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Mahler measure of several variable polynomials

P c C[x, ..., xF], the (logarithmic) Mahler measure is :

1 1
m(P) = /0 /0 log |P(eX™1 . e2™0)|dp; ... d6,
1

g d
—/ log |P(x1, . .., xn)| —L ... =20
(277'1)" Tn
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Mahler measure of several variable polynomials

P c C[x, ..., xF], the (logarithmic) Mahler measure is :

1 1
m(P) = /0 /0 Iog]P(ezmel,...,e27“9")|d¢91_,_den
1

dxg dx,
= log |P ... —_— ..
(2mi)n /Tn og [Pxa, . x| X1 Xn

By Jensen's formula,

m (a H(X - a;)) = log|al + Z log max{1, |aj|}.




Examples in several variables

o Smyth (1981)

3v3 Vol(Fig8
m(l+x+y)=-—L(x-32) = %




Examples in several variables

« Smyth (1981)

3v3 Vol(Fig8

« Boyd (1998)
1 1
m<x++y+—1> ;L'(El,O)
X y

E; elliptic curve, projective closure of x + % +y+ % —-1=0.
(50 decimal places)

Also studied by Deninger, Rodriguez-Villegas




A technique for reciprocal polynomials

Rodriguez-Villegas (1997)

1 1
P)\(Xay):]'_)‘P(Xay) P(va):X+;+y+_

Reciprocal

m(P, ) :== m(Py)

1 dx dy
PA) = —— [ log|l— AP(x



Note

IAP(x,y)| <1, A small, x,yeT?

dxdy
Xy

#(P.) = oo /T log(1 - AP(x,))




Note

IAP(x,y)| <1, A small, x,yeT?

1 dx dy
m(P,\) = log(1l — AP ——
A1 dx dy 2L ap\"
= — e P n_— 72 = —
nz_:l n (2mi)? /Tz () Xy nz_:l n

an = [P(va)n]()




Let

(o)

1 1 dxdy n
ulP:A) = Gry /Tz 1—\P(x,y) z(:) anA




Let

(o)

1 1 dx dy n
ulP:A) = Gry /Tz 1- \P(x,y) z(:) anA

dm(P, \) 1 P(x,y) dxdy <&
— 1A
dA (27i)? /Tz 1-AP(x,y) x y ;)a i




InthecaseP:x—l—%—i—y%—%,

(Cm)* n=2m
an =

0 otherwise




Definition
I" finitely generated group with generators xi,...,X;

Q=Q(x,...,x) = chg e Cr,
gel

Q" = ZGg_l € CT reciprocal.
gerlr




Definition
I" finitely generated group with generators xi,...,X;

Q:Q(Xl,...,X/):ZngE(Cl_,

gel
Q" = ZGg_l € CT reciprocal.
gerlr

P = P(x1,...,x) € CT, P=P* |\~ > length of P,

> anp\"
mr(P, )\) = —Z s

n

n=1

an = [P(x1,...,x)"]o (trace)




We also write

o0
ur(P,A) = ap\"
n=0

for the generating function of the a,.




We also write

o0
ur(P,A) = ap\"
n=0

for the generating function of the a,.

Q(xa,...,x) eCr

1
Q" = (1~ (1-10Q")
for A real and positive and 1/ larger than the length of QQ*.

log\ <= by, . *\n
~ES N b= (1200,

n=1

mr(Q) =




Volume of hyperbolic knots

K knot: smooth embedding S! c S3.

r:71‘1(53\K):<X1,...,Xg’r1,...,rg_1>

Lo



Volume of hyperbolic knots

K knot: smooth embedding S C S3.

F:7r1(53\K):<x1,...,xg|r1,...,rg,1)

Derivation: mapping CI' — CI (any group)
e D(u+v) = Du+ Dv.
o D(u-v) = D(u)e(v) + uD(v)

e:Cr—-C chgﬁch.
g g



Fox (1953) {xi, ...} generators, there is a%,- such that

0% _ s
Ox; ™
Back to knots,
Let
on on
o0x1 T Oxg
F= : : e MEe=Vxe(Cr)
8I’g_1 8rg_1
Ox1 e 8Xg
Fox matrix.

Delete a column F ~~ A € M(&-1)x(e=1)(CT).




Theorem (Liick, 2002)
Suppose K is a hyperbolic knot. Then, for A sufficiently small

3%\/01(53 \K) = —(g = 1)InA— ; %tr(cr (1= \AA")").



Theorem (Liick, 2002)
Suppose K is a hyperbolic knot. Then, for A sufficiently small

3%\/01(53 \K)=—(g—1)In\— ; %trcr (1 = AAA*)™).

A € ME~1C[t, t71] the right-hand side is 2m(det(A)).



Cayley Graphs

[ of order m

a:F—=C a(g) =a(g 1) Vgerl
Weighted Cayley graph:
e Vertices g1,...,8m.
¢ (directed) Edge between g; and gj has weight a(gi_lgj).

Weighted adjacency matrix

AT, a) = {alg 'g) iy




The Mahler measure over finite groups

P=> (5Si+8S1)+> nTeCr
i J
5,’6@, njER, and 5,',TJ'EF,

_ tr(A")
Y
Theorem
For T finite 1
mr(P,\) = ] log det(/ — \A),

A is the adjacency matrix of the Cayley graph (with weights) and
1
Analytic continuation for mr(P, ) to C\ Spec(A).



Spectrum of a Cayley Graph

Let x1,...,Xxn be the irreducible characters of I' of degrees
ny,...,NH.

Theorem (Babai, 1979)
The spectrum of A(l', «) can be arranged as
S:{O',"J':i:1,...,h;j:1,...,n,'}.

such that o;; has multiplicity n; and

ofit ol = ) <H a(gs)) Xi (H gs) :

g1,--,8t€l \s=1 s=1



Finite Abelian Groups

F:Z/m1Z>< xZ/m/Z

Corollary

1

mr(P,\) = 7 log | J] (1—AP(&h,...

JLseeei

where &y is a primitive root of unity.

Ji
crsSmy

)




Theorem
For small )\,

lim mZ/m1Z><~~-><Z/m,Z(Pa A) = mz (P, A).

my,...,m—0o0

Where the limit is with my, ..., m; going to infinity independently.




Dihedral groups

['=Dm={p,o|p™ 0 cpop).

Theorem
Let P € C[Dp,)] be reciprocal. Then

[P”]ozziz 1)+ P7 (¢, 1)),
=1

where P" is expressed as a sum of monomials p*, op* before being
evaluated.



For I = Z/mZ x Z/2Z = (x,y | x™, y* [x, y]),

[P")o = %Z(P( 1)+ P -1)").

j=1

Compare Dy, and Z/mZ x Z/27 with x = p and y = o in Dp,.




For I = Z/mZ x Z/2Z = (x,y | x™, y* [x, y]),

n 1 & n - n
P70 = o 3 (P (6 )"+ P (6, )").
Compare Dy, and Z/mZ x Z/27 with x = p and y = o in Dp,.

Theorem
Let

[y

m—1 m—
P = x4 /Bkyxk
k=0 k=0

with real coefficients and reciprocal in Z/mZ x 7./27 (therefore it
is also reciprocal in Dy,). Then

mz mzxz/22(Ps A) = mp,,(P, ).




Corollary
Let P € R[Z x Z/2Z)] be reciprocal. Then

mZxZ/ZZ(P’ A) =mp_ (P, ),

where Do, = {p,0 | 0%, 0p0p).




Quotient approximations of the Mahler measure

I"m are quotients of I

Theorem
Let P €T reciprocal.

® Forr:Doo, rm:Dmr

lim mp, (P,\) = mp_(P,\).

o ForT = PSLy(Z) = (x,y | X*,y*), Tm = (x,y | X2, y3, (xy)™),

lim mr, (P, ) = mpsy,z)(P, )

m—0o0

o ForT =Z*Z={(x,y), Tm=(x,y]|[xy]™,

lim mrm(P, )\) == mZ*Z(P,)\).

m—0o0




Arbitrary number of variables
For Prj=x1+x "+ +x+x 1,

up, (P11, A) = ga(N).

where

B 2(d —1)
d—2+4dy/1—-4(d—1)\2

is the generating function of the circuits of a d-regular tree

(Bartholdi, 1999).

8d(\)




Arbitrary number of variables
For Prj=x1+x "+ +x+x 1,

up, (P11, A) = g21(A).

where

B 2(d —1)
d—2+d\/1—4(d—1)\2

is the generating function of the circuits of a d-regular tree

(Bartholdi, 1999).

For Pay=(1+xx 4+ +x-1) (L+x 4+ +x7),

up, (P2, A) = gi(A).

8d(\)

In particular,
mg, (P, A) = mey_, (P21, A).



Abelian case.
For P = x1 +X1_1 +--'+X/+X,_1,

2n)!
Pile= > G

ai+---+a=n




Abelian case.
For Prj=>i+x 4+ x+x 7,

2n)!
[Pllo= D (&uygn?(aﬂ)2’

al+...+a/:n

For Poy=(1+x1+ - +x-1) (1+X1_1+”'+XI__11)7

Pl= Y ()

ait-+a=n

P20 = () P2




x+xtHy+yt

Now P=x+x"14+y+y L

< /2n\? 11
uzxz(P,A) = Z ( n) N =oF (2,2;1;16)\2)

n=0

> [(4n
uzxz,22(Ps A) = Z <2n> x>

n=0
uzsz(P, ) = 3
B 1+2v1_ 1222




Recurrence relations x + x 1 + y + y*1

Coefficients satisfy recurrence relations

ZxZ: n*ap,—42n—1)ay, 2=0

ZxZJ2Z: n(2n—1)az, —2(4n —1)(4n — 3)azp_2 =0

Z+Z: nay,—2(14n— 9)az,—2 +96(2n — 3)az,—4 =0




° ZI
Rodriguez - Villegas: u(\) periods of a differential in the
curve defined by 1 = AP(x, y). By Griffiths (1969)

AN u® + A (W) o o Ay(W)u =0,

Picard-Fuchs differential equation (A; polynomials).
= Recurrence of the coefficients.

Wilf and Zeilberger: a, multisums, generating series is
hypergeometric.

e This recurrence result extends to the case of I finitely
generated abelian group.




e Finite groups :

minimal polynomial of A.
[ ] FI
By Haiman (1993): u(\) is algebraic.
Algebraic functions in non-commuting variables.




P=x+x1+y+y?

M= (x,y| X%y = yx*, y°x = xy*)

B

Same as ordinary Mahler measure for

Domb (1960)

1-A(x+xThz(y+y ™) (x+x Tzt (y+y7h)




n3ay, — 2(2n— 1)(5n2 —5n+2)azp—2 + 6(n — 1)332,,_4 =0
Rogers (2007)

A e )y ) (e ) (e ) (o)

112 108\ >
~ o210 ) = (1 - 16) E: AP
3F2 (352731 s Ly (1—16)\)3> ( )n:032n

5\@



The diamond lattice




Q=01+x+y)1+xt+yh
[Q"]o = an

n*a, — (10n* — 10n + 3)ap—1 + 9(n — 1)%ay,2 = 0,




1+x"+y
Honeycomb lattice (1 + x + y) (




P=x+xt+y+yt+xy t+x1y
[P"lo = bn
n?b, —n(n—1)b,_1 —24(n—1)?b,_» —36(n—2)(n—1)b,_3 = 0.




Triangular lattice x +x '+ y +y 1+ xy 1 +x71y

(N



Further study: Tree entropy and Volume Conjecture

m (P, ﬁ) related to h(G)

where G is the Cayley graph and h is the tree entropy
— pn(0, G)
h = logd — —_—
(6) 1= logdeg(0) = 3 P

e o fixed vertex

e pn(o, G) is the probability that a simple random walk started
at o on G is again at o after n steps.




Lyons (2005)
G, are finite graphs that tend to a fixed transitive infinite graph G,
then

B log 7(Gp)
ne) =M TG

where 7(G) is the complexity, i.e., the number of spanning trees.
Compare to

Conjecture ((Volume Conjecture) Kashaev, H. Murakami, J.
Murakami (1997))

Let K be a hyperbolic knot, and J,(K, q) its normalized colored

Jones polynomial. Then
(k)
Vol(S3 \ K) = lim

n—oo n




