal (this condition is true
for the examples we study); then, on the unit torus jxj D jyj D jzj D 1, we can write

@�0 D ¹P.x; y; z/ D P.x
�1; y�1; z�1/ D 0º \ ¹jxj D jyj D jzj D 1º:

(This idea was proposed by Maillot [16].) Observe that we are integrating now on a path
¹jxj D jyj D 1º inside the curve

C D ¹Resz.P.x; y; z/; P.x�1; y�1; z�1// D 0º:

While � is naturally evaluated on
V3Q.S/�, � is naturally evaluated on B2.Q.C //˝Q.C /�,

because the first argument x behaves like the argument of the dilogarithm and the second
argument y behaves multiplicatively.

We are interested in the case where C is an elliptic curve E. We will use the following
result due to Goncharov.

Theorem 5 ([11, Theorem 3.4]). Let E=C be an elliptic curve, xj ; yj 2 C.E/� satisfy
the condition X

j

xj ^ .1 � xj / ^ yj D 0 in
^3

C.E/�:

Then XZ
E.C/

log jyj j
�
log j1 � xj jd log jxj j � log jxj jd log j1 � xj j

�
^ !

D

X
j

X0

1C2C3D0

.Pj ; 1/.Qj ; 2/.Rj ; 3/.3 � 2/

j1j2j2j2j3j2
;

where
P0 indicates that we exclude the term with all i D 0 from the sum, ! 2 �1.E/ is

normalized by
R
E.C/ ! ^ ! D 1 and Pj ;Qj ; Rj are the divisors of yj ; xj ; 1 � xj respectively.

Corollary 6. Let P 2 QŒx; y; z� be nonreciprocal such that

¹Resz.P.x; y; z/; P.x�1; y�1; z�1// D 0º

corresponds to an elliptic curve E. Suppose in addition that

x ^ y ^ z D
X
j

xj ^ .1 � xj / ^ yj D 0 in
^3

Q.E/�;

and X
j

vz.yj /Œxj .z/� D 0 in B2.Q/ for all z 2 E.Q/:

Then

m.P / �m.P �/ D
2

3�2
Re.�/

X
j

X0

1C2C3D0

.Pj ; 1/.Qj ; 2/.Rj ; 3/.3 � 2/

j1j2j2j2j3j2
;

where � D
R
@�0

! and Pj ;Qj ; Rj are the divisors of yj ; xj ; 1 � xj respectively.
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8 Lalín, Mahler measure and elliptic curve L-functions at s D 3

Proof. First note that Goncharov provesZ
E.C/

log jyj
�
log j1 � xjd log jxj � log jxjd log j1 � xj

�
^ ! D �

Z
E.C/

D.x/d argy ^ !:

From this and the definition of �.x; y/ one getsZ
E.C/

�.x; y/ ^ ! D
4

3

Z
E.C/

log jyj
�
log j1 � xjd log jxj � log jxjd log j1 � xj

�
^ !:

Now we may observe that
P
j �.xj ; yj / is an element of the one-dimensional vector space

H 2
D
.E=R;R.3// D H 1.E=R;R.2// spanned by Œ!�C Œ!� (here R.`/ D .2�i/`R). Then we

may write X
j

�.xj ; yj / D ˛.Œ!�C Œ!�/;

from which we obtain Z
@�0

X
j

�.xj ; yj / D ˛2Re.�/:

On the other hand, we haveZ
E.C/

X
j

�.xj ; yj / ^ ! D ˛

Z
E.C/

! ^ ! D �˛:

Combining, Z
@�0

X
j

�.xj ; yj / D �2Re.�/
Z
E.C/

X
j

�.xj ; yj / ^ !:

By Theorem 5, this equals

�
8

3
Re.�/

X
j

X0

1C2C3D0

.Pj ; 1/.Qj ; 2/.Rj ; 3/.3 � 2/

j1j2j2j2j3j2

and the statement follows.

The following result, initially conjectured by Deninger and proved by Goncharov, ex-
plains the connection with the L-function.

Theorem 7 ([8, Conjecture 6.5], [11, Theorem 1.1]). Let E=Q be a (modular) elliptic
curve. There there are functions xj ; yj 2 Q.E/� such thatX

j

xj ^ .1 � xj / ^ yj D 0 in
^3

Q.E/�;

X
vz.yj /Œxj .z/� D 0 in B2.Q/ for all z 2 E.Q/

such that

L.E; 3/ �Q�

�
2�A.ƒ/

NE

�2
�R

X
j

X0

1C2C3D0

.Pj ; 1/.Qj ; 2/.Rj ; 3/.3 � 2/

j1j2j2j2j3j2
;

where �R D
R
E.R/ ! is the real period of E and Pj ;Qj ; Rj are the divisors of yj ; xj ; 1 � xj

respectively.
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 9

Notice that K4.E/ is conjectured to have dimension 1 (the order of vanishing of L.E; s/
at s D �1), therefore, any set of functions with the condition should yield the L-function value
(possibly with coefficient 0).

The formula in the previous theorem may be then written as

L0.E;�1/ �Q�

A.ƒ/2�R

�2

X
j

X0

1C2C3D0

.Pj ; 1/.Qj ; 2/.Rj ; 3/.3 � 2/

j1j2j2j2j3j2
:

We now combine these observations with the hypothesis that
R
E.C/ !^! D 1 and Corol-

lary 6 in order to obtain

m.P / �m.P �/ ‹�Q
Re.�/
�R

L0.E;�1/;

where the question mark may be removed provided that K4.E/ has dimension 1. The formula
above should be compared to formula (2.5). As usual, it remains the difficulty of finding the
rational coefficient.

This concludes the proof of Theorem 2.

Given E, xj , and yj as in Theorem 7, the Eisenstein–Kronecker series is determined
solely by the divisors of xj ; 1 � xj , and yj . In order to understand this dependance, we consider
the following simplification:X0

1C2C3D0

.P; 1/.Q; 2/.R; 3/.3 � 2/

j1j2j2j2j1 C 2j2
D

X0

2;3

.P;�2 � 3/.Q; 2/.R; 3/.3 � 2/

j2 C 3j2j2j2j3j2

D

X0

2;3

.Q � P; 2/.R � P; 3/.3 � 2/

j2 C 3j2j2j2j3j2
:

The above computation motivates the definition of an operation analogous to the diamond
operation from Theorem 3.

Definition 8. LetA D
P
rj .Pj /; B D

P
sk.Qk/, andC D

P
tl.Rl/ be divisors inE.

Then
˘ W .Div.E/ ^ Div.E//˝ Div.E/! Div.E/ ^ Div.E/=�;

.A ^ B/ ˘ C D
X

rj sktl.Pj �Rl ;Qk �Rl/;

where
.P;Q/ � �.�P;�Q/:

We remark that in the above formula,

.P;Q/ D �.Q;P /:

We will typically apply this operation when

A D .f /; B D .1 � f /; C D .g/:

The Eisenstein–Kronecker series in the previous theorems is then determined by

..f / ^ .1 � f // ˘ .g/:
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10 Lalín, Mahler measure and elliptic curve L-functions at s D 3

3. Computing the Mahler measure from the numerical point of view

In this section we describe some of Boyd’s ideas for numerically computing formulas
such as (1.7), (1.8), and (1.9).

The starting point for computing these formulas is the following identity due to Cassaigne
and Maillot [15]. Let a; b; c be nonzero complex numbers. Then

(3.1) �m.azC byC c/ D

8<:˛ log jaj C ˇ log jbj C  log jcj CD
�ˇ̌̌a
b

ˇ̌̌
ei
�
; 4;

� log max¹jaj; jbj; jcjº; not4;

where4 stands for the statement that jaj, jbj, and jcj are the lengths of the sides of a triangle;
and ˛, ˇ, and  are the angles opposite to the sides of lengths jaj, jbj and jcj respectively
(Figure 1). The dilogarithm term then codifies the volume of a hyperbolic ideal tetrahedron
in H3 Š C �R�0 with basis the triangle whose sides are jaj, jbj, and jcj and fourth vertex
infinity.

β

| a |
γ

| c |

α

| b |

Figure 1. Relation among the parameters in Maillot’s formula.

Boyd’s idea consists on taking the coefficients a; b; c to be real polynomials in x. In this
way, it is possible to compute

m.a.x/z C b.x/y C c.x// D
1

�

Z �

0

m
�
a
�
ei�
�
z C b

�
ei�
�
y C c

�
ei�
��
d�:

Here we have used the feature that ja.ei� /j D ja.e�i� /j and likewise for b and c.
Now suppose that we take a.x/; b.x/; c.x/ to be cyclotomic polynomials. This particular

class of examples is promising because of equalities such asZ b

a

log jeim� � 1jd� D
1

m

�
D.eimb/ �D.eima/

�
:

These terms yield algebraic numbers. In addition, m.P �/ D 0 sinceP � is certainly cyclotomic.
The main difficulty consists of evaluating the integral in the triangular case intervals.

Typically, these parts of the integral have to be computed numerically. For the polynomial
considered in (1.8), it is natural to split the integral in the intervals .0; 2�

3
/ and .2�

3
; �/. Indeed,

we have the non-triangle case in the first interval and the triangle case in the second interval.
Thus, it is natural to define

m1 D
1

�

Z 2�
3

0

m
�
a
�
ei�
�
z C b

�
ei�
�
y C c

�
ei�
��
d�;

m2 D
1

�

Z �

2�
3

m
�
a
�
ei�
�
z C b

�
ei�
�
y C c

�
ei�
��
d�;
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 11

where
a.x/z C b.x/y C c.x/ D .x C 1/z C .x2 C x C 1/y C .x C 1/2:

This explains the meaning of the parametersm1,m2 in Boyd’s numerical formulas (1.8)–(1.9).

4. Computing the Mahler measure from the theoretical point of view

4.1. Equation (1.7). In this subsection we consider the formula.

m.z C .x C 1/.y C 1// ‹D 2L0.E15;�1/:

We will verify that this polynomial satisfies the hypothesis of Theorem 2.
We first decompose the wedge product.

(4.1) x ^ y ^ z D x ^ y ^ .1C x/.1C y/ D �x ^ .1C x/ ^ y C y ^ .1C y/ ^ x;

which will lead to integrate � evaluated on

�Œ�x�˝ y C Œ�y�˝ x

after the application of Stokes’ theorem. Therefore,

m.z C .x C 1/.y C 1// D �
1

.2�/2

Z
�0

�.x; y; z/

D �
1

4�2

Z
0

��.�x; y/C �.�y; x/;

where 0 D @�0.
Now x and y are to be considered under the relationship resulting from eliminating z,

.x C 1/.y C 1/.x�1 C 1/.y�1 C 1/ D 1;

which yields
.x C 1/2y2 C .2.x C 1/2 � x/y C .x C 1/2 D 0:

With the change of variables

x D �
X

4
; y D

2Y �X2 C 6X � 16

.X � 4/2
;

we get a Weierstrass form

(4.2) Y 2 D X3 � 7X2 C 16X:

The rational torsion is isomorphic to Z=4Z D hP i, where P D .4; 4/, 2P D .0; 0/.
We proceed to compute the diamond operation on the functions in (4.1). For that, we need

to compute the divisors of all the functions involved. We first start by computing the divisors
of some functions coming from the Weierstrass form

.X/ D 2.2P / � 2.O/;

.X � 4/ D .P /C .3P / � 2.O/;

.2Y �X2 C 6X � 16/ D 4.P / � 4.O/;

.Y �X/ D 22.P /C .2P / � 3.O/:
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12 Lalín, Mahler measure and elliptic curve L-functions at s D 3

Now we compute the divisors of the functions that appear in (4.1). Let f1 D �x, g1 D y,
f2 D �y, and g2 D x. Then we have

.f1/ D .g2/ D .x/ D 2.2P / � 2.O/;

.1 � f1/ D .1C x/ D .P /C .3P / � 2.O/;

.g1/ D .f2/ D .y/ D 2.P / � 2.3P /;

.1 � f2/ D .1C y/ D

�
2.Y �X/

.X � 4/2

�
D .2P /C .O/ � 2.3P /:

Combining all of the above, we obtain

..f1/ ^ .1 � f1// ˘ .g1/ D 16..P;O/C .P; 2P / � .P;�P //;

..f2/ ^ .1 � f2// ˘ .g2/ D �16..P;O/C .P; 2P / � .P;�P //:

Thus, the sum coming from the wedge product (4.1) is

� ..f1/ ^ .1 � f1// ˘ .g1/C ..f2/ ^ .1 � f2// ˘ .g2/(4.3)

D �32..P;O/C .P; 2P / � .P;�P //:

The above equation is one of the key results for proving Theorem 1 in the next section.
We proceed to study the integration path. We rewrite the equation

j.x C 1/.y C 1/j D 1

in polar coordinates x D ei� , y D ei� . Thenˇ̌̌̌
4 cos

�
�

2

�
cos
�
�

2

�ˇ̌̌̌
D 1:

0

1

2

−3 −1  0  2  3 1−2

3

−1

−2

−3

Figure 2. The shaded region indicates the integration domain.

The integration path on the unit torus is illustrated in Figure 2. The boundary 0 of the
shaded region corresponds to a cycle in the elliptic curve. We can be more precise by observing
that the holomorphic differential on the elliptic curve is given by

! D
dx

8.2.y C 1/.x C 1/2 � x/
:

This formula, together with the symmetries of 0, implies that
R
0
! is invariant by conjugation

and is therefore real. Thus, � D �R.
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 13

In order to be able to apply Theorem 2 we need to verify that the symbols are triv-
ial on B2.Q/ (this condition is analogous to the triviality of tame symbols and implies that
we do get an element in K4.E/, which would imply that we can expect a rational multiple
of L0.E;�1/). It is enough to look at the valuations given by the points in the support of the
divisors .g1/; .g2/.

For 2P (x D 0, y D �1):

v2P .g1/Œf1.2P /�C v2P .g2/Œf2.2P /� D 2Œ�1� D 0:

For P (x D �1, y D 0):

vP .g1/Œf1.P /�C vP .g2/Œf2.P /� D 2Œ�1� D 0:

For 3P (x D �1, y D1):

v3P .g1/Œf1.3P /�C v3P .g2/Œf2.3P /� D �2Œ�1� D 0:

For O (x D1, y D �1):

vO.g1/Œf1.O/�C vO.g2/Œf2.O/� D �2Œ�1� D 0:

In sum, the conditions of Theorem 2 are verified which proves that it is correct to expect
that the left hand side of (1.7) be a rational multiple of L0.E15;�1/.

4.2. Equation (1.9) and the proof of Theorem 1. We will now study the formula

m..x C 1/z C .x2 C x C 1/y C .x C 1/2/ ‹D m1 Cm2;

and more specifically, relation (1.9). We will verify that this polynomial satisfies the hypothesis
of Theorem 2 and we will prove Theorem 1 in the middle of this verification.

The wedge product can be decomposed in the following way.

x ^ y ^ z D x ^ y ^
.x C 1/2 C .x2 C x C 1/y

x C 1
(4.4)

D x ^ .1C x/ ^
1

y

�
1C

.x2 C x C 1/y

.x C 1/2

�2
C
.x2 C x C 1/y

.x C 1/2
^

�
1C

.x2 C x C 1/y

.x C 1/2

�
^ x

C x ^ .1 � x/ ^

�
1C

.x2 C x C 1/y

.x C 1/2

�
�
1

3
x3 ^ .1 � x3/ ^

�
1C

.x2 C x C 1/y

.x C 1/2

�
:

Thus,

m..x C 1/z C .x2 C x C 1/y C .x C 1/2/

D �
1

.2�/2

Z
�0

�.x; y; z/

D �
1

4�2

Z
0

�

�
�x;

1

y

�
1C

.x2 C x C 1/y

.x C 1/2

�2�
C �

�
�
.x2 C x C 1/y

.x C 1/2
; x

�
C �

�
x; 1C

.x2 C x C 1/y

.x C 1/2

�
�
1

3
�

�
x3; 1C

.x2 C x C 1/y

.x C 1/2

�
:
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14 Lalín, Mahler measure and elliptic curve L-functions at s D 3

The rational functions x and y are related by the following equation:

.x2 C x C 1/..x C 1/2y2 C .2.x C 1/2 � x/y C .x C 1/2/ D 0:

With the change of variables

x D �
X

4
; y D

2Y �X2 C 6X � 16

.X � 4/2
;

we get the same Weierstrass form as in equation (4.2).
We proceed to compute the diamond operation in the functions in (4.4).
First we compute some divisors in the Weierstrass equation

.X/ D 2.2P / � 2.O/;

.X � 4/ D .P /C .3P / � 2.O/;

.2Y �X2 C 6X � 16/ D 4.P / � 4.O/;

.Y �X/ D 2.P /C .2P / � 3.O/;

.Y.X2 � 4X C 16/ �X.3X2 � 20X C 48/ D 6.P /C .2P / � 7.O/

and
.X2 � 4X C 16/ D .D/C .�D/C .2P �D/C .2P CD/ � 4.O/:

In the last equation, the point D is defined by

D D .2.1C
p
3i/; 2.�3C

p
3i//;

and it satisfies the property
2D D 3P:

Now we compute the divisors of the functions appearing in (4.4). We let

f1 D �x; g1 D
1

y

�
1C

.x2 C x C 1/y

.x C 1/2

�2
; f2 D �

.x2 C x C 1/y

.x C 1/2
;

g2 D f3 D x; g3 D g4 D 1C
.x2 C x C 1/y

.x C 1/2
; f4 D x

3:

Thus

.f1/ D .f3/ D
1

3
.f4/ D .g2/ D .x/ D 2.2P / � 2.O/;

.1 � f1/ D .1C x/ D .P /C .3P / � 2.O/;

.y/ D 2.P / � 2.3P /;

.1 � f2/ D .g3/ D .g4/ D

�
1C

.x2 C x C 1/y

.x C 1/2

�
D

�
2Y.X2 � 4X C 16/ � 2X.3X2 � 20X C 48/

.X � 4/4

�
D 2.P /C .2P / � 4.3P /C .O/;

.g1/ D 2.P /C 2.2P / � 6.3P /C 2.O/;

.x2 C x C 1/ D .X2 � 4X C 16/ D .D/C .�D/C .2P �D/C .2P CD/ � 4.O/;

.f2/ D

�
.x2 C x C 1/y

.x C 1/2

�
D .D/C .�D/C .2P �D/C .2P CD/ � 4.3P /;
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Lalín, Mahler measure and elliptic curve L-functions at s D 3 15

and

.1 � f3/ D .1 � x/ D .E/C .�E/ � 2.O/;

.1 � f4/ D .1 � x
3/ D ..X C 4/.X2 � 4X C 16//

D .E/C .�E/C .D/C .�D/C .2P �D/C .2P CD/ � 6.O/:

In the last two equations the point E is given by

E D .�4; 4
p
15i/

and it verifies
2E D 2P:

Finally, the diamond operation for each term of (4.4) yields

..f1/ ^ .1 � f1// ˘ .g1/ D 32..P;O/C .P; 2P / � .P;�P //;

..f2/ ^ .1 � f2// ˘ .g2/ D stD � 16..P;O/C .P; 2P /C 2.P;�P //;

..f3/ ^ .1 � f3// ˘ .g3/ D stE � 24.P;�P /;

..f4/ ^ .1 � f4// ˘ .g4/ D 3 stD C 3 stE � 216.P;�P /;

where

stD D 24..D;�P / � .D;P /C .D C 2P;�P / � .D C 2P;P //;

stE D 24..P; P CE/C .P; P �E//:

Adding all the terms from (4.4), we get

..f1/ ^ .1 � f1// ˘ .g1/C ..f2/ ^ .1 � f2// ˘ .g2/(4.5)

C ..f3/ ^ .1 � f3// ˘ .g3/ �
1

3
..f4/ ^ .1 � f4// ˘ .g4/

D 16..P;O/C .P; 2P / � .P;�P //:

The integration path may be written in terms of two conditions

x2 C x C 1 D 0 or j.x C 1/.y C 1/j D 1

on the unit torus. In polar coordinates we get

� D ˙
2�

3
or

ˇ̌̌̌
4 cos

�
�

2

�
cos
�
�

2

�ˇ̌̌̌
D 1:

The integration set is illustrated in Figure 3. We can see two types of boundaries, a set of straight
lines coming from the first condition x2 C x C 1 D 0 and pieces of a cycle coming from the
second condition j.x C 1/.y C 1/j D 1. Thenm1 represents the integral value computed in the
boundary of the central region in Figure 3 andm2 represents the integral computed on the other
boundary.

Let us compute the value of m1 �m2. We obtain an integral in the cycle. By comparing
equations (4.3) and (4.5), this term should lead to �1

2
the left hand side of equation (1.7).

In other words, it is expected to equal �L0.E15;�1/.
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16 Lalín, Mahler measure and elliptic curve L-functions at s D 3

0

1

2

3

−3 −2 −1  0  1  2  3

−1

−2

−3

Figure 3. The shaded region indicates the integration domain.

In addition, we obtain the integral with � D 2�
3

and � � � � �� of � evaluated at

�Œ��3�˝ y

as well as � D �2�
3

and �� � � � � of

�Œ���13 �˝ y;

where �3 D �1C
p
3i

2
is the third root of unity with argument 2�

3
. This yields

�
1

4�2
.2�D.��3/ � 2�D.��

�1
3 // D �

1

�
D.��3/ D L

0.��3;�1/:

Thus, we finally get

m1 �m2 D L
0.��3;�1/ �m.z C .x C 1/.y C 1//:

This concludes the proof of Theorem 1.

For the Mahler measure, the computation along the straight lines yields the following:

�Œ��3�˝ y

to be integrated with �2�
3
� � � �� , �2�

3
� � � 0, � � � � 0, and

�Œ���13 �˝ y

to be integrated with 2�
3
� � � � , 2�

3
� � � 0, �� � � � 0. This yields

�
1

4�2

�
2�

3
D.��3/ �

2�

3
D.���13 /

�
D
1

3
L0.��3;�1/:

In order to completely see equation (1.8) and recover the term 13�.3/

3�2
, one should under-

stand the integral at the level of the pieces in the cycle, but this is very difficult to do.
Finally, we may verify that we again obtain an element inK4.E/ in the case of (1.9). It is

enough to look at the valuations given by the points in the support of the divisors .gi /.
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For P (x D �1, y D 0):

vP .g1/Œf1.P /�C vP .g2/Œf2.P /�C vP .g3/Œf3.P /�C vP .g4/Œf4.P /�

D vP .g1/Œ�1�C vP .g2/Œ0�C vP .g3/Œ�1�C vP .g4/Œ�1� D 0:

For 2P (x D 0, y D1):

v2P .g1/Œf1.2P /�C v2P .g2/Œf2.2P /�C v2P .g3/Œf3.2P /�C v2P .g4/Œf4.2P /�

D vP .g1/Œ0�C vP .g2/Œ1�C vP .g3/Œ0�C vP .g4/Œ0� D 0:

For 3P (x D �1, y D1):

v3P .g1/Œf1.3P /�C v3P .g2/Œf2.3P /�C v3P .g3/Œf3.3P /�C v3P .g4/Œf4.3P /�

D v3P .g1/Œ�1�C v3P .g2/Œ1�C v3P .g3/Œ�1�C v3P .g4/Œ�1� D 0:

For O (x D1, y D 0):

vO.g1/Œf1.O/�C vO.g2/Œf2.O/�C vO.g3/Œf3.O/�C vO.g4/Œf4.O/�

D vO.g1/Œ1�C vO.g2/Œ1�C vO.g3/Œ1�C vO.g4/Œ1� D 0:

This confirms that we can apply Theorem 2 and we should expect a relation with L0.E15;�1/
on the right hand side of formula (1.9).

5. Conclusion

The calculations from the previous section prove Theorem 1, and much more. Combining
the results with the discussion from Section 2, we see that equations such as (1.7) and (1.9) are
to be expected, in the sense that there should be a relationship with L0.E;�1/ in both cases.

Two questions remind open. First, the conjecture that the dimension ofK4.E/ is 1, which
would imply a stronger version of Theorem 2. Second, it reminds to find a method that will
provide the rational coefficient of L0.E;�1/ in those formulas. These kinds of problems have
attracted a lot of attention recently. We refer the reader to the recent work of Zudilin [22] for
more information in this direction regarding formula (1.7).
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