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1. Introduction

One of the most popular questions that mathematicians ask is this: How do we find solutions to equations?
For example, we can take x2 = 2. In complex (or real) numbers, this equation has the solutions ±

√
2 which

we can find by making succesive approximations. If we look at the same equation for the rational numbers,

we write
(
a
b

)2
= 2 with a and b integers. This equation does not have solutions. To see this, suppose that

there is a solution. After simplification, we can assume that either a or b is (or both are) odd. The equation
can be written as a2 = 2b2. Now this shows that 2 divides a2, which means that a is even. But then
a = 2a1 and we can write 4a2

1 = 2b2. This simplifies to 2a2
1 = b2, which implies that b is even, which gives a

contradiction.

Number theory is the study of the integers Z, the rational Q, and their properties. The above analysis
shows an example of one of the big subjects of study in Number Theory, which is the search for integral or
rational solutions to polynomial equations. This subject is known as Diophantine arithmetic, in honor of
Diophantus, a Greek mathematician who lived in Alexandria in the third century A. D.

The simplest possible case of Diophantine equations are linear equations. For instance, ax+ by = c with
a, b, c ∈ Z and we look for solutions x, y ∈ Z. This case is well understood in the sense that one can tell
a priori if there are solutions, and if there are solutions, one can give a list of them. See Appendix 6.1 for
more information about linear equations.

Here is another example of a Diophantine equation. Fix an integer n ≥ 3 and ask which integers X, Y ,
and Z satisfy the equation

(1.1) Xn + Y n = Zn.

Equivalently, we could divide everything by Zn and define new variables x = X/Z and y = Y/Z to rewrite
the equation as

(X/Z)n + (Y/Z)n = 1 or xn + yn = 1.

We see that searching for integer solutions (X,Y, Z) of the original equation is equivalent to searching for
rational solutions (x, y) of the latter equation.

A French lawyer named Fermat conjectured in 1689 that equation (1.1) did not have integral solutions.
This result was finally proved in 1995 by Sir Andrew Wiles, an English mathematician.

If we consider the case n = 2, the situation changes completely. The resulting equation has infinitely
many solutions such as (3, 4, 5) and (5, 12, 13) . These are called Pythagorean triples. See Appendix 6.2 for
more information on quadratic equations.

Exercise 1. Show that neither of the equations x2 + y2 = −3 and x2 + y2 = 1003 has a solution with
integers x, y.

Key words and phrases. elliptic curves.
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So far we have stated that linear equations and quadratic equations are well understood, while there is
an equation of degree n that was very difficult to understand. The natural question is: When do equations
start to get complicated in the sense that we do not have a general theory for understanding the solutions?
The answer is degree 3.

Consider the following example: fix a rational number k. Bachet’s equation is

y2 − x3 = k.

What are the rational numbers x and y that satisfy this equation? Suppose that (x, y) is a solution to
the above equation with y 6= 0. Then one can verify by direct computation that(

x4 − 8kx

4y2
,
−x6 − 20kx3 + 8k2

8y3

)
is also a solution of the Bachet equation. This is called the duplication formula. If x and y are rational
numbers, the coordinates of the above expression will be rational numbers as well. We can start with one
rational solution (x0, y0), substitute x0 for x and y0 for y into the above formula to get a new rational
solution (x1, y1), then substitute x1 for x and y1 for y to get yet another rational solution (x2, y2) to the
Bachet equation, and so on. In fact, if k 6= 1,−432, one can generate infinitely many rational solutions in
this way.

Exercise 2. What happens if we apply the duplication formula several times force
(a) (2, 3) in the case of k = 1 and
(b) (12, 36) in the case of k = −432?

Let us consider k = −2, i.e.,

y2 − x3 = −2.

It is easy to verify that (3, 5) is a solution. Substituting into the duplication formula, we obtain(
129

100
,
−383

1000

)
and

(
2340922881

58675600
,

113259286337279

449455096000

)
,

which are also solutions.
What are the integer numbers x and y that satisfy this equation? This is actually a much harder problem;

Axel Thue showed in 1908 that there are only finitely many integer solutions.

Exercise 3. Show that

y2 − x3 = 7

has no solution with integers x, y. (Hint: Write y2 + 1 = x3 + 8 = (x + 2)(x2 − 2x + 4) and study the
remainders of x and y under division by 4. Prove that there must be a prime number p dividing y2 + 1 such
that p is of the form 4k + 3.)

How can one find a formula such as the duplication formula? Suppose P = (x0, y0) is a rational solution
to the equation which we may write as y2 = x3 + k. Now draw the tangent line to the curve through P
and look at the point Q = (x1, y1) at which it intersects the curve again. Since a line should, in principle,
intersect a cubic in three points, and a tangency is counted as a “double intersection”, such a point Q should
exist (although it might be P again!) See Figure 1.

Explicitly, the tangent line L through P has equation y = λx+ ν, where λ is the slope. To find the slope

to the curve, we use implicit differentiation on the Bachet equation to get 2y
dy

dx
= 3x2 or

dy

dx
=

3x2

2y
. So the

slope λ at P is
3x2

0

2y0
, and ν = y0 − λx0 = y0 − 3x3

0

2y0
=

2y20−3x3
0

2y0
. To find the coordinates of Q, we intersect the

line y = λx+ ν with the curve y2 = x3 + k. Substituting for y, we get:

(λx+ ν)2 = x3 + k

or

x3 − λ2x2 − 2νλx+ (k − ν2) = 0.
2



Figure 1. The tangent line at P intersects the curve in a “third” point Q.

Two of the solutions for x are given by x0, since the line intersects the curve “twice” (tangency) at P . Now
observe that the sum of the roots of the equation is the negative of the coefficient of x2, so x0 +x0 +x1 = λ2,
or

x1 = λ2 − 2x0 =
9x4

0

4y2
0

− 2x0 =
9x4

0 − 8x0y
2
0

4y2
0

.

From the Bachet equation, x3
0 = y2

0 − k, or x4
0 = xy2

0 − kx0, so the above expression becomes

8x4
0 + x4

0 − 8x0y
2
0

4y2
0

=
8x0y

2
0 − 8kx0 + x4

0 − 8x0y
2
0

4y2
0

=
x4

0 − 8kx0

4y2
0

,

which is the first coordinate of the duplication formula. To get the second coordinate, observe that y1 =
λx1 + ν and replace the values of λ, x1, and ν to obtain y1.

Exercise 4. Complete the last steps to prove that

y1 =
−x6 − 20kx3 + 8k2

8y3
.

In conclusion, given a solution to the Bachet equation, one can generate another solution by means of the
simple geometric procedure described above.

Our goal is to show that we can do something even more general. Namely, given any plane curve f(x, y) = 0
defined by a cubic equation, we can make the rational points on the curve into a group.

2. Some facts of Group Theory

A group is a structure that appears often in number theory. It will be central to our study.

Definition 2.1. A group is a set G of objects together with an operation ∗ : G×G −→ G such that:

(1) If a, b, c ∈ G, then (a ∗ b) ∗ c = a ∗ (b ∗ c); that is, if we multiply three elements of G together, it does
not matter which pair we multiply first. We say that the operation is associative.

(2) There exist an element e ∈ G such that for every a ∈ G, we have a ∗ e = a = e ∗ a. This element is
called the identity of G for ∗.

(3) For every a ∈ G there exist a b ∈ G such that a ∗ b = b ∗ a = e. We say that b is the inverse of a
with respect to ∗. Sometimes we write −a or a−1 for the inverse.

Examples.

• Z is a group with respect to addition (with 0 as the identity), but not with respect to multiplication
(only 1 and −1 have inverses).
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• Fix an integer n. The set of residue classes mod n, written Zn is defined by {0, 1, . . . , n− 1}. We
can define a binary operation on Zn by adding classes “modulo n”. For example, if n = 5, then
Zn = {0, 1, . . . , 4} and we can define 1 + 2 = 3, 3 + 4 = 2 (because 3 + 4 = 7, which is the same as 2
modulo 5). It is easy to verify that addition is associative, that 0 is the (only) identity element and
that the inverse of a is n− a.

When there is no ambiguity, we drop the bar from the notation, writing 0, 1, . . . instead of 0, 1, . . . .
• The set GL2(R) of invertible 2 by 2 matrices with real entries forms a group under matrix multipli-

cation. Indeed, if A and B are invertible matrices, then AB is also invertible with inverse B−1A−1.
Once again, the matrix I2 is the (only) identity element and the inverse of an element A ∈ GL2(R)
is just the inverse matrix A−1.

• If G1, G2 are two groups with operations ∗1 and ∗2, then we can form another group by considering
G1 ×G2 with operation

(a, b) ∗ (c, d) = (a ∗1 c, b ∗2 d).

In this case the identity is given by (e1, e2), and (a, b)−1 = (a−1, b−1).
This construction can be extended to several groups G1, G2, . . . , Gn.
Examples of this construction are the real spaces Rn with the operation sum.

Exercise 5. Prove that the identity element for G with operation ∗ is unique and that the inverse of any
element is also unique.

Definition 2.2. A group G is called abelian or commutative if for every a, b ∈ G, we have a ∗ b = b ∗ a.

For example, Z with respect to addition is abelian. However, GL2(R) is not abelian. For example,(
1 1
0 1

)(
1 0
−1 2

)
=

(
0 2
−1 2

)
but

(
1 0
−1 2

)(
1 1
0 1

)
=

(
1 1
−1 1

)
.

Remark.
For groups G, we often write ab instead of a ∗ b for the binary operation. If the group G is abelian, we

usually write a+ b instead of a ∗ b, label the identity element as 0 instead of e, and −a for the inverse of a.

Definition 2.3. Let G be a finite group. The cardinality or order of G, denoted |G|, is the number of
elements in G.

Definition 2.4. Let G be a group and a ∈ G an element. The order of a, written |a|, is the smallest positive
integer m (if it exists) such that am = e. If no such integer exists, we say that a has infinite order.

For example, the order of the identity element of any group is always 1; in fact, it is the only element of
order 1. In Z, every nonzero element has infinite order. In Zn, every element has order dividing n.

Exercise 6. Show that in a group G, |a| = |a−1|.

Proposition 2.5. Let G be a finite group and a ∈ G an element. Then |a| divides |G|.

Definition 2.6. Let G be a group. A subgroup of G is a subset H ⊆ G which is a group with the same ∗
operation coming from G.

For example, Z6 = {0, 1, 2, 3, 4, 5} has four subgroups: {0}, {0, 3}, {0, 2, 4}, {0, 1, 2, 3, 4, 5, }.
We also have

Z ⊂ Q ⊂ R ⊂ C,
with the sum.

Proposition 2.7. Let G be a group. A subset H ⊆ G is a subgroup if and only if H is nonempty, closed
under the group operation, and closed under inverses.
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Exercise 7. Let G be an abelian group and n ≥ 1 an integer. Prove that the set

Gn = {x ∈ G : |x| divides n}
is a subgroup of G.

Definition 2.8. A group G is said to be generated by a subset S ⊆ G if every element of G can be obtained
by composing some (finite) combination of elements of S and their inverses together.

For example, the group Z is generated by {1} and so is Zn.
A group which has a generating subset consisting of one element is called a cyclic group. A group which

has a finite generating subset is called a finitely generated group.
Consider the group Z × Z. This group is abelian and not cyclic. It is finitely generated with a set of

generators given by {(1, 0), (0, 1)}.

Exercise 8. Find another set of generators for Z× Z.

Definition 2.9. Let G and G′ be groups. A homomorphism is a map φ : G −→ G′ such that for all x, y ∈ G,

φ(xy) = φ(x)φ(y).

An important example of a homomorphism is the identity map idG : G −→ G from a group to itself. It
is defined by idG(g) = g for all g ∈ G.

For another example, consider the “doubling map” D : Z −→ Z given by the formula D(n) = 2n. Then,
for any a, b ∈ Z, we have

D(a+ b) = 2(a+ b) = 2a+ 2b = D(a) +D(b)

and so D is a homomorphism.

Definition 2.10. Let G and G′ be groups. A homomorphism φ : G −→ G′ is called an isomorphism if there
exists a homomorphism ψ : G′ −→ G such that φ ◦ ψ = idG′ and ψ ◦ φ = idG. In this case we say that G
and G′ are isomorphic as groups and we write G ∼= G′.

Groups which are isomorphic are considered to be essentially the same. For example, consider the set of
rotations of the plane G4 = {id, ρπ/2, ρπ, ρ3π/2}, where id is the map which leaves everything fixed and ρθ
is the counterclockwise rotation of the plane around the origin through an angle of θ radians. The set G4

forms a group under composition of transformations; id is clearly the identity, and ρ2π−θ is the inverse of
ρθ. Furthermore, the group G4 is isomorphic to Z4. One such isomorphism is obtained by sending id to 0,
ρπ/2 to 1, ρπ to 2 and ρ3π/2 to 3. The inverse map is defined by switching these definitions, and also defines
a homomorphism.

Exercise 9. Suppose G, H, and J are groups. Let φ : G −→ H and ψ : H −→ J be homomorphisms.
Prove that the composition ψ ◦ φ : G −→ J is also a homomorphism.

Exercise 10. (a) Let G be a group and a, b ∈ G elements. Prove that

(ab)−1 = b−1a−1.

(b) Suppose G is a group. Prove that the function

ι : G −→ G

defined by ι(g) = g−1 is a homomorphism if and only if G is an abelian group.

We close this section with the following result which will be very useful in the future.

Theorem 2.11. [Fundamental Theorem of Finitely Generated Abelian Groups] Any finitely generated abelian
group G can be written in the form

G ∼= Zr × Zq1 × · · · × Zqs ,
where r is a non-negative integer and the qi are (not necessarily distinct) powers of prime numbers. The
value of r, and those of q1, . . . , qs are (up to reordering) uniquely determined by G.
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3. Elliptic Curves and the Group Law

3.1. The Projective Space. The 2-dimensional affine space over R is given by

A2
R = {(x, y) : x, y ∈ R}.

In other words, this is just another notation for the Eucliden plane R2. This notation is useful because it
allows us to replace R by C and define

A2
C = {(x, y) : x, y ∈ C}.

In fact, we could do the same thing for other sets such as Q, Z, etc.
Now consider the set L = {(X,Y, Z) : X,Y, Z ∈ R and X,Y, Z not all zero }. (This set is essentially

A3
R − {(0, 0, 0)}.)
Define an equivalence relation on L by setting that (A,B,C) ∼ (λA, λB, λC) for all nonzero real numbers

λ. For instance,
(

1
4 ,

1
2 ,

2
3

)
is equivalent to (3, 6, 8) (use λ = 12).

The set L/ ∼ of equivalence classes with respect to ∼ is called 2-dimensional projective space over R and
is denoted P2

R. This object is described as 2-dimensional because we started L, an essentially 3-dimensional
object, and considered equivalence classes with respect to a linear (1-dimensional) relation. The equivalence
class of (A,B,C) in P2

R is typically written [A : B : C] to avoid confusion with the affine space A3
R.

Thus, we have
P2
R = {[X : Y : Z] : X,Y, Z ∈ R and X,Y, Z not all zero }.

Consider the subsets
U1 = {[X : Y : Z] : Z 6= 0} and U0 = {[X : Y : 0]}.

It is clear from the definition of ∼ that no element of U1 is equivalent to any element of U0.
A typical element [X : Y : Z] of U1 is equivalent to

[
X
Z : YZ : 1

]
. So the elements of U1 are essentially of

the form [x : y : 1], where x and y are allowed to be any real numbers. In other words, U1 is somewhat like
a copy of A2

R sitting inside P2
R.

A typical element of U0 looks like [X : Y : 0]. Note that either X or Y is nonzero (since we excluded the
triple consisting of all zeros). If X 6= 0, then [X : Y : 0] is equivalent to

[
1 : YX : 0

]
, which is essentially a

copy of A1
R. If X = 0, then the typical point has the form [0 : Y : 0], which is equivalent to [0 : 1 : 0] since

Y is nonzero.
Thus, U0 is a union of A1

R and the point [0 : 1 : 0]. We can also think of U0 as a copy of the projective
line over R given by

P1
R = {[X : Y ] : X,Y ∈ R and X,Y not both zero },

where [X : Y ] corresponds again to the equivalence class given by (X,Y ) ∼ (λX, λY ).
In conclusion: the set P2

R is a disjoint union of A2
R and P1

R. The former consists of all (equivalence classes
of) points of the form [X : Y : Z] with Z 6= 0 and the latter consists of (equivalence classes of) points of the
form [X : Y : 0]. The latter set is often referred to as the “line at infinity”, since it is one-dimensional and
is not part of A2

R.

3.2. Weierstrass Equations. Our goal is to study cubic equations in two variables. The most general
cubic equation that one may consider is:

(3.1) ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0.

Here a, b, c, d, e, f, g, h, i, j are numbers (for instance, real numbers). The previous equation can be simplified.
For instance, we can replace x by x+ k, and obtain another similar equation. If we choose k wisely, we may
make some of the coefficients equal zero. More generally, a birational transformation is a change of variables
of the form x1 = `(x, y), y1 = m(x, y) where `(x, y), m(x, y) rational functions, and such that it is reversible
with a transformation of the same shape.

One can prove that any cubic curve (3.1) is birationally equivalent an equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Such an equation is called Weierstrass equation. If we are working ∗ in Q,R or C we can further assume that

(3.2) y2 = x3 + ax2 + bx+ c.

∗If the characteristic of the field is different from 2.
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Moreover, by making the birational change † x = x1 − a
3 , we can eliminate the x2 term and assume that

the equation has the shape
y2 = x3 + bx+ c.

We will work with equation (3.2) keeping in mind that we can assume a = 0 if necessary.

Now, instead of looking for solutions in A2
R, consider solutions in the bigger set P2

R. For this, recall that

we can think of A2
R inside P2

R as the set of
[
X
Z : YZ : 1

]
. Setting x = X

Z and y = Y
Z , and multiplying by Z3,

equation (3.2) becomes

(3.3) Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

Equation (3.3) has the same solutions (if any) as equation (3.2) plus possibly some solutions in the line at
infinity. Let E be the set of solutions of (3.3)

E = {[X : Y : Z] : Y 2Z = X3 + aX2Z + bXZ2 + cZ3}.
To see the solutions at the line of infinity, set Z = 0. Substituting, we get 0 = X3, which forces X = 0; Y
is allowed to be anything different from zero. All the points [0 : Y : 0] are equivalent to [0 : 1 : 0]. Thus, E
intersects the line at infinity at the point [0 : 1 : 0].

Equation (3.3) is a homogenization of equation (3.2).
The moral: we can consider the curve E as the set of solutions to the so-called Weierstrass equation

y2 = x3 + ax2 + bx+ c, together with a “point at infinity” O = [0 : 1 : 0], which sits outside the affine plane.

3.3. When is a cubic an elliptic curve? We will see that (under certains conditions) we can make the
points on E into a group E(R), and that the points with rational coordinates form a subgroup E(Q) of this
group.

Definition 3.1. Let E be a cubic curve with Weierstrass equation y2 = f(x) = x3 + ax2 + bx + c. Let
F (x, y) = y2 − f(x). The curve E is called nonsingular if there is no point on E at which the partial
derivatives

∂F

∂x
= −f ′(x) and

∂F

∂y
= 2y

vanish simultaneously.
A nonsingular curve of this form is called an elliptic curve.

What does this condition mean? From the equation y2 = f(x), we can try to find a formula for the slope
dy

dx
of the tangent line to E at (x, y). Using implicit differentiation, we get 2ydy = f ′(x)dx and

dy

dx
=
f ′(x)

2y
= −

∂F
∂x
∂F
∂y

.

This expression makes sense if the denominator is nonzero, and can be interpreted as the “slope” of a
vertical line if the numerator is nonzero and the denominator zero. However, if both quantities vanish, there
is not a well-defined slope at that point.

Now we translate this condition in terms of algebra. Suppose that both derivatives vanish at a point
P = (x0, y0). We have f ′(x0) = 0 and y0 = 0. However, since y2 = f(x), it follows that f(x0) = 0. So we
have both f(x0) = 0 and f ′(x0) = 0. Now we use the following result.

Lemma 3.2. A polynomial p(x) has a repeated root α if and only if α is a common root of p(x) and p′(x).

Proof. Suppose p(x) and p′(x) share a common root α. Since α is a root of p(x), we can write

p(x) = (x− α)g(x).

Differentiating, we have
p′(x) = g(x) + (x− α)g′(x).

Evaluating in x = α, we obtain 0 = g(α). Therefore we can write g(x) = (x− α)h(x) and

p(x) = (x− α)2h(x).

†This change can be made if the characteristic of the field is different from 3.
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This means that α is a repeated root of p(x).
Conversely, suppose some root α of p(x) occurs with multiplicity ≥ 2. In other words,

p(x) = (x− α)2h(x).

Using the product rule again, we have

p′(x) = 2(x− α)h(x) + (x− α)2h′(x) = (x− α)(2h(x) + (x− α)h′(x)),

and so α is also a root of p′(x). ,

It follows that y2 = f(x) = x3 + ax2 + bx+ c is singular if and only if f(x) has a repeated root α.

Exercise 11. Prove that the conic given by the equation

x2 − 3xy + 2y2 − x+ 1 = 0

is nonsingular.

There is a way to tell that a Weierstrass equation y2 = f(x) = x3 + ax2 + bx+ c is nonsingular without
having to find the roots of f(x).

Definition 3.3. The discriminant of f(x) is the quantity

(3.4) ∆ = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

(Note that if a = 0, this reduces to −4b3 − 27c2, a formula that you may have seen before in the context
of cubic equations.)

If we factor f(x) over the complex numbers:

f(x) = (x− α1)(x− α2)(x− α3),

it is not hard to check (by brute force computation) that

∆ = (α1 − α2)2(α1 − α3)2(α2 − α3)2.

It is then clear that the roots are not repeated if and only if ∆ 6= 0.

Exercise 12. Verify the formula given above for the discriminant.

Exercise 13. Let f(x) = x3 + ax2 + bx+ c have real coefficients. Prove that if ∆ > 0, then f(x) has three
real roots, while if ∆ < 0, then f(x) has a real root and two complex conjugate roots.

To summarize, a Weierstrass equation E : y2 = f(x) = x3 + ax2 + bx + c is nonsingular (it corresponds
to an elliptic curve) iff any of the following equivalent conditions is satisfied.

(1) At least one of the partial derivatives does not vanish at each point of E.
(2) The right hand side f(x) of the Weierstrass equation for E has distinct roots in C.
(3) The discriminant ∆ given by equation (3.4) is different from zero.

3.4. The Group Law. From now on, we are going to assume that E : y2 = x3 +ax2 +bx+c is a nonsingular
curve with Weierstrass equation in the above form.

Let P,Q ∈ E be two points in the curve. For convenience, we suppose for the time being that P 6= Q and
that neither point is equal to O, the point at infinity. We are going to “add” these points to get a new point.
Let us take the line through P and Q and see where it intersects E. We call this third point of intersection
P ∗Q. One could ask: does the operation ∗ make the points of E into a group? The answer is no, in fact,
there is no identity element. However, if we define P +Q to be the reflection of P ∗Q in the x-axis (i.e. if
P ∗Q = (x, y), then P + Q = (x,−y)). If P = Q, then we should use the tangent line to P in place of the
line between P and Q. Furthermore, if one of P and Q is O, we declare P +O = P and O + Q = Q. The
resulting operation + makes E a group.

It is easy to see that + defines a binary operation on E and that O is the identity element. What is the
inverse of a point P = (x, y)? Well, from the geometry one can see that −P = (x,−y), is also a point of
E, and that P + (−P ) = O = (−P ) + P . The only property that is missing is associativity of +. Using
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Figure 2. How to sum P and Q in the elliptic curve E.

the explicit formulas we are about to develop, one can check that + is associative, but this proof is very
tedious since there are many cases to consider. There are more elegant proofs that use algebraic geometry
or complex analysis but we do not have the backgroup to explore them here.

Just as we did for the Bachet curve, we may also develop explicit formulas for the group law on E. Here
we will sketch how to do it for distinct points P = (x1, y1) and Q = (x2, y2), neither of which is the point O
at infinity. If we label P ∗Q = (x3, y3), then P +Q = (x3,−y3) by our definition. Now, (x3, y3) is the third
point of intersection of the line y = λx+ ν connecting P and Q to the curve E. We may calculate the slope
of this line by using the slope formula

λ =
y2 − y1

x2 − x1
,

and then

ν = y1 − x1λ = y1 −
x1(y2 − y1)

x2 − x1
.

Now, we substitute this expression for y into the Weierstrass equation for E to get:

(λx+ ν)2 = x3 + ax2 + bx+ c

or

x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = 0.

As before, we note that the three roots of the equation are x1, x2, and x3, and we obtain

(3.5) λ2 − a = x1 + x2 + x3.

This allows us to calculate x3. We may then find y3 by substituting x3 for x in the equation of the line
connecting P and Q.

Exercise 14. Find explicit formulas for x3 and y3 in terms of x1, x2, y1, y2, a, b, c.

In the case P = Q = (x, y) with y 6= 0, the formula for the x-coordinate of P +Q = 2P is

(3.6) x(2P ) =
f ′(x)2

4f(x)
− a− 2x =

x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
.

Exercise 15. Verify the “duplication” formula above.
9



Now we will consider the case where P = (x1, y1) and Q = O. For this, consider the homogenization of
the equation

Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

In this system, we can think of P as [x1 : y1 : 1] and Q as [0 : 1 : 0]. To simplify things, suppose that y1 6= 0.

Thus, P =
[
x1

y1
: 1 : 1

y1

]
. It then makes sense to divide by Y and consider

(3.7) z̄ = x̄3 + ax̄2z̄ + bx̄z̄2 + cz̄3

where x̄ = X
Y and z̄ = Z

Y . In the system of coordinates (x̄, z̄), we have that P =
(
x1

y1
, 1
y1

)
and Q = (0, 0). We

get λ = 1
x1

and ν = 0, thus the line through P and Q = O is given by z̄ = x̄
x1

. Going back to the [X : Y : Z]

and the (x, y) coordinates, we obtain Z
Y = X

x1Y
and x = x1, which is the vertical line‡. It is now clear that

P ∗ O = (x1,−y1) and that P +O = P .
Other cases are treated similarly.

Exercise 16. (a) Find the tangent at O in the (x̄, z̄)-coordinates.
(b) Find the third point of intersection of this tangent with E. What is 2O?

The final expressions for x3 and y3 are rational functions of x1, x2, y1, and y2. In particular, if these latter
four quantities are rational (i.e. P and Q are rational points), then x3 and y3 will be rational and P +Q will
be also a rational point. This shows that the set of rational points is closed under the group composition
law.

It is also clear that if P = (x, y) is a rational point, then −P = (x,−y) must also be a rational point. By
Proposition 2.7, the subset

E(Q) = {(x, y) : y2 = x3 + ax2 + bx+ c : x, y rational } ∪ {O}

forms a subgroup of E.

Exercise 17. Consider the point P = (3, 8) on the cubic curve y2 = x3 − 43x+ 166. Compute P , 2P , 3P ,
4P , and 8P . Comparing 8P with P , what can you conclude?

3.5. Points of Order Two and Three. A natural question which arises in this context is the following.
Consider an elliptic curve E given by a Weierstrass equation y2 = f(x) = x3 + ax2 + bx + c. We want to
find the points P = (x, y) of order 2. In other words, we want P 6= O but 2P = O. By adding −P to
both sides of the equation, we may write P = −P . Using our formula for the inverse of P , this now reads
(x, y) = (x,−y). Thus y = −y and so y = 0. We look at the Weierstrass equation

0 = y2 = x3 + ax2 + bx+ c.

The number of points of order 2 depends on how many real roots the cubic on the right has. Certainly every
cubic has at least one real root, and the other two roots are either two real numbers or complex conjugates
(this can be determined by the sign of the discriminant). So, in terms of real coordinates, E(R) has either
one or three points of order 2. If we allow complex coordinates, E(C) has three points of order 2. In sum
allowing complex coordinates, E has four points of order dividing 2 (including O).

As an example, let us look at E given by the Weierstrass equation y2 = x3 + 8. The cubic on the right,
x3 + 8 = (x+ 2)(x2− 2x+ 4), has only one real root x = −2. The other two roots are given by the quadratic
formula: x = 1±

√
−3. So E(R) has one point of order two and E(C) has three points of order 2.

On the other hand, if we look at E given by y2 = (x− 1)(x− 2)(x− 3), then the right hand side has three
real roots, so in this case E(R) has 3 points of order 2.

‡This line also works when y1 = 0. In this case the line is tangent to P .
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Now let us look at points of order 3. The relation 3P = O is equivalent to 2P = −P . In particular, this
means that x(2P ) and x(−P ) are the same, but since x(−P ) = x(P ), this just means that x(2P ) = x(P ).
If we abbreviate x(P ) by x, by using formula (3.6), we get

x(2P ) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x,

and
ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ (4ac− b2) = 0.

Thus, P = (x, y) is a point of order three if and only if x satisfies the above equation.
How many points P = (x, y) of order three are there? The polynomial ψ3(x) has at most four roots,

so there are at most four possibilities for x. For each point P = (x, y) of order 3, it is easy to check that
−P = (x,−y) also has order 3, so these points come in pairs. Now, P and −P are distinct points as long as
y 6= 0. However, we can safely assume y 6= 0, because all points with y = 0 have order 2, as we saw above.

Therefore, the number of points of order three is equal to twice the number of distinct roots of ψ3(x).

Proposition 3.4. The polynomial ψ3(x) has four distinct roots.

Proof. Recall how we obtained the polynomial ψ3(x). We set x(2P ) = x(P ). By equation (3.6) this can be
written as

x =
f ′(x)2

4f(x)
− a− 2x

and
f ′(x)2

4f(x)
= 3x+ a =

f ′′(x)

2
so

ψ3(x) = 2f(x)f ′′(x)− f ′(x)2.

To check that ψ3(x) has distinct roots, it suffices by Lemma 3.2 to check that ψ3(x) and ψ′3(x) have no
common roots. However,

ψ′3(x) = 2f(x)f ′′′(x) = 12f(x).

A common root of ψ3(x) and ψ′3(x) would be a common root of 2f(x)f ′′(x) − f ′(x)2 and 12f(x), which
would be a common root of f(x) and f ′(x). However, this is not possible, because it would contradict the
assumption of the nonsingularity of E.

Exercise 18. Let E be an elliptic curve given by the usual Weierstrass equation

y2 = f(x) = x3 + ax2 + bx+ c.

(a) Prove that
d2y

dx2
=

2f ′′(x)f(x)− f ′(x)2

4yf(x)
=

ψ3(x)

4yf(x)
.

(b) Use this to deduce that a point P = (x, y) ∈ E is a point of order three if and only if P 6= O and P
is a point of inflection on the curve E.

(c) Now suppose a, b, c ∈ R. Prove that ψ3(x) has exactly two real roots, say α1, α2 with α1 < α2. Prove
that f(α1) < 0 and f(α2) > 0. Use this to deduce that the points in E(R) of order dividing 3 form a cyclic
group of order three.

We may summarize our findings as follows:

Proposition 3.5. Let E be an elliptic curve. Then E has exactly 8 points (allowing complex coordinates)
of order 3 and 9 points of order dividing 3.

Notice that, allowing complex coordinates, there is 1 point of order dividing 1, 4 points of order dividing
2, 9 points of order dividing 3. The following theorem (whose proof is beyond the scope of this discussion)
should come as no surprise:

Theorem 3.6. Let E be an elliptic curve and n a positive integer. Then the number of points on E of order
dividing n is equal to n2. In fact, this set of points forms a subgroup of E isomorphic to Zn × Zn.
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4. The Lutz-Nagell Theorem

Let E be an elliptic curve with Weierstrass equation y2 = f(x) = x3 + bx+ c (recall that we can assume
that a = 0) assume further that b, c are rational numbers. Write b = b1/b2, c = c1/c2 where the numerator
and denominator of each expression is an integer, and let d be a large integer which is a multiple of each of
the denominators b2 and c2. (For example, d = b2c2.) Making a change of variables, we set x̄ = d2x and
ȳ = d3y. Then our equation becomes:

ȳ2 = x̄3 + d4bx̄+ d6c.

In particular, each of the coefficients is an integer. Therefore, we can assume from now on that our Weierstrass
equation has integer coefficients.

Our goal is to state a theorem, due to Lutz and Nagell, that gives us a recipe for finding all the rational
points of finite order. In particular, it also tells us that there are only finitely many such points.

Definition 4.1. The rational points of finite order are called torsion points. They make a group that is
denoted E(Q)tors.

Recall that the discriminat ∆ of f(x) given by equation (3.4). Since a = 0, we have a simpler expression
given by

∆ = −4b3 − 27c2.

Exercise 19. Show that ∆ is invariant by the change of variables x = x1 − a
3 that makes the coefficient a

equal 0.

A direct computation shows that we have the following explicit formula:

(4.1) ∆ = ((3x3 − 5bx− 27c)(x3 + bx+ c)− (3x2 + 4b)(x4 − 2bx2 − 8cx+ b2).

We have the following lemma:

Lemma 4.2. Let P = (x, y) be a point on E such that both P and 2P have integer coordinates. Then either
y = 0 or y2|∆.

Proof. We start by assuming that y 6= 0 and prove that y2|∆. Because y 6= 0, we know that P does not
have order 2 and therefore that 2P 6= O, so we may write 2P = (x1, y1). By assumption, x, y, x1, y1 are all
integers. The duplication formula (3.6) asserts that

x1 =
x4 − 2bx2 − 8cx+ b2

4y2
.

Since x and x1 are integers, it follows that y2 divides x4 − 2bx2 − 8cx+ b2. We also have that y2 = f(x).
Now we use relation (4.1) to conclude that y2 divides ∆, too, as desired.

,

The main statement is the following.

Theorem 4.3. (Lutz–Nagell)
Let

y2 = f(x) = x3 + ax2 + bx+ c

be an elliptic curve with integer coefficients a, b, c. Let ∆ be the discriminant of the cubic polynomial. Let
P = (x, y) be a rational point of finite order. Then x and y are integers. If y = 0 then P has order 2;
otherwise, y2 divides ∆.

To prove the Lutz–Nagell theorem, it suffices to show that x and y are integers. The last statement
will then follow from Lemma 4.2. The proof that x and y are integers is not hard but computationally
complicated and we will not include it here.
Remark.

Note that the Lutz–Nagell Theorem is not an “if and only if” statement: a point may have integer
coordinates without having finite order.
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Now suppose we are trying to classify all the points P = (x, y) of finite order on some elliptic curve E.
We already know about the points of order 2. The Lutz–Nagell Theorem tells us that we after computing
the value of the discriminant ∆ (from the Weierstrass equation), the only y-values that we need to consider
are integers such that their squares divide ∆. There are obviously only finitely many such values, so we just
need to comb through the list and see which ones give rise to rational points lying on E.
Example.

Find all the torsion points on the curve y2 = x3 + 4x.

First, it is clear that the point O at infinity, which has projective coordinates [0 : 1 : 0], is a rational point.
The points of order 2 are determined by setting x3 + 4x = 0, i.e. x(x2 + 4) = 0. This yields one point: (0, 0)
(since (2i, 0), (−2i, 0), where i =

√
−1 are not rational points).

The discriminant yields ∆ = −256. Now Lutz–Nagell Theorem tells us that any rational point P = (x, y)
which does not have order 1 or 2 must have x and y both integers and y2 dividing −256. Since 256 = 28,
the possibilities for y are

y = ±1,±2,±4,±8,±16.

We only have to test the positive values for y, since P = (x, y) is a rational point if and only if−P = (x,−y)
is a rational point.

First consider the case y = 1, then we have 1 = x3 + 4x for integers x. Factoring, we get 1 = x(x2 + 4),
and it is clear that no integer satisfies this equation. If y = 2, we get 4 = x(x2 + 4); there are no solutions to
this equation either. If y = 4, we get 16 = x(x2 + 4). Since x has to be an integer, x has to divide 16. The
possibilities are x = ±1,±2,±4,±8,±16. We can eliminate the negative values instantly, since they would
make the right hand side of the equation negative. We find that the only value that satisfies this equation is
x = 2. This gives the point (2, 4), along with its inverse (2,−4). If y = 8, we get 64 = x(x2 + 4). Again, we
can argue that x must divide 64 and that x must be positive. By repeated trial, we find that none of these
values satisfy this equation. Finally, if y = 16, we get 256 = x(x2 + 4). Once again, we find that x must be
positive and divide 256, and that no such values satisfy this equation.

Thus, the integral points on E with y2|∆ are:

G = {O, (0, 0), (2, 4), (2,−4)}

To find the torsion points, we need to know which of these points have finite order. We know O has order 1
and (0, 0) has order 2, and that the other two elements have order greater than 2. A simple application of
the duplication formula (3.6) yields that 2(2, 4) = (0, 0). Thus, (2, 4) and (2,−4) are points of order 4. We
conclude that the group of torsion points E(Q)tors is in fact isomorphic to Z4.

As a final note, Lutz–Nagell Theorem gives a bound (namely the square-root of the discriminant
√

∆) on
the y-coordinate of a torsion point on the curve E. This bound depends on E since ∆ does. One could also
ask: exactly which orders are possible? This question was studied for a long time. The answer was finally
provided by Barry Mazur in the following (very difficult) theorem:

Theorem 4.4. (Mazur) Let E be an elliptic curve defined over Q. (i.e. the coefficients in the Weierstrass
equation for E may be chosen to lie in Q.) Suppose that E(Q) contains a point of finite order m. Then§

1 ≤ m ≤ 10 or m = 12.

Exercise 20. For each of the following curves, determine all of the points of finite order, and determine
the order of each such point. (a) y2 = x3 − 2.

(b) y2 = x3 + 1.
(c) y2 − y = x3 − x2.

§Indeed, more is known, E(Q)tors ∼= Zm with 1 ≤ m ≤ 10 or m = 12, or Z2 × Z2k with k = 1, 2, 3, 4.
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5. Mordell’s Theorem

The result we are after is the following:

Theorem 5.1. (Mordell) Let E be an elliptic curve whose Weierstrass equation has rational coefficients.
Then the group E(Q) is finitely generated.

This theorem states that given just finitely many (rational) points on E, one can get any rational point
on E by adding or subtracting some combination of these (finitely many) points.

The Fundamental Theorem of Finitely Generated Abelian Groups 2.11 implies the following.

Corollary 5.2. Let E be an elliptic curve whose Weierstrass equation has rational coefficients. Then

E(Q) ∼= E(Q)tors × Zr,
where r is a nonnegative integer (called rank).

For example, an elliptic curve will have an infinite number of points over Q (corresponding to solutions
in the cubic equation) if and only if r > 0. We have seen that torsion points can be found relatively easy.
The rank, on the other hand, is not so easy to find. ¶

We will prove a weak version of Mordell’s theorem, for the case where the elliptic curve has all the four
points of order 2 defined over Q, i.e., the case where f(x) has three integral roots.

5.1. Cosets: more abstract algebra.

Definition 5.3. Let G be a group and H ⊆ G a subgroup. Let a ∈ G be any element. The set

aH = {ah : h ∈ H}
is called a coset of H in G. The element a is called a representative for this coset.

As an example, let G = Z and H = 2Z = {2n : n ∈ Z} = {all even integers}. Then H is a subgroup of
G. We could consider the coset 0 +H (we write 0 +H instead of 0H since we use the addition symbol ’+’
instead of multiplication to represent the group law). As a set 0 + H = {0 + h : h ∈ H} is simply H, the
even integers. On the other hand, 1 + H = {1 + h : h ∈ H} is the set of all odd integers. What is 2 + H?
Actually 2 +H = H, also. More generally, n+H is the set of even numbers if n is even and the set of odd
numbers if n is odd. Notice how there are only two distinct cosets of H in G.

Definition 5.4. Let G be a group and H ⊆ G a subgroup. The index of H in G, written [G : H] is the
number of distinct cosets of H in G, if this quantity is finite. If not, we say that H has infinite index in G.

Proposition 5.5. Let H be a subgroup of a group G and a, b ∈ G two elements. Then:

(1) Either aH = bH or aH ∩ bH = ∅.
(2) aH = H if and only if a ∈ H.
(3) aH = bH if and only if b−1a ∈ H.

Proof. To prove the first assertion, suppose aH ∩ bH 6= ∅, so let x ∈ aH ∩ bH. This means that x may
be written x = ah for some h ∈ H and as x = bh′ for some h′ ∈ H. Thus ah = bh′, and multiplying both
expressions on the right by h−1, we have ahh−1 = bh′h−1 or a = bh′h−1. Since H is a subgroup and h ∈ H,
it follows that h−1 ∈ H, too. Furthermore, since h′ ∈ H and h−1 ∈ H, the fact that H is a subgroup means
that h′h−1 is also a member of H. Thus, a ∈ bH and hence aH ⊆ bH. By symmetric reasoning, bH ⊆ aH.
Thus, aH = bH.

To prove the second assertion, first suppose that aH = H. Since e ∈ H, it follows that a = ae ∈ aH,
which by hypothesis is just H. Thus a ∈ H. Conversely, suppose that a ∈ H. Then, since e ∈ H, we have
that a ∈ aH and thus a ∈ H ∩ aH. By the first part, this implies that H = aH.

The third assertion follows almost immediately from the second:

aH = bH iff b−1aH = b−1bH iff b−1aH = H.

¶The determination of the rank is tied to the Birch and Swinnerton-Dyer conjecture, one of the seven Millenium Prize
Problems from the Clay Mathematics Institute with a prize of one million US dollars for the first correct proof.
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By the second proposition this is true if and only if b−1a ∈ H.
,

By the first assertion of Proposition 5.5, we conclude the following.

Corollary 5.6. With notation as above, the cosets of H in G partition G; that is, every element of G is
contained in exactly one coset of H.

Exercise 21. Prove that if G finite and H ⊂ G subgroup, then

[G : H] =
|G|
|H|

.

Conclude that for g ∈ G, |g| divides |G|. (This proves Proposition 2.5.)

Definition 5.7. Let G be a group and H ⊆ G a subgroup. The quotient of G by H, denoted G/H, is the
set of different cosets.

Proposition 5.8. If G is abelian, G/H is a group with the operation aH ∗ bH = abH.

Proof. Indeed, associativity is given by associativity in G, and one can verify that the identity is given by
eH and the inverse of aH is a−1H. The hard part of the proof is to see that the operation is well-defined.
So if aH = a1H, we want to see that aH ∗bH = a1H ∗bH, but this is the same as proving that abH = a1bH.
By Proposition 5.5, this is equivalent to b−1a−1

1 ab ∈ H, which is the same as a−1
1 a ∈ H since the group is

abelian. But this is true from the fact that aH = a1H. ,

For example, Z/2Z ∼= Z2.
The proof of Mordell’s theorem is done in two steps. The first and more difficult step is to prove that

E(Q)/2E(Q) is finite. Given a point P ∈ E(Q) we can write it as Q + 2P1 with Q a representative of the
finite set E(Q)/2E(Q). We can continue this process with P1 and so on. The second step consists of proving
that P1 is in a certain sense smaller than P and that this process can not continue forever because the points
can not get arbitrarily smaller.

5.2. Descent. In this section, we prove that E(Q)/2E(Q) is finite. The name “descent theorem” was chosen
because the proof is very much in the spirit of Fermat’s method of infinite descent. Roughly speaking, one
starts with an arbitrary point and tries to produce an infinite sequence of successively smaller points (size
being measured by the height function); eventually, one is led to one of two conclusions: either the group
is finitely generated or one reaches a contradiction in producing smaller points, since the height, being an
integer, cannot be less than 1.

We are going to consider only the special case in which f(x) has its three roots over Q. Because of
Lutz–Nagell, we can assume that the roots are indeed over Z. In this section 2 will denote a square of a

number in Q, i.e., 2 = a2

b2 with a, b ∈ Z and b 6= 0.

Proposition 5.9. Let E be an elliptic curve over given by

y2 = (x− α)(x− β)(x− γ),

with α, β, and γ ∈ Z.
Let P 6= O, P = (x1, y1) ∈ E(Q). Then, there is a Q = (x2, y2) ∈ E(Q) with P = 2Q iff x1 − α, x1 − β,

and x1 − γ are squares in Q.

Proof. First suppose that (x2, y2) exists. Let y = λx + ν be the tangent line at Q. Then the roots of the
equation

(x− α)(x− β)(x− γ)− (λx+ ν)2 = 0

are x1, x2, x2. Thus,

(x− α)(x− β)(x− γ)− (λx+ ν)2 = (x− x1)(x− x2)2.

Setting x = α, we get −2 = (α−x1)2. Since x2 6= α, 2 in the right is not zero and we conclude x1−α = 2.
Similarly with β and γ.
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Now assume that x1−α, x1− β, and x1− γ are squares in Q. After a change of variables, we can further
assume that x1 = 0. We write

y2 = x3 + ax2 + bx+ c.

Thus −α = α2
1, −β = β2

1 , and −γ = γ2
1 . Further, we also have y2

1 = −αβγ = c. After adjusting signs, we
may assume

y1 = α1β1γ1.

Take the line y = λx+ y1 going through P and tangent at an unknown point Q = (x2, y2). The three roots
of

(x− α)(x− β)(x− γ)− (λx+ y1)2 = 0

are 0, x2, x2. Therefore,
x2 + ax+ b− λ2x− 2λy1

has the double root x2, which means that its discriminat is zero,

(a− λ2)2 = 4(b− 2λy1).

One can check that λ0 = −α1 − β1 − γ1 is a root of this equation. It yields a value x2 =
λ2
0−a
2 which gives

2(x2, λ0x2 + y1) = (0,−y1) and 2(x2,−λ0x2 − y1) = (0, y1), and thus P = 2Q as desired. ,

In what follows, we consider the group Q∗/Q∗2 which is made of the quotient of the multiplicative group
of nonzero rationals Q∗ with its subgroup of nonzero square rationals Q∗2. The elements of Q∗/Q∗2 can be
described as

(5.1) Q∗/Q∗2 = {±2e23e35e57e7 . . . | e2, e3, e5, e7, · · · ∈ {0, 1}}.
Thus, an element of Q∗/Q∗2 can be thought of a sign and a string of 0’s and 1’s.

Exercise 22. Describe 5/27 and 24/13 as elements in Q∗/Q∗2 with the above presentation.

Proposition 5.10. Define ϕα : E(Q)→ Q∗/Q∗2 by

ϕα(P ) =

 (x− α)Q∗2 if P = (x, y) with P 6= O, x 6= α
(α− β)(α− γ)Q∗2 if P = (α, 0)
Q∗2 if P = O

Then ϕα is a homomorphism.

Proof. Let P1 + P2 = P3. We have to show that ϕα(P1)ϕα(P2)ϕα(P3)−1 is a square in Q∗, which is
equivalent to prove that ϕα(P1)ϕα(P2)ϕα(P3) is a square when P1 + P2 + P3 = O. If any of Pi equals O,
the conclusion is trivial. Thus assume that Pi = (xi, yi).

If no (xi, yi) is (α, 0), let y = λx+ ν be the line through P1, P2, P3. Then the roots of

(x− α)(x− β)(x− γ)− (λx+ ν)2 = 0

are x1, x2, x3. We can write

(x− α)(x− β)(x− γ)− (λx+ ν)2 = (x− x1)(x− x2)(x− x3).

Setting x = α gives (x1 − α)(x2 − α)(x3 − α) = (λα+ ν)2 and thus ϕα(P1)ϕα(P2)ϕα(P3) is a square.
If (x1, y1) = (α, 0), then neither (x2, y2) nor (x3, y3) is (α, 0), since otherwise the other point would be O.

Again, let y = λx+ ν be the line through P1, P2, P3. Then the roots of

(x− α)(x− β)(x− γ)− (λx+ ν)2 = 0

are α, x2, x3. We write

(x− α)(x− β)(x− γ)− (λx+ ν)2 = (x− α)(x− x2)(x− x3).

Then (x− α) divides (λx+ ν)2, which means that (λx+ ν) = λ(x− α). Dividing by (x− α), we obtain

(x− β)(x− γ)− λ2(x− α) = (x− x2)(x− x3).

Setting x = α,
(α− β)(α− γ) = (α− x2)(α− x3),
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which shows that ϕα(P1) = ϕα(P2)ϕα(P3) as desired.
,

Observe that we can think of ϕα as a function of E(Q)/2E(Q) because ϕα(2P ) = ϕα(P )2 ∈ Q∗2.

Corollary 5.11. The homomorphism

ϕα × ϕβ : E(Q)/2E(Q)→ Q∗/Q∗2 ×Q∗/Q∗2

is one-to-one.

Proof. Suppose that P = (x, y) 6= O maps to Q∗2 under both ϕα and ϕβ .
If P = (α, 0), that means that

ϕα(α, 0) = (α− β)(α− γ)Q∗2 = 2

and

ϕβ(α, 0) = (α− β)Q∗2 = 2.

Then, (α−β) = 2 and (α−γ) = 2. By Proposition 5.9, this implies that (α, 0) = 2Q and thus (α, 0) ∈ 2E(Q).
The case P = (β, 0) is similar. Now suppose that P = (x, y) 6= (α, 0), (β, 0). Then we must have

(x − α) = 2 and (x − β) = 2. Since (x − α)(x − β)(x − γ) = 2, we conclude that (x − γ) = 2. Again,
Proposition 5.9 implies that P = 2Q and thus P ∈ 2E(Q). ,

For a prime number p, an integer e, and a nonzero rational number n we will use the notation pe||n to
express that n = pe ab with a, b integers such that p - a, b.

Proposition 5.12. The image of ϕα satisfies that ep = 0 if p - ∆.

Proof. Recall that the discriminant is given by

∆ = (α− β)2(α− γ)2(β − γ)2.

Let P = (x, y) 6= O. First assume that x 6= α, β, γ. Fix a prime p and define integers a, b, c by

pa||(x− α), pb||(x− β), pc||(x− γ).

Since (x− α)(x− β)(x− γ) is a square, we have that a+ b+ c is even.
Suppose that at least one of a, b, c is < 0. Say a < 0. Since α is an integer, p|a|||(denominator of x). Then

pa||(x− α), pa||(x− β), pa||(x− γ),

i.e., a = b = c. The fact that a+ b+ c is even implies that a, b, c are even. Thus, ep = 0.
Suppose that at least one of a, b, c is > 0. Say a > 0. If p - ∆, then p - (α− β) and it cannot occur in the

numerator of

x− β = (x− α) + (α− β),

so that b = 0. Similarly, c = 0. Since a+ b+ c is even, we conclude that a must be even. Thus we get again
ep = 0.

Now suppose that x ∈ {α, β, γ}. The image of ϕα(x) will be some product of α− β, α− γ, and β − γ up
to sign. These numbers are prime to p if p - ∆ which implies that ep = 0 in this case as well. ,

Theorem 5.13. E(Q)/2E(Q) is finite.

Proof. Corollary 5.11 implies that E(Q)/2E(Q) is in one-to-one correspondence with its image in Q∗/Q∗2×
Q∗/Q∗2 while Proposition 5.12 implies that this image is finite. ,

Exercise 23. Find a bound for the size of E(Q)/2E(Q) when E : y2 = x3 − x.
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5.3. Heights. Heights are devices for measuring the arithmetic complexity of a rational number. For ex-
ample, the numbers 1 and 57/58 are almost equal in absolute value, but in terms of prime factorizations,
57/58 = 3 · 19/2 · 29 is much more complicated than 1. So, we want the height to be some measure of the
complexity of the fractional representation of a rational number. To this end we define, for a rational number
x = m

n written in lowest terms,

H(x) = H
(m
n

)
= max{|m|, |n|}.

In our example above, H(1) = 1 and H(57/58) = 58. One of the most important properties of the height,
however, is the following proposition, whose proof is quite basic.

Proposition 5.14. Let N ∈ Z be a positive integer. Then {x ∈ Q : H(x) ≤ N} is a finite set.

Exercise 24. Prove that the set of rational numbers x with height H(x) ≤ k contains at most 2k2 + 1
elements.

We can extend these ideas to elliptic curves. Given an elliptic curve E and a rational point P = (x, y) ∈
E(Q), we define

H(P ) = H(x),

and set also H(O) = 1.
Notice that for any real number M > 0, we still have the property that

Lemma 5.15.

{P ∈ E(Q) : H(P ) ≤M}
is a finite set.

This is because H(P ) ≤ M means that the x-coordinate of P must be a fraction m
n with |m|, |n| ≤ M .

There are only finitely many such x, and to each such x there are at most two corresponding y-values.
In this section we are going to prove two lemmas about heights that are crutial for the proof of Mordell’s

theorem. We will work with the model E : y2 = x3 + bx+ c.

Lemma 5.16. There is a constant k0 depending only on E such that for all P ∈ E(Q),

H(2P ) ≥ k0H(P )4.

Proof. Let P =
(
m
n2 ,

`
n3

)
. Then H(P ) = max{|m|, n2}. Duplication formula (3.6) implies

x(2P ) =
(m2 − bn4)2 − 8cmn6

4n2(m3 + bmn4 + cn6)
=
m4 − 2bm2n4 − 8cmn6 + b2n8

4n2(m3 + bmn4 + cn6)
.

Let A = (m2 − bn4)2 − 8cmn6 and B = 4n2(m3 + bmn4 + cn6). We need to divide them both by gcd(A,B).
First notice that gcd(n,A) = gcd(n,m4) = 1. Now equation (4.1) gives

(5.2) n12∆ = ((3m3 − 5bmn4 − 27cn6)(m3 + bmn4 + cn6)− (3m2 + 4bn4)(m4 − 2bm2n4 − 8cmn6 + b2n8).

From here we get that gcd(A, (m3 +bmn4 +cn6))|n12∆. Since gcd(A,n) = 1, we conclude that gcd(A,B)|4∆.
This means that

H(2P ) ≥ max{|A|, |B|}
4|∆|

.

Let H(E) = max{|b|3, c2}1/6. If |m| ≥ 3H(E)n2, then H(P ) = |m|. We have that m2 ≥ 9|b|n4 and that
|m|3 ≥ 27|c|n6. Therefore,

|A| = |m4− 2bm2n4− 8cmn6 + b2n8| ≥ (m2− bn2)2− 8|cmn6| ≥
(
m2 − m2

9

)2

− 8m4

27
=

40m4

81
=

40H(P )4

81
.

Thus,
|A|

4|∆|
≥ kH(P )4,

where k is a constant that only depends on the coefficients b, c.
18



If |m| ≤ 3H(E)n2 then equation (5.2) implies

4n14|∆| ≤ |(3m3 − 5bmn4 − 27cn6)B|+ 4n2|(3m2 + 4bn4)A|
≤ (81H(E)3n6 + 15|b|n6H(E) + 27|c|n6 + 108H(E)2n6 + 16|b|n6) max{|A|, |B|}

This means that we can write

n8 ≤ kmax{|A|, |B|}
4|∆|

,

where k is a constant that only depends on the coefficients b, c. If H(P ) = n2 this proves the desired
inequality. If not, then we multiply by (3H(E))4 and obtain

m4 ≤ (3H(E))4n8 ≤ k′max{|A|, |B|}
4|∆|

.

Thus, we have prove that H(2P ) ≥ k1H(P )4 in all the cases, for k1 a constant that depends only on b, c. ,

Lemma 5.17. There is a constant k1 depending on E such that for all P,Q ∈ E(Q),

H(P +Q) ≤ k1H(P )3H(Q)3.

Proof. Let P =
(
m
n2 ,

`
n3

)
and Q =

(
M
N2 ,

L
N3

)
. Addition equation (3.5) implies

x(P +Q) =

(
Ln3 − `N3

nN(Mn2 −mN2)

)2

− M

N2
− m

n2

=
(Ln3 − `N3)2 − (Mn2 +mN2)(Mn2 −mN2)2

n2N2(Mn2 −mN2)2
.

Notice that |m|3, n6 ≤ H(P )3, and |M |3, N6 ≤ H(Q)3. Also, `2 = m3 + bmn4 + cn6 implies that

`2 ≤ 3H(E)3H(P )3

and similarly with L2 ≤ 3H(E)3H(Q)3. Thus, both the numerator and denominator of x(P+Q) are bounded
by k1H(P )3H(Q)3 for certain k1 that depends only on b and c. ,

As a final note, all these results are valid for a = 0. We have seen that to get a = 0 we need a change of
variables x→ x+ `.

Exercise 25. Prove that Lemmas 5.16 and 5.17 remain valid (possibly with different constants k) under
the change of variables x→ x+ `.

5.4. The end of the proof. From here, the proof of the Mordell-Weil Theorem follows from the descent
Theorem 5.13 and the three lemmas 5.15, 5.16 and 5.17.

Theorem 5.18 (Mordell). Then E(Q) is finitely generated.

Proof. Since we know that [E(Q) : 2E(Q)] = n is finite, choose representatives Q1, . . . , Qn for the (distinct)
cosets of 2E(Q) in E(Q). Now let P ∈ E(Q) be an arbitrary element. Since P + 2E(Q) is a coset, it must
be one of Q1 + 2E(Q), . . . , Qn + 2E(Q); say,

P + 2E(Q) = Qi1 + 2E(Q).

By the third assertion of Proposition 5.5, this is equivalent to asserting that:

P −Qi1 ∈ 2E(Q)

or that there exists P1 ∈ E(Q) such that
P −Qi1 = 2P1.

Now replace P with P1 and keep repeating this procedure to get the following equations:

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

. . .

Pm−1 −Qim = 2Pm.
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The essence of the proof is to show that since Pi is pretty much equal to 2Pi+1, the height of Pi+1 is
smaller than the height of Pi. Thus the sequence P , P1, P2 produces points of successively decreasing height,
and eventually we will get a set of points having bounded height, which by Lemma 5.15 is finite. We make
this idea more precise.

From the first equation, we have

P = Qi1 + 2P1.

Now substitute the second equation P1 = Qi2 + 2P2 into this to get

P = Qi1 + 2Qi2 + 4P2.

Continuing in a similar manner, we obtain

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm.

In particular, this shows that P is in the subgroup generated by Pm and the Qi, 1 ≤ i ≤ n.

Now we apply Lemma 5.17 with any P and −Qi. There is a ki depending on Qi such that

H(P −Qi) ≤ kiH(P )3 for all P ∈ E(Q).

If we do this for all i = 1, . . . , n and let k = max{k1, . . . , kn}, we clearly have

(5.3) H(P −Qi) ≤ kH(P )3 for all P ∈ E(Q) and all 1 ≤ i ≤ n.

Now apply Lemma 5.16 we get a constant k0 such that

H(2P ) ≥ k0H(P )4 for all P ∈ E(Q).

Using the specific point P = Pj , we have H(2Pj) ≥ k0H(Pj)
4. By the initial equations defining the Pj and

Qij , the expression on the left equals H(Pj−1−Qij ), which by equation (5.3) is ≤ kH(Pj−1)3. Summarizing,
we have a chain of inequalitites:

kH(Pj−1)3 ≥ H(Pj−1 −Qij ) ≥ k0H(Pj)
4

Taking the 4th root, we get

k̃4H(Pj−1)
3
4 ≥ H(Pj),

where k̃ = k
k0

.

We claim that there exists some m such that H(Pm) ≤ k̃2. Let us examine the list:

P, P1, P2, . . .

As long as H(Pj−1) ≥ k̃2, the above equation says that the next point will have height at most H(Pj)
7
8 .

However, repeated applications of the 7
8 -power will cause it to approach zero, so eventually we will find an

index m such that H(Pm) ≤ k̃2.

Thus, we have shown that every element P ∈ E(Q) may be written as

P = a1Q1 + a2Q2 + . . . anQn + 2mPm

where a1, . . . , an are integers (some of them could be zero), and Pm is a point satisfiying H(Pm) ≤ k̃2. Hence
the set

{Q1, . . . , Qn} ∪ {R ∈ E(Q) : H(R) ≤ k̃2}

generates E(Q). The first set is clearly finite and the second is finite by Lemma 5.15. Thus, E(Q) is finitely
generated.
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6. Appendix

6.1. Linear equations. The situation for linear equations is completely understood.

Theorem 6.1. Let a, b, c ∈ Z. The equation

ax+ by = c

has a solution x0, y0 ∈ Z iff gcd(a, b) divides c. In this case, all the solutions are given by

x = x0 +
bk

(a, b)
, y = y0 −

ak

(a, b)
, with k ∈ Z.

It is not hard to see that the condition gcd(a, b) divides c is necessary. For if d divides both a and b, then
it must divide ax + by = c. If, on the other hand, gcd(a, b) divides c, one can divide by gcd(a, b) all terms
and assume that gcd(a, b) = 1. To find such solution, one uses the Euclidean algorithm.

The Euclidean algorithm is a procedure to compute the greatest common divisor of two nonzero integers
a, b that also provides a way to write gcd(a, b) as a linear combination of a and b with integral coefficients.

The base case is the division: given a, b ∈ N, there exist unique q, r ∈ Z with 0 ≤ r ≤ b such that

a = qb+ r.

q and r are called quotient and remainder respectively
If r 6= 0, this process is repeated with b and r. If the new remainder is different from zero, we do the same

step again, and we continue until we get a zero remainder.

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2

...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn.

It results that rn = gcd(a, b). The equations can be reversed

rn = rn−2 − qnrn−1 = xnrn−2 + ynrn−1

= rn−2 − qn(rn−3 − qn−1rn−2) = xn−1rn−3 + yn−1rn−2

...

= x2r0 + y2r1

= x1b+ y1r0

= x0a+ y0b.

For example, suppose that we want to solve

48x+ 74y = 6.

We first check that gcd(48, 74) = 2 which divides 6, so this equation has integral solutions.
The Euclidean algorithm yields

74 = 1 · 48 + 26

48 = 1 · 26 + 22

26 = 1 · 22 + 4

22 = 5 · 4 + 2

4 = 2 · 2.
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Thus,

2 = 22− 5 · 4
= 22− 5 · (26− 1 · 22) = −5 · 26 + 6 · 22

= −5 · 26 + 6 · (48− 1 · 26) = 6 · 48− 11 · 26

= 6 · 48− 11 · (74− 1 · 48) = −11 · 74 + 17 · 48.

We have found, in particular, that

51 · 48− 33 · 74 = 6.

Finally, the general solutions are given by

x = 51 + 37k, y = −33− 24k, with k ∈ Z.

6.2. Quadratic equations.

Theorem 6.2. (Legendre) Suppose that a, b, c are square-free and pairwise coprime. Then the equation

aX2 + bY 2 + cZ2 = 0

has solutions with X,Y, Z integers other than X = Y = Z = 0 if and only if −bc is a square modulo a, −ac
is a square modulo b, and −ab is a square modulo c, and a, b, c do not all have the same sign.

Once a solution is found, one can generate all the others by taking each line going through the solution
and looking at the other point of intersection. As an example, let us look at the (dehomogenized) case of

x2 + y2 = 1.

We take the solution (−1, 0). The lines through (−1, 0) have equation

Lt : t(x+ 1) = y, t ∈ R.

We want to look at the other point of intersection with the equation x2 + y2 = 1. (There is an extra line,
L∞ : x = −1, tangent to the circle at (0,−1). We can interpret that this line intersects the circle at (−1, 0)
twice.)

It is easy to see that Lt intersects the circle again at
(

1−t2
1+t2 ,

2t
1+t2

)
. If t is rational, then so is the new

point.
This result can be translated in the following statement for the homogeneous equation.

Theorem 6.3. Let X,Y, Z integers such that they are coprime and

X2 + Y 2 = Z2.

Suppose that 2 divides X and that 2 does not divide Y . Then there are a, b ∈ Z such that gcd(a, b) = 1, one
of them is even, and such that

X = 2ab, Y = a2 − b2, Z = a2 + b2.

Observe that we necessarily have that one of X, Y is even and the other is odd, therefore, the assumption
is natural.

7. Sources

These notes have extensively borrowed from several bibliographical sources. The general structure and
many statements come from [Ak03a] and [ST92]. Part of section 2 and subsection 5.3 are taken from [Gr11].
Subsection 5.2 can be found in [Kn92].
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8. Suggested projects

Here is a list of possible projects.

8.1. Congruent numbers. Describe the congruent number problem and its relation to elliptic curves.
References: [Kn92] pages 53-55 and 110-114, [Ko93].

8.2. Division polynomials. Explain what division polynomials are and what we can prove with them.
References: [ST92] page 214, [Co99] pages 145-148.

8.3. Construction of curves with prescribed torsion. Show us how to construct elliptic curves with
prescribed torsion. References: [Kn92] pages 145-148.

8.4. Points of order 3. Read the article [Br01] and tell us about it.

8.5. The complex structure of elliptic curves. Describe the structure of complex points on elliptic
curves. References: [ST92] pages 41-46, [Kn92] chapter VI.

8.6. Exploring the descent procedure. Tells us about how to improve the bound on the rank that is
given by the descent procedure. References: [Kn92] pages 107-114.

8.7. Elliptic curve cryptography. Explore the most basic idea of Elliptic curve cryptography. References:
[Ak03b].

8.8. Elliptic integrals. Show how to compute the arc length of an ellipse and the relationship between this
and elliptic curves. References: [ST92], pages 35-36, [Br00].
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