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Statistique, Université de Montréal, CP 6128, succ. Centre-ville,
Montreal, QC H3C 3J7, Canada, 6Faculty of Arts and Science, Department
of Mathematics, Bogazici University, 34342 Bebek-Istanbul, Turkey, and
7Department of Mathematics, University of Wisconsin-Madison,
480 Lincoln Drive, Madison, WI 53706, USA and American Institute of
Mathematics, 360 Portage Avenue, Palo Alto, CA 94306-2244, USA

Correspondence to be sent to: e-mail: bfeigon@ccny.cuny.edu

We study fluctuations in the number of points of �-cyclic covers of the projective line over

the finite field Fq when q ≡ 1 mod � is fixed and the genus tends to infinity. The distribu-

tion is given as a sum of q + 1 i.i.d. random variables. This was settled for hyperelliptic

curves by Kurlberg and Rudnick [7], while statistics were obtained for certain compo-

nents of the moduli space of �-cyclic covers in [1]. In this paper, we obtain statistics for

the distribution of the number of points as the covers vary over the full moduli space of
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�-cyclic covers of genus g. This is achieved by relating �-covers to cyclic function field

extensions, and counting such extensions with prescribed ramification and splitting

conditions at a finite number of primes.

1 Introduction and Results

Let q be a prime power and let Fq be the finite field with q elements. The goal of this

paper is to establish statistics for the distribution of the number of Fq-points of �-cyclic

covers C of P1 defined over Fq, as C varies over the moduli space Hg,� of such covers of

genus g for large g (and fixed q). We always suppose that � is a prime number such that

q ≡ 1 (mod �). For �= 2 (the case of hyperelliptic curves), this was addressed by Kurlberg

and Rudnick [7] who showed that the probability that #C (Fq)= m for some integer m

is the probability that the sum of q + 1 independent and identically distributed (i.i.d.)

random variables is equal to m. This was generalized to cyclic �-covers of degree dby the

first, second, third, and fifth authors in [1] who obtained statistics for each irreducible

component H(d1,...,d�−1) of the moduli space

Hg,� =
⋃

d1+2d2+···+(�−1)d�−1≡0 (mod �),
2g=(�−1)(d1+···+d�−1−2)

H(d1,...,d�−1), (1)

as min{d1,d2, . . . ,d�} tends to infinity. These components will be defined in Section 5.1.

Similarly to the hyperelliptic case, the probability that #C (Fq)= m for some integer m,

as C varies over H(d1,...,d�−1) and min{d1, . . . ,d�−1} → ∞, is the probability that the sum of

q + 1 i.i.d. random variables is equal to m. The i.i.d. random variables X1, . . . , Xq+1 are

given by (for any prime �≥ 2)

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability
(�− 1)q

� (q + �− 1)
,

1 with probability
�− 1

q + �− 1
,

� with probability
q

� (q + �− 1)
.

(2)

As the statistics hold for min{d1, . . . ,d�−1} → ∞, this result does not give statistics for the

distribution of the number of Fq-points on covers as we vary over all of Hg,�, since g → ∞
does not mean that min{d1, . . . ,d�−1} → ∞ on all components H(d1,...,d�−1) for a given genus

in (1). Other statistics for cyclic �-covers were also obtained by counting the covers in

a different way (which does not preserve the genus) by Xiong [16] and Cheong et al. [2],
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and the distribution of the number of (affine) Fq-points on those covers was also given

by a sum of i.i.d. random variables but with different probabilities from the random

variables of (2).

We show in this paper that the statistics for the distribution of the number of

Fq-points for covers in Hg,� are also given by the random variables (2). The strategy is

completely different from the work in [1]. There, the counting is done directly by consid-

ering affine models for the covers in each separate component H(d1,...,d�−1) of the moduli

space. Here, we study the equivalent question of counting the number of extensions of

the function field K = Fq(X) with Galois group Z/�Z, conductor of degree n, and pre-

scribed splitting/ramification conditions at a finite set of fixed primes of Fq(X). As a

result, we directly obtain the total count in Hg,�. We explain in Section 5 why these two

questions are equivalent, and give general formulas for the number of points on covers

in terms of the distribution of the function field extensions that they define.

In order to count the cyclic function field extensions associated to our statistics

for point counting on covers, we use a classical approach described by Wright [15] (and

first due to Cohn [4] for the case of cubic extensions of the rationals), which is to study

the generating series ∑
Gal(L/K)∼=G

D (L/K)−s , (3)

where D(L/K) is the absolute norm of the discriminant Disc(L/K). The approach uses

class field theory to give an explicit expression for the Dirichlet series (3). This is done

in generality by Wright in [15] for any global field K and any abelian group G. The count

is then obtained by an application of the Tauberian theorem, and the main term is given

by the rightmost pole of the Dirichlet series. The order of this pole varies according to

the group G and the ground field K, (more precisely with the number of roots of unity

in K). This is described in [15, Theorem 1.1].

In this paper, we apply those techniques to the case K = Fq(X) and G = Z/�Z, and

we further restrict to counting extensions with prescribed splitting conditions at the

Fq-rational places of K. To find our desired statistics for point counts of curves, we need

to obtain explicit constants in our asymptotics, and in particular to understand how

those constants change as we change the splitting conditions. For this, we use the last

author’s further development of Wright’s method in [13], which determines probabilities

of various splitting types in abelian extensions of number fields. We are also interested

in the secondary terms and the power saving that can be obtained after taking them

into consideration. Our results can then be used to get the distribution of the number of

4299The Distribution of Fq-Points on Cyclic �-Covers of Genus g

 at U
niversite de M

ontreal on Septem
ber 4, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


points on covers as we vary over all of Hg,�, but also have other applications for statistics

on the moduli spaces of curves over finite fields, such as the power of traces and the

one-level density. We give more details about these applications in Section 1.1. We also

compute the values of the constants for the leading term of the asymptotic formulas,

so the counts obtained with those techniques can be compared with the counts of [1]

(see Section 5.1).

We now state the main results of our paper. We first define some notation. Let

VK be the set of places of K. Let N(Z/�Z, n) be the number of extensions of K = Fq(X)

with Galois group Z/�Z such that the degree of the conductor is equal to n. Let VR, VS,

VI denote three finite and disjoint sets of places of Fq(X), and let N(Z/�Z, n;VR,VS,VI )

be the number of extensions of Fq(X) with Galois group Z/�Z, which are ramified at the

places of VR, split at the places of VS, and inert at the places of VI , and such that the

degree of the conductor is equal to n.

Theorem 1.1. Let �≥ 2 be a prime. Let VR, VS, VI , and N(Z/�Z, n;VR,VS,VI ) be as defined

above, and let V = VR ∪ VS ∪ VI . Then,

N (Z/�Z, n)= C�q
n P (n)+ O

(
q(

1
2 +ε)n

)
,

N (Z/�Z, n;VR,VS,VI )= C�

(∏
v∈V

cv

)
qn PVR,VS,VI (n)+ O

(
q(

1
2 +ε)n

)
,

where P (X), PVR,VS,VI (X) ∈ R[X] are monic polynomials of degree �− 2. Furthermore, C� is

the non-zero constant given by

C� =
(
1 − q−2

)�−1

(�− 2)!

�−2∏
j=1

∏
v∈VK

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
, (4)

and, for each place v ∈ V, we have

cv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�− 1)q− deg v

1 + (�− 1)q− deg v
if v ∈ VR,

1

�
(
1 + (�− 1)q− deg v

) if v ∈ VS,

�− 1

�
(
1 + (�− 1)q− deg v

) if v ∈ VI .
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Furthermore, for �= 2 we obtain the exact count

N (Z/2Z, n)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
(
qn − qn−2

)
n> 2, n even,

2q2 n = 2,

0 n odd.

N (Z/2Z, n, v0, ramified)=
(
1 − q−2

)
1 + q− deg v0

qn−deg v0 + Oq (1) . �

We prove Theorem 1.1 by using class field theory to show that counting Z/�Z

extensions of Fq(X) is equivalent to counting continuous homomorphisms of the idèle

class group of Fq(X) to Z/�Z. This is the method implemented by [15] for general abelian

extensions over function fields and number fields, and also in some recent work of the

last author [13] that finds probabilities of various splitting types in abelian extensions

of number fields. The idea of obtaining statistics for the families of curves over finite

fields by considering the family of function field extensions attached to those curves

was also used by Wood [14] and by Thorne and Xiong [12] for the family of trigonal

curves (corresponding to non-Galois cubic extensions of Fq(X)).

We record below a special case of this result which will be needed in the appli-

cations described in Section 1.1. The following corollary has a necessary ingredient for

proving such results, namely, the explicit dependence of each of the coefficients of the

polynomial PVR,VS,VI (X) with respect to the splitting/ramification conditions to ensure

enough cancellation in the relative densities for the split and inert primes. More corol-

laries of this type can be extracted from the proof of Theorem 1.1 if needed for other

applications.

Corollary 1.2. Let v ∈ VK be a place, let ε ∈ {ramified, split, inert}, and let N(Z/�Z, n, v, ε)

be the number of extensions of Fq(X) with Galois group Z/�Z such that the degree of the

conductor is equal to n and with prescribed behavior ε at the place v. Then,

N (Z/�Z, n, v, ramified)= (�− 1)q− deg v

1 + (�− 1)q− deg v
C�q

n PR (n)+ O
(
q(

1
2 +ε)n

)
,

N (Z/�Z, n, v, split)= 1

�
(
1 + (�− 1)q− deg v

)C�q
n PS (n)+ O

(
q(

1
2 +ε)n

)
,

N (Z/�Z, n, v, inert)= 1

�
(
1 + (�− 1)q− deg v

)C�q
n PI (n)+ O

(
q(

1
2 +ε)n

)
,

where C� is the non-zero constant defined by (4), PR(X) and PS(X) ∈ R[X] are monic poly-

nomials of degree �− 2 and PI (X)= (�− 1)PS(X).
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When �= 2, we obtain a better error term for the ramified case

N (Z/2Z, n, v, ramified)=
(
1 − q−2

)
q− deg v

1 + q− deg v
qn + Oq (1) . �

Finally, we state our main result for the distribution of points on �-cyclic covers

of P1 of fixed genus that can be obtained by a simple application of Theorem 1.1. This

distribution is given in terms of the same random variables obtained in [1] for each

irreducible component of the moduli space Hg,�.

Theorem 1.3. Let Hg,� be the moduli space of Z/�Z Galois covers of P1 of genus g. Then,

as g → ∞,

|{C ∈Hg,�
(
Fq

)
: #C

(
Fq

) = m}|′
|Hg,�

(
Fq

) |′ = Prob
(
X1 + . . . Xq+1 = m

) + O�

(
1

g

)
,

where the Xi’s are independent identically distributed random variables such that

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 with probability
(�− 1)q

� (q + �− 1)
,

1 with probability
�− 1

q + �− 1
,

� with probability
q

� (q + �− 1)
.

In the formula, as usual, the ′ notation means that the covers C on the moduli space are

counted with the usual weights 1/|Aut(C )|. �

1.1 Relation to previous work and outline of the paper

As we mentioned above, using class field theory to count abelian extensions of global

fields was first used in the elegant note of Cohn [4] for the particular case K = Q and

G = Z/3Z, and was vastly generalized by Wright in his influential paper on the sub-

ject [15]. The main idea is to write the generating series (3) as a finite linear combi-

nation of Euler products whose factors are relatively simple. In [15], Wright gets an

asymptotic for all abelian extensions of a global field. In the present paper, we are

interested in a special case of his work, namely K = Fq(X) and G = Z/�Z, but we need

results that are completely explicit because of the applications to statistics of curves

over finite fields, which is our main goal. We then need the values of the constants c(k,G)

in [15, Theorem I.3], which are not determined by Wright. He manages by an ingenious

argument to show that they are non-zero, and that the density exists. In this paper, we

compute these constants explicitly and show that they fit the count of [1], ignoring the
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error terms (see Section 5). For the case of number field extensions, the explicit compu-

tation of the constants c(k,G) from [15, Theorem I.3] was addressed by Cohen et al. [5],

again for the case of cyclic extensions of prime degree. Their techniques are completely

different from the class field theory approach of [4, 15], as they use Kummer theory.

The authors of [5] do not compute the relative densities for the splitting conditions with

their approach, and to our knowledge, this is not done in the current literature with the

Kummer theory approach.

The relative densities for general abelian extensions of number fields were com-

puted explicitly by the last author of the present paper in [13] using the class field theory

approach, with an emphasis on characterizing the extensions of Q where the indepen-

dence between the various primes in the relative densities is false. In some ways, the

present paper is a function field analog of [13], but of course the application for count-

ing points on curves is different. There are also many differences between function fields

and number fields, because of the special role of the place at infinity, and the fact that

all residue fields have the same characteristic. There are also different analytic issues

between number fields and function fields. Some related work on the density of cyclic

extensions of prime degree over function fields can also be found in [3].

Among other possible applications of counting function fields extensions and

curves over finite fields, one can think of statistics for the distribution of points over

finite fields Fqn as n varies (but the family of covers is still defined over Fq), and the one-

level density for the family, as studied by Rudnick [10] for hyperelliptic curves. Those

applications are also suitable for an approach using the relative densities of the function

field extensions corresponding to the family of curves. For this particular application,

one needs all secondary terms which can be obtained by computing the residues of all

the poles in the line Re(s)= 1/(�− 1) of the generating series (3), that is, the polynomi-

als P (n) appearing in Theorem 1.1 and Corollary 1.2, and not only the main term given

by the highest order pole. This would provide enough cancellation between the differ-

ent relative densities appearing in the explicit formulas relating the point counting to

the zeroes of the zeta functions of the curves. The quality of the results obtained for

statistics for the number of points over Fqn (namely how large n is with respect to the

genus of the family) and the one-level density (namely the support of the Fourier trans-

form) is influenced by the error term, which is obtained from the Tauberian theorem

after considering the poles as discussed. One important feature of the error term is

its dependence on the degree of the primes with splitting/ramification conditions. This

dependence raises delicate and nontrivial issues, as there are cyclic �-covers where the

zeroes of the zeta functions are related and their contribution to the error term is large,
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but they should not influence the average over the family as they are exceptional. These

questions are not addressed in this paper, but are being considered in work in progress.

Finally, we say a few words about our restriction to q ≡ 1 mod �. We are inter-

ested in counting points on the curves Y� = F (X) defined over Fq. If q �≡ 1 mod �, the point

counting on the curves is trivial as every element in Fq is an �th power (in a unique way).

Also, if q �≡ 1 mod �, then the extension corresponding to the curve Y� = F (X) is not a

cyclic extension, and the cyclic extensions of Fq(X) of degree � do not come from those

curves in the case where q �≡ 1 mod �.

We now outline the organization of the paper. In Section 2, we establish the

notation and use class field theory to translate the counting of extensions to the counting

of maps of the idèle class group. We also prove a general form of the Tauberian theorem

over function fields that we need to analyze the Dirichlet series for cyclic extensions of

Fq(X) that is a slight generalization of a result in [9]. In Section 3, we define Dirichlet

characters over Fq(X), and we prove analytic properties of some Dirichlet series that

appear in future sections. In Section 4, we prove our main result, Theorem 1.1. In Section

4.1, we look at the particular case of �= 2 where we can get the exact result for the total

number of quadratic extensions with fixed conductor, and the case with one prescribed

ramified place with a better error term without using the Tauberian theorem. Finally,

we explain in Section 5 how to obtain statistics for the point counting over the moduli

space of cyclic �-covers, and we compare our results with those of [1].

2 Background and Setup

In this section, we set up notation and recall basic facts from Galois theory and class

field theory that allow us to rephrase our problem in terms of counting continuous

homomorphisms from the idèle class group of a function field to a cyclic group of prime

order.

Fix a prime �. Throughout the paper Fq denotes a finite field with q ≡ 1 (mod �)

elements and K = Fq(X) is the rational function field over Fq.

2.1 Notation

We will denote by GK the absolute Galois group of K, that is the Galois group

Gal(Ksep/K) of the separable closure of K. Let D+
K be the set of effective divisors of

K. For each place v of K we will use the standard notations Kv for the completion at

v, Ov for the local ring, κv for the residue field, and πv for a uniformizer at v which we

choose to be monic. Recall that the degree of a place v is given by deg v= [κv : Fq] and its

4304 A. Bucur et al.
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norm is Nv = qdeg v, the number of elements in the residue field κv. Of course, for a place

v f associated to an irreducible polynomial f ∈ Fq[X], we have that deg v= deg f . For the

place at infinity associated with the uniformizer π∞ = 1/X, we have that deg v∞ = 1.

2.2 From covers to field extensions

A Z/�Z cover is a pair (C , π) where C
π→ P1 is an �-degree cover map defined over K.

Each Z/�Z cover (C , π) together with an isomorphism Z/�Z → Aut(C/P1) corresponds to a

Galois extension L of K = Fq(X) together with a distinguished isomorphism Gal(L/K)
τ→

Z/�Z. We refer to such extensions as �-cyclic extensions. The genus of the curve C

is related to the discriminant Disc(L/K) via the Riemann–Hurwitz formula (see, for

instance [9, Theorem 7.16]),

2gC − 2 = � (2gP1 − 2)+ deg Disc (L/K) .

Since q ≡ 1 (mod �), there is no wild ramification and each place v of K either

ramifies completely, splits completely, or is inert. Thus

Disc (L/K)=
∑

v ramified in L

(�− 1) v (5)

and

2gC = (�− 1)

[
−2 +

∑
v ramified in L

deg v

]
,

where the sum is taken over the places v of K that ramify in L .

2.3 From field extensions to maps

Our translation from counting extensions to counting maps has two steps. First, by

Galois theory, �-cyclic extensions L/K with a distinguished isomorphism Gal(L/K)
τ→

Z/�Z are in one-to-one correspondence with the surjective continuous homomorphisms

GK → Z/�Z from the absolute Galois group of K to Z/�Z. By class field theory, the maps

GK → Z/�Z are in one-to-one correspondence with the maps JK/K× → Z/�Z from the

idèle class group of K to Z/�Z.

Since K contains all �th roots of unity and (�,q)= 1, by Kummer theory, each

unramified �-cyclic Galois cover is of the form K( �
√
β), . . . , K( �

√
β�−1) for any β ∈ F×

q not

an �th power. These correspond to �− 1 unramified surjective continuous homomor-

phisms JK/K× → Z/�Z, one for each generator of Z/�Z. There is also the trivial map,

which is also unramified everywhere. In terms of extensions, this corresponds to the
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K-algebra K�. In terms of covers of P1, this corresponds to the split cover that consists

of � disjoint copies of P1.

Thus an �-cyclic extension L/K of given discriminant corresponds to a nontrivial

continuous homomorphism ϕ : JK/K× → Z/�Z.

Let φ be a map

φ : πZ

∞ ×
∏
v

O×
v → Z/�Z (6)

which is trivial on the embedding of F×
q in

∏
v O×

v . Here πZ

∞ is the free abelian group

generated by π∞ and the product is taken over all the places v including the place at

infinity (unless otherwise specified, we will continue using the convention that the sums

and products over v denote all places including the place at infinity).

Remark 2.1. We remark that φ and ϕ are two different maps. �

The maps φ and ϕ are closely related via the following proposition whose proof

can be found in [6, Section 7, p. 90].

Proposition 2.2. Let

φ =ψ∞ ⊗v φv : πZ

∞ ×
∏
v

O×
v → Z/�Z.

Then the following conditions are satisfied:

(1) If φ is trivial on the embedding of F×
q in

∏
v O×

v it has a unique extension to a

map

ϕ : JK/K× → Z/�Z.

(2) A place v of K ramifies in an �-cyclic extension L corresponding to φ if and

only if the map φv is non-trivial on O×
v . �

Thus the conductor of the map φ is

Cond (φ)=
∑

v ramified in L

v,

which is also the conductor of the extension L/K. As there is no wild ramification, the

discriminant-conductor formula (see, for instance [11, Section 12.6]) yields

Disc (L/K)= (�− 1)Cond (L/K)= (�− 1)Cond (φ) . (7)

In Section 4, we prove our main results by working with φ. For the remainder

of this section, we explicate the relationship between φ and the corresponding L/K.
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First, we address the global compatibility condition needed for φ to extend to a function

ϕ defined over JK/K× and hence correspond to an extension L. Namely, that φ must

be trivial on the embedding of F×
q in

∏
v O×

v . Fix μ ∈ Fq, a generator of the multiplica-

tive group F×
q . Clearly, φ is trivial on F×

q if and only if φ(1, μ, μ, . . .)= 0 where the first

component in the infinite vector corresponds to the identity element in the free abelian

group πZ

∞.

For each place v of K, we note that the map φv : O×
v → Z/�Z factors through

O×
v /(1 + πvOv)∼= (Ov/(πv))

×. Recall that deg v= [Ov/(πv) : Fq] and thus

Ov/ (πv)∼= Fqdeg v .

For each v, fix a choice of gv ∈Ov whose image generates O×
v /(1 + πvOv)∼= (Fqdeg v )× and

such that

μ= g
qdeg v−1

q−1
v .

Then

φ (1, μ, μ, . . .)= φ ((1, μ,1,1, . . .) (1,1, μ,1, . . .) · · · )

= φ (1, μ,1,1, . . .)+ φ (1,1, μ,1, . . .)+ · · ·

=
∑
v

φv (μ)=
∑
v

φv

(
g

qdeg v−1
q−1

v

)
=

∑
v

(
qdeg v − 1

q − 1

)
φv (gv) .

We note that qdeg v−1
q−1 = qdeg v−1 + qdeg v−2 + · · · + q + 1 ≡ deg v (mod �) since q ≡ 1 (mod �).

We have now proved the following proposition.

Proposition 2.3. For each v let gv ∈Ov as defined above. A map φ : πZ

∞ × ∏
v O×

v → Z/�Z is

trivial on the embedding of F×
q in

∏
v O×

v if and only if

∑
v∈Cond(φ)

φv (gv) deg v ≡ 0 (mod �). (8)

�

Thus, in order to count the extensions L/K with prescribed splitting/

ramification conditions at places v of K = Fq(X), it is necessary and sufficient to count

the maps φ as in (6) satisfying the global compatibility condition (8) with corresponding

conditions at places v of K, which we describe below. By Proposition 2.2, a place v is

ramified if and only if φv is nontrivial on O×
v . Now, we deal with the remaining two cases,

inert and completely split.
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Proposition 2.4. Let

φ =ψ∞ ⊗v φv : πZ

∞ ×
∏
v

O×
v → Z/�Z

be trivial on the embedding of F×
q in

∏
v O×

v . Let

ϕ : JK/K× → Z/�Z

be the unique extension of φ to the idèle class group of K and let L be the �-cyclic

extension of K corresponding to ϕ. Let v0 be a place of K different from v∞. Then we

have the following:

(1) v= v0 or v∞ ramifies in L if and only if the map φv is nontrivial on O×
v ,

(2) v0 splits completely in L if and only if φv0(O×
v0
)= 0 and

ψ∞
(
π− deg v0∞

)
+

∑
v �=v0,v∞

φv
(
πv0

) = 0, (9)

(3) v0 is inert in L if and only if φv0(O×
v0
)= 0 and

ψ∞
(
π− deg v0∞

)
+

∑
v �=v0,v∞

φv
(
πv0

) �= 0,

(4) v∞ splits completely in L if and only if φv∞(O×
v∞)= 0 and ψ∞(π∞)= 0,

(5) v∞ is inert in L if and only if φv∞(O×
v∞)= 0 and ψ∞(π∞) �= 0. �

Proof. Let ϕv be the composition of ϕ with the canonical map K×
v → JK → JK/K×. In the

case where v is unramified, the map ϕv is trivial on O×
v and therefore its image is dictated

by ϕv(πZ

v ) ∈ Z/�Z. Thus, the image is a subgroup of a simple abelian group and we have

only two possibilities: either ϕv is surjective or ϕv is trivial. Since Frobv corresponds to

the vector with πv in the v place and 1 elsewhere under the correspondence from class

field theory, v splits if and only if ϕv(πv)= 0.

Now, let v0 �= v∞ be unramified. For the purpose of this particular discussion we

denote elements in the idèles by vectors with the infinite component first and the v0

component second. Under this notation v0 splits if and only if ϕ(1, πv0 ,1,1, . . .)= 0. Since

ϕ is trivial on K×, we know that

0 = ϕ
(
πv0 , πv0 , . . .

) = ϕ
(
πv0 ,1, . . .

) + ϕ
(
1, πv0 ,1, . . .

) + ϕ
(
1,1, πv0 ,1, . . .

) + · · ·

= ϕ
(
π− deg v0∞ ,1, . . .

)
+ ϕ

(
πv0π

deg v0∞ ,1, . . .
)

+ ϕ
(
1, πv0 ,1, . . .

)
+ ϕ

(
1,1, πv0 ,1, . . .

) + ϕ
(
1,1,1, πv0 ,1, . . .

) + · · · .
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Since we chose πv0 to be monic and val∞
(
πv0π

deg v0∞
) = 0, we have that

ϕ
(
πv0π

deg v0∞ ,1, . . .
) = 0. Denoting by ϕv0(πv0) the term ϕ

(
1, πv0 ,1, . . . ,1

)
where we recall

the convention that the second place corresponds to v0, we obtain

ψ∞
(
π− deg v0∞

)
+ ϕv0

(
πv0

) +
∑

v �=v0,v∞

φv
(
πv0

) = 0.

Since v0 splits if and only if ϕv0(πv0)= 0, we see that

• v0 splits if and only if φv0(O×
v0
)= 0 and

ψ∞
(
π− deg v0∞

)
+

∑
v �=v0,v∞

φv
(
πv0

) = 0. (10)

• v0 is inert if and only if φv0(O×
v0
)= 0 and

ψ∞
(
π− deg v0∞

)
+

∑
v �=v0,v∞

φv
(
πv0

) �= 0.

If v = v∞, we can read the splitting behavior from φ(π∞,1,1, . . .). Namely, we

have that v∞ /∈ Cond(φ) if and only if φv∞(O×
v∞)= 0. Therefore,

• v∞ splits completely in L when φv∞(O×
v∞)= 0 and ψ∞(π∞)= 0,

• v∞ is inert when φv∞(O×
v∞)= 0 and ψ∞(π∞) �= 0. �

2.4 Generating series and the Tauberian Theorem

As in previous work, our strategy is to make use of the Tauberian theorem to deduce an

asymptotic formula for the number of field extensions L/K with discriminant of degree

n from the analytic properties of the generating series

∑
Gal(L/K)∼=Z/�Z

D (L/K)−s ,

where D(L/K) is the norm of the discriminant Disc(L/K). As mentioned above, since we

are dealing with cyclic extension of prime degree �, the conductor–discriminant relation

gives

Disc (L/K)= (�− 1)Cond (L/K) ⇐⇒ D (L/K)= N (Cond (L/K))�−1
,

and it is more natural to write the generating series as

∑
Gal(L/K)∼=Z/�Z

D (L/K)−s :=
∑
f∈D+

K

a� ( f)
Nf (�−1)s

,
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where a�( f) is the number of cyclic extensions of degree � of K = Fq(X)with conductor f .

We will then extend this analysis to study the extensions L that are counted by

N(Z/�Z, n;VR,VS,VI ) as defined in Section 1 by understanding the generating series

∑
Gal(L/K)∼=Z/�Z

VR,VS,VI

D (L/K)−s ,

where the sum now runs over the cyclic extensions of degree � that satisfy all of pre-

scribed splitting/ramification conditions at the places of VR ∪ VS ∪ VI . Again, we will

write this Dirichlet series as

∑
Gal(L/K)∼=Z/�Z

VR,VS,VI

D (L/K)−s :=
∑
f∈D+

K

a� ( f,VR,VS,VI )

Nf (�−1)s
,

where a�( f,VR,VS,VI ) is the number of cyclic extensions of degree � of K = Fq(X) with

conductor f that satisfy all of the prescribed splitting/ramification conditions.

We now state and prove the version of the Tauberian theorem needed to analyze

the Dirichlet series above. More generally, let k be a positive integer, let a : D+
K → C, and

F(s) be the Dirichlet series

F (s)=
∑
f∈D+

K

a( f)
N fks

.

We need a Tauberian theorem that will allow us to evaluate
∑

deg f=n a( f) in the

situation when the half-plane of absolute convergence is Re(s) > 1/k for some positive

integer k, and the function F(s) has a finite number of poles (of arbitrary multiplicities)

on the line Re(s)= 1/k. This is a slight generalization of [9, Theorem 17.1].

Since the function q−ks, and therefore F(s), are periodic with period 2πi/(k log q),

nothing is lost by confining our attention to the region

Bk =
{

s ∈ C : − πi

k log q
≤ Im (s) <

πi

k log q

}
. (11)

We will always suppose that s is confined to the region Bk.

Theorem 2.5. Let k be a positive integer and let 0< δ < 1/k. Let a : D+
K → C, and suppose

that the Dirichlet series

F (s)=
∑
f∈D+

K

a( f)
N fks

converges absolutely for Re(s) > 1/k, and is holomorphic on {s ∈ Bk : Re(s)≥ δ} except

for a finite number of poles on the line Re(s)= 1/k. Let u= q−ks and define

4310 A. Bucur et al.

 at U
niversite de M

ontreal on Septem
ber 4, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


F (u)=F(s). Then ∑
deg f=n

a( f)= −
∑

|u|=q−1

Resu
F (u)
un+1

+ O
(
qδknM

)
,

where

M = max
|u|=q−kδ

|F (u) | = max
Re(s)=δ

|F (s) |. �

Proof. With the change of variable u= q−ks, we have that

F (u)=
∞∑

n=0

⎛
⎝ ∑

deg f=n

a( f)

⎞
⎠un,

and by hypothesis, F (u) is a meromorphic function on the disk {u∈ C : |u| ≤ q−kδ}, except

for finitely many poles with |u| = 1/q. Let Cδ = {u∈ C : |u| = q−kδ}, oriented counterclock-

wise. Choose any η > 1 and let Cη = {u∈ C : |u| = q−η}, oriented clockwise. Note that F (u)
un+1

is a meromorphic function between the two circles Cη and Cδ with finitely many poles at

|u| = 1/q. Thus, by the Cauchy’s integral formula,

1

2πi

∮
Cδ+Cη

F (u)
un+1

du=
∑

|u|=q−1

Resu
F (u)
un+1

.

Since q−η < q−1, using the power series expansion of F (u) around u= 0, we have that

1

2πi

∮
Cη

F (u)
un+1

du= −
∑

deg f=n

a( f) .

Therefore, we obtain

∑
deg f=n

a( f)= −
∑

|u|=q−1

Resu
F (u)
un+1

+ 1

2πi

∮
Cδ

F (u)
un+1

du.

Let M be the maximum of |F (u)| over Cδ. Then∣∣∣∣ 1

2πi

∮
Cδ

F (u)
un+1

du

∣∣∣∣ ≤ Mqδkn,

which proves the result. �

3 Dirichlet Characters and L-Functions

In this section, we define �th-power residue symbols over Fq[X]. We refer the reader

to [8, 9] for details. We then study the convergence properties of some auxiliary functions

built out of the �th-power residue symbols that will be used in the proofs of our main

results.
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Recall that � is a prime such that q ≡ 1 (mod �). Thus F×
q contains the �th roots

of unity. In particular, b� =μ
q−1
� is one of these roots where μ is a fixed generator of

F×
q . For a place v �= v∞ of K, we also let v= v(X) ∈ Fq[X] represent the monic irreducible

polynomial in K× corresponding to v. We define the �th power residue symbol as follows.

Let ( ·
v

)
�

:
(
Fq[X]/v (X)

)× → F×
q

be defined by (
f

v

)
�

≡ f
Nv−1
� (mod v).

In other words, the �th power residue symbol is given by an �th root of unity.

Recall that the choice of μ made in Section 2.3 determined for each place v a

generator gv of

(Ov/ (πv))
× ∼= (

Fq[X]/ (v (X))
)× ∼= (

Fqdeg v

)×

such that μ= g
qdeg v−1

q−1
v . We have

g
qdeg v−1

�
v =

(
g

qdeg v−1
q−1

v

) q−1
�

=μ
q−1
� = b�.

By the definition of the �th power symbol,

(gv
v

)
�
≡ b� (mod v).

We let σ be an �-order character from F×
q → C×. Then,

χv,� := σ ◦
( ·
v

)
�

is a Dirichlet character χ : Fq[X] → C× of modulus v, where we define χv,�( f(x))= 0 if v(x)

divides f(x).

For the infinite place v∞, we further define

χv,� (v∞)=
⎧⎨
⎩1 deg v≡ 0 (mod �),

0 deg v �≡ 0 (mod �).
(12)

For χ a nontrivial Dirichlet character, we denote by L(s, χ) the Dirichlet

L-function

L (s, χ)=
∑

F∈Fq [X]F monic

χ (F )
|F |s
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where F varies over the monic polynomials of Fq[X], and by L∗(s, χ) the completed

L-function that includes the place at infinity. For a Dirichlet character modulo a monic

polynomial v, we have that

L∗ (s, χ)= (
1 − q−s)−λv L (s, χ) ,

where λv is 1 if deg v≡ 0 (mod �), and 0 otherwise.

Then, for χ nontrivial, we remark that both L(s, χ) and L∗(s, χ) are analytic and

non-zero for Re(s) > 1/2.

By �-power reciprocity, we can write this character as

χv,� (v0)= σ ◦
(v0

v

)
�
= σ

((
(−1)(q−1)/�

)deg v0 deg v
(
v

v0

)
�

)
=Ψv0,� (v) χv0,� (v) , (13)

where χv0,�(v) is the Dirichlet character modulo v0 defined above, and Ψv0,�(v) depends

only on the degree of v.

If v = v∞, let an be the principal coefficient of f . Then we define

χv∞,� ( f) :=
{
σ (an) deg f ≡ 0 (mod �),

0 deg f �≡ 0 (mod �).

We note that the above definition together with (12) agree with �-power reciprocity in

the following way:

χv,� (v∞)=
(
(−1)(q−1)/�

)deg v
χv∞,� (v)=

⎧⎨
⎩1 deg v≡ 0 (mod �),

0 deg v �≡ 0 (mod �).
(14)

We have used that v is a monic polynomial, which implies that χv∞,�(v)= 1 when � | deg v,

that deg v∞ = 1, and that ((−1)(q−1)/�)deg v = 1 when � | deg v and q is odd, and is trivially 1

when q is even since then we have characteristic 2 and 1 = −1 in this case.

Finally, we remark that by the above, the Kronecker symbol codifies ramification

in extensions in the usual way. Let f ∈ Fq[X] (not necessarily monic). Then,

χv,� ( f)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 v splits in K
(
�
√

f
)
,

ξk
� , for some 1 ≤ k≤ �− 1 v is inert in K

(
�
√

f
)
,

0 v ramifies in K
(
�
√

f
)
,

where ξ� ∈ C is a primitive �th root of 1.
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We now proceed to prove convergence results for Dirichlet series and similar

functions.

Lemma 3.1. Let χ be a nontrivial Dirichlet character and let Ψ be a function on Fq[X]

such that Ψ (F )=Ψ (G) when deg F = deg G. Then

L (s, Ψ χ)=
∑

F∈Fq [X]
F monic

Ψ (F ) χ (F )
|F |s

is an analytic function on C. �

Proof. Let

A(n, Ψ, χ)=
∑

F∈Fq [X],
F monic,
deg F=n

Ψ (F ) χ (F ) .

Then L(s, Ψ χ) equals
∞∑

n=0

A(n, Ψ, χ)
qns

. (15)

We note that

A(n, Ψ, χ)=Ψ (G)
∑

F∈Fq [X],
F monic,
deg F=n

χ (F )

for any polynomial G of degree n, and thus A(n, Ψ, χ)= 0 if n is greater than or equal to

the degree of the modulus of χ by the orthogonality relations of characters. This implies

that the sum in (15) is finite and therefore L(s, Ψ χ) is analytic. �

Lemma 3.2. Let ξ� be a primitive �th root of 1. Let VR,VS, and VU be finite subsets of

places of VK such that VS = {v1, . . . , vn} ⊂ VU , and VU ∩ VR = ∅. For each 0 ≤ j ≤ �− 1, and

each tuple (k1, . . . ,kn) �= (0, . . . ,0) with 0 ≤ ki ≤ �− 1, let

M j,k1,...,kn (s;VR,VS,VU )

:=
∏

v �∈VR∪VU

(
1 +

(
ξ

j deg v
�

n∏
h=1

χv,� (vh)
kh + · · · + ξ

(�−1) j deg v
�

n∏
h=1

χv,� (vh)
(�−1)kh

)
Nv−(�−1)s

)
.

Then, each M j,k1,...,kn(s;VR,VS,VU ) converges absolutely for Re(s) > 1
�−1 and has analytic

continuation to the region Re(s) > 1
2(�−1) . �
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In the case where we have only one place v0 ∈ VK with prescribed ramification

ε0 ∈ {ramified, split, inert}, we will denote the above function by

M j,k (s; v0, ε0) :=M j,k1 (s;VR,VS,VU ) . (16)

Proof. For the absolute convergence, we have that the convergence of
∏
v(1 + (�−

1)|Nv−s(�−1)|) is equivalent to that of
∑

v
1

Nvs(�−1) and this convergence follows in the same

way as the absolute convergence for the zeta function ζK(s) in Re(s) > 1.

For the analytic continuation, we write

M j,k1,...,kn (s;VR,VS,VU )

= C1
j,k1,...,kn

(s)
�−1∏
i=1

∏
v �∈VR∪VU

(
1 + ξ

i j deg v
�

n∏
h=1

χv,� (vh)
ikh Nv−(�−1)s

)

= C2
j,k1,...,kn

(s)
�−1∏
i=1

∏
v �∈VR∪VU

(
1 − ξ

i j deg v
�

n∏
h=1

Ψvh,� (v)
ikh χvh,� (v)

ikh Nv−(�−1)s

)−1

,

where we have used �-power reciprocity (13), and where C1
j,k1,...,kn

(s) and C2
j,k1,...,kn

(s) are

analytic functions for Re(s) > 1/2(�− 1) as the Euler products converge absolutely in

that region. For each 1 ≤ i ≤ �− 1, each 0 ≤ j ≤ �− 1 and each tuple (k1, . . . ,kn) as above,

we have that the functions

Li, j,k1,...kn (s)=
∏

v �∈VR∪VU

(
1 − ξ

i j deg v
�

n∏
h=1

Ψvh,� (v)
ikh χvh,� (v)

ikh Nv−(�−1)s

)−1

= L
(
s1, Ψi, j,k1,...,kh χi, j,k1,...,kh

)
are twisted Dirichlet functions as in Lemma 3.1, where s1 = (�− 1)s,

Ψi, j,k1,...,kh (v)= ξ
i j deg v
�

n∏
h=1

Ψvh,� (v)
ikh ,

χi, j,k1,...,kh (v)=
n∏

h=1

χvh,� (v)
ikh .

Then, Ψi, j,k1,...,kh(v) depends only on the degree of v, and χi, j,k1,...,kh(v) is a nontrivial Dirich-

let character since 1 ≤ i ≤ �− 1, (k1, . . . ,kn) �= 0 and the product is taken over different

places so that there is no possibility of cancellation. Applying Lemma 3.1, this com-

pletes the proof of the analytic continuation. �
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Let ξ� be a primitive �th root of 1. We now prove a result bounding the meromor-

phic continuation of the functions

A (s) :=
∏
v

(
1 + (�− 1) Nv−(�−1)s

)
(17)

B (s) :=
∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)
(18)

on the line Re(s)= 1
2(�−1) + ε for any ε > 0. We remark that the Euler products converge

(absolutely and uniformly) for Re(s) > 1
�−1 .

Unless otherwise specified, we continue to use the convention that all the sums

and products over v include all places, including the place at infinity.

Lemma 3.3. Let 0< ε < 1
2(�−1) . The functions A(s) and B(s) have meromorphic continua-

tion to the region Re(s) > 1
2(�−1) + ε, and their only singularities in this region are poles on

the line Re(s)= 1
�−1 . Furthermore, both functions are absolutely bounded on the region

1
2(�−1) <Re(s) < 1

�−1 − ε. �

Proof. For Re(s) > 1
�−1 , we have

A (s)=
∏
v

(
1 + (�− 1) Nv−(�−1)s

)

= ζK ((�− 1) s)�−1
∏
v

(
1 + (�− 1) Nv−(�−1)s

) (
1 − Nv−(�−1)s

)�−1

= ζK ((�− 1) s)�−1
∏
v

(
1 + (�− 1) Nv−(�−1)s

) (
1 − (�− 1) Nv−(�−1)s

+ Nv−2(�−1)s + Nv−3(�−1)sO� (1)
)

= ζK ((�− 1) s)�−1
∏
v

(
1 − Nv−2(�−1)s + Nv−3(�−1)sO� (1)

)

= C (s) ζK ((�− 1) s)�−1
∏
v

(
1 − Nv−2(�−1)s

) �(�−1)
2

= C (s) ζK ((�− 1) s)�−1

ζK (2 (�− 1) s)
�(�−1)

2

,

where C(s) is analytic for Re(s) > 1
3(�−1) + ε. Thus, for s = 1

2(�−1) + ε, as ε goes to zero, the

function A(s) converges to zero, and the result follows. The poles are given by those of

ζK((�− 1)s), namely s = 1/(�− 1), with multiplicity �− 1.
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Similarly, for Re(s) > 1
�−1 , we have

B (s)=
∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)

=
�−1∏
j=1

ZK

(
ξ

j
� u

)∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

) �−1∏
j=1

(
1 − ξ

j deg v
� Nv−(�−1)s

)
,

where u= q−(�−1)s and ZK(u) := 1
(1−qu)(1−u) is the zeta function of K.

Thus, we have

B (s)=
�−1∏
j=1

ZK

(
ξ

j
� u

)∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)

×
∏
v

(
1 −

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

+
⎛
⎝ ∑

1≤i< j≤�−1

ξ
i deg v
� ξ

j deg v
�

⎞
⎠ Nv−2(�−1)s + Nv−3(�−1)sO� (1)

⎞
⎠

= C (s)
�−1∏
j=1

ZK

(
ξ

j
� u

)∏
v

(
1 + c (�) Nv−2(�−1)s

)
,

where

c (�)= −
(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)2
+

∑
1≤i< j≤�−1

ξ
i deg v
� ξ

j deg v
�

= −
∑

1≤i≤ j≤�−1

ξ
i deg v
� ξ

j deg v
�

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−� (�− 1)
2

� | deg v, � > 2,

0 � � deg v, � > 2,

−1 �= 2,

and C(s) is analytic for Re(s) > 1
3(�−1) + ε. Thus, for s = 1

2(�−1) + ε, as ε→ 0, the function

B(s) converges to 0, and the result follows.

The poles are those of ZK(ξ
j
� u), namely, poles of order one at s = 1

�−1 +
2 jπi

(�−1)� log q . �
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4 �-Cyclic Extensions

In this section, we give the proofs of the main results of this paper. We will continue

with the notation introduced in the earlier sections. Recall that, for a fixed prime �,

N(Z/�Z, n) denotes the number of extensions of K with Galois group Z/�Z such that the

degree of the conductor is n. As before, ξ� ∈ C stands for a primitive �th root of 1.

We start by proving the first part of Theorem 1.1.

Theorem 4.1. Let � ∈ Z be a prime. We have

N (Z/�Z, n)= C�q
n P� (n)+ O

(
q(

1
2 +ε)n

)
, (19)

where P�(X) ∈ R[X] is a monic polynomial of degree �− 2, and where C� is the non-zero

constant given by

C� =
(
1 − q−2

)�−1

(�− 2)!

�−2∏
j=1

∏
v

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
. �

Proof. To compute N(Z/�Z, n), we consider the Dirichlet series F(s), which is the gen-

erating function with an added constant, namely,

F (s) := �+
∑

Gal(L/K)∼=Z/�Z

D (L/K)−s .

We claim that

F (s)=
�−1∑
j=0

∏
v

(
1 +

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s

)

=
∏
v

(
1 + (�− 1) Nv−(�−1)s

) + (�− 1)
∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)

=A (s)+ (�− 1)B (s) .

Indeed, by Propositions 2.2 and 2.3 the extensions L/K are in one-to-one correspondence

with the maps φ : πZ

∞ × ∏
v O×

v → Z/�Z satisfying (8). Let Cond(φ) be the conductor of

such a map φ, and v be a place of the conductor. In the first line above, the ith term

ξ
i j deg v
� Nv−(�−1)s in each Euler product corresponds to the map where φv(gv)= i for 1 ≤ i ≤
�− 1. Therefore, considering all the places v of Cond(φ), the term in the jth Dirichlet
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series above corresponding to the global map φ equals

(
ξ
∑

v jφv(gv)deg v
�

)
× N (Cond (φ))−(�−1)s

for 0 ≤ j ≤ �− 1. Thus, the sum of those terms over the index j yields �N(Cond(φ))−(�−1)s

if
∑

v φv(gv)deg v ≡ 0 (mod �) and 0 otherwise, and we recover (8). Note that the � fac-

tor multiplying N(Cond(φ))−(�−1)s is accounting for the different extensions with the

same conductor K( �
√

f), K( �
√
β f), . . . , K( �

√
β�−1 f) for β ∈ F×

q not an �th power. Similarly,

the constant � in the definition of F(s) accounts for the extensions K( �
√
β), . . . , K( �

√
β�−1)

for β ∈ F×
q not an �th power, as well as the K-algebra given by the completely split cover.

Using the identity

1 + (�− 1)u

(1 + u)�−1 =
�−2∏
j=1

(
1 − ju2

(1 + u) (1 + ju)

)
,

we write

A (s)=
∏
v

(
1 + (�− 1) Nv−(�−1)s

)

=
(
ζK ((�− 1) s)
ζK (2 (�− 1) s)

)�−1 �−2∏
j=1

∏
v

(
1 − jNv−2(�−1)s(

1 + Nv−(�−1)s
) (

1 + jNv−(�−1)s
)
)
,

where the absolute convergence of the infinite products for Re(s) > 1
2(�−1) follows from

that of
∑

v
1

Nv2(�−1)s .

We also write

B (s)=
∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)

=
∏
v

�−1∏
j=1

(
1 + ξ

j deg v
� Nv−(�−1)s

)∏
v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
Nv−(�−1)s

)
∏�−1

j=1

(
1 + ξ

j deg v
� Nv−(�−1)s

) ,

where the absolute convergence of the infinite products follows in the same way as the

products appearing in A(s).
Recall from Lemma 3.3 that A(s) is a meromorphic function on Re(s) > 1

2(�−1) with

a pole of order �− 1 at s = 1
�−1 in the region B�−1 as defined in (11). The function B(s) is

also meromorphic in Re(s) > 1
2(�−1) , with simple poles at sj = 1

�−1 + 2 jπi
(�−1)� log q for |2 j|< � in

the region B�−1.
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We set u= q−(�−1)s, and write A(u) :=A(s) and B(u) :=B(s). Thus,

A(u)=
((

1 − qu2
)
(1 + u)

(1 − qu)

)�−1 �−2∏
j=1

∏
v

(
1 − ju2 deg v(

1 + udeg v
) (

1 + judeg v
)
)
,

B (u)=
∏
v

�−1∏
j=1

(
1 +

(
ξ

j
� u

)deg v
)∏

v

(
1 +

(
ξ

deg v
� + · · · + ξ

(�−1)deg v
�

)
udeg v

)
∏�−1

j=1

(
1 +

(
ξ

j
� u

)deg v
)

=
�−1∏
j=1

ZK

(
ξ

j
� u

)
ZK

(
ξ

2 j
� u2

) ∏
v

(
1 + b (v)udeg v

)
∏�−1

j=1

(
1 +

(
ξ

j
� u

)deg v
) ,

where ZK(u)= 1
(1−qu)(1−u) and b(v)= ξ

deg v
� + · · · + ξ

(�−1)deg v
� .

Fix any δ with 1
2(�−1) < δ <

1
�−1 . Then A(u) and B(u) are meromorphic functions on

the disk {u: |u| ≤ q−δ}. We see that A(u) has a pole of order �− 1 at u= 1/q and B(u) has

(�− 1) simple poles at u= (qξ j
� )

−1 for j = 1, . . . , �− 1. Then, applying Theorem 2.5 and

Lemma 3.3 to F(s)=A(s)+ (�− 1)B(s) with δ = 1
2(�−1) + ε for ε > 0, we have that

N (Z/�Z, n)= −Resu=q−1
A(u)
un+1

−
�−1∑
j=1

Res
u=

(
qξ j
�

)−1
B (u)
un+1

+ O
(
q(1/2+ε)n) . (20)

We compute

Resu=q−1
A(u)
un+1

= lim
u→q−1

1

(�− 2)!

d�−2

du�−2

(
u− q−1)�−1 1

un+1

((
1 − qu2

)
(1 + u)

(1 − qu)

)�−1

×
�−2∏
j=1

∏
v

(
1 − ju2 deg v(

1 + udeg v
) (

1 + judeg v
)
)

= lim
u→q−1

1

(�− 2)!

d�−2

du�−2

((− (
1 − qu2

)
(1 + u)

)�−1

q�−1un+1

)

×
�−2∏
j=1

∏
v

(
1 − ju2 deg v(

1 + udeg v
) (

1 + judeg v
)
)
.

Let

H� (u) := 1

(�− 2)!

((− (
1 − qu2

)
(1 + u)

)�−1

q�−1

)
�−2∏
j=1

∏
v

(
1 − ju2 deg v(

1 + udeg v
) (

1 + judeg v
)
)
. (21)
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Then, using the product rule for derivatives, we get

Resu=q−1
A(u)
un+1

= lim
u→q−1

�−2∑
i=0

di

dui

(
1

un+1

)
d�−2−i

du�−2−i
H� (u)

= lim
u→q−1

�−2∑
i=0

(−1)i (n + 1) · · · (n + i)
un+i+1

d�−2−i

du�−2−i
H� (u)

=
�−2∑
i=0

(−1)i (n + 1) · · · (n + i)qn+i+1 d�−2−i

du�−2−i
H� (u)

∣∣∣∣
u=q−1

,

which proves that this residue is given by a polynomial in n.

We take a closer look at the main term of this polynomial, which is the dominat-

ing term when n → ∞. We obtain

Resu=q−1
A(u)
un+1

= lim
u→q−1

1

(�− 2)!
(−1)�−2 (n + 1) · · · (n + �− 2)

un+�−1

((− (
1 − qu2

)
(1 + u)

)�−1

q�−1

)

×
�−2∏
j=1

∏
v

(
1 − ju2 deg v(

1 + udeg v
) (

1 + judeg v
)
)
(1 + O (1/n))

= − n�−2

(�− 2)!

(
1 − q−2)�−1

qn
�−2∏
j=1

∏
v

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)

× (1 + O (1/n)) .

For the other residues, coming from simple poles,

Res
u=

(
qξ

j0
�

)−1
B (u)
un+1

= lim
u→q−1ξ

− j0
�

(
u− q−1ξ

− j0
�

)
un+1

�−1∏
j=1

(
1 − qξ2 j

� u2
) (

1 + ξ
j
� u

)
(
1 − qξ j

� u
)

×
∏
v

(
1 + b (v)udeg v

)
∏�−1

j=1

(
1 +

(
ξ

j
� u

)deg v
)

= lim
u→q−1ξ

− j0
�

−
(
1 − qξ2 j0

� u2
) (

1 + ξ
j0
� u

)
un+1qξ j0

�

�−1∏
j=1, j �= j0

(
1 − qξ2 j

� u2
) (

1 + ξ
j
� u

)
(
1 − qξ j

� u
)

×
∏
v

(
1 + b (v)udeg v

)
∏�−1

j=1

(
1 +

(
ξ

j
� u

)deg v
)
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= −
(
qξ j0

�

)n (
1 − q−2) �−1∏

j=1, j �= j0

(
1 − q−1ξ

2 j−2 j0
�

) (
1 + q−1ξ

j− j0
�

)
(
1 − ξ

j− j0
�

)

×
∏
v

(
1 + b (v)

(
q−1ξ

− j0
�

)deg v
)

∏�−1
j=1

(
1 +

(
q−1ξ

j− j0
�

)deg v
) .

We note that the line above is O(qn) and it contributes to the constant coefficient of P�(n).

Replacing the residues in (20) with the equations above completes the proof. �

In spite of the fact that Corollary 1.2 can be deduced from the statement of

Theorem 1.1, we will prove it first and independently of Theorem 1.1 as a way of intro-

ducing the key ideas in the proof of Theorem 1.1. The case of v ramified and �= 2 will be

discussed later, in Section 4.1.

Recall that

C� =
(
1 − q−2

)�−1

(�− 2)!

�−2∏
j=1

∏
v∈VK

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
. (22)

Proof of Corollary 1.2. Since v0 is ramified at a cover L/K if and only if v0 divides

Disc(L/K), the generating function for the number of extensions counted by N(Z/�Z, n)

that are ramified at v0 is

FR (s)=
∑

Gal(L/K)∼=Z/�Z
v0 ramified

D (L/K)−s

= (�− 1) Nv−(�−1)s
0

∏
v �=v0

(
1 + (�− 1) Nv−(�−1)s

)

+ (�− 1) b (v0) Nv−(�−1)s
0

∏
v �=v0

(
1 + b (v) Nv−(�−1)s

)

= (�− 1) Nv−(�−1)s
0

1 + (�− 1) Nv−(�−1)s
0

A (s)+ (�− 1)
b (v0) Nv−(�−1)s

0

1 + b (v0) Nv−(�−1)s
0

B (s)

where we have excluded the case φv0(gv0)= 0 to account for v0 ramified as stated in

Proposition 2.4.

With the change of variable u= q−(�−1)s, we obtain

FR (u)= (�− 1)udeg v0

1 + (�− 1)udeg v0
A(u)+ (�− 1)

b (v0)udeg v0

1 + b (v0)udeg v0
B (u) .
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Then, applying Theorem 2.5 and Lemma 3.3 with δ = 1
2(�−1) + ε for any ε > 0,

we get

N (Z/�Z, n, v0, ramified)= −Resu=q−1
(�− 1)udeg v0

1 + (�− 1)udeg v0

A(u)
un+1

− (�− 1)
�−1∑
j=1

Res
u=

(
qξ j
�

)−1
b (v0)udeg v0

1 + b (v0)udeg v0

B (u)
un+1

+ O
(
q(

1
2 +ε)n

)
.

For the residue involving the function A(u), we have

Resu=q−1
(�− 1)udeg v0

1 + (�− 1)udeg v0

A(u)
un+1

= lim
u→q−1

d�−2

du�−2

(�− 1)udeg v0

1 + (�− 1)udeg v0

H� (u)
un+1

,

where H�(u) is given by (21). This yields

Resu=q−1
(�− 1)udeg v0

1 + (�− 1)udeg v0

A(u)
un+1

=
�−2∑
i=0

(−1)i (n + 1) · · · (n + i)qn+i+1 d�−2−i

du�−2−i

(�− 1)udeg v0

1 + (�− 1)udeg v0
H� (u)

∣∣∣∣
u=q−1

,

and we obtain the polynomial in n as in the case of the proof of Theorem 4.1. As before,

we record the main coefficient as the dominating term when n → ∞ to be

Resu=q−1
(�− 1)udeg v0

1 + (�− 1)udeg v0

A(u)
un+1

= − n�−2

(�− 2)!

(
1 − q−2)�−1

qn (�− 1)q− deg v0

1 + (�− 1)q− deg v0

×
�−2∏
j=1

∏
v

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
(1 + O (1/n))

= −C�

(�− 1)q− deg v0

1 + (�− 1)q− deg vq
qnn�−2 (1 + O (1/n)) .

For the residues involving the function B(u), we note that, since the poles are of

order one,

Res
u=

(
qξ j
�

)−1
b (v0)udeg v0

1 + b (v0)udeg v0

B (u)
un+1

=
b (v0)

(
qξ j

�

)− deg v0

1 + b (v0)
(
qξ j

�

)− deg v0
Res

u=
(
qξ j
�

)−1
B (u)
un+1

.
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The number above is equal to O(qn) and it will contribute to the constant coefficient of

the polynomial PR(n). This proves the result for the number of extensions ramifying at v0.

We now consider the case of extensions splitting at v0. First, we write the generating

function for the number of extensions of K unramified at v0 as

FU (s)= �+
∑

Gal(L/K)∼=Z/�Z
v0 unramified

D (L/K)−s

=
�−1∑
j=0

∏
v �=v0

(
1 +

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s

)

=
∏
v �=v0

(
1 + (�− 1) Nv−(�−1)s

) + (�− 1)
∏
v �=v0

(
1 + b (v) Nv−(�−1)s

)

= 1

1 + (�− 1) Nv−(�−1)s
0

A (s)+ (�− 1)

1 + b (v0) Nv−(�−1)s
0

B (s) .

Using the notation of Section 3, recall that b� =μ
q−1
� where μ is a generator of

F×
q (hence b� is an �th root of unity in F×

q ), and σ : F×
q → C is a character of order �. Let

ρ� = σ(b�), which is then a primitive �th root of unity in C. For each v �= v0, v∞, denote by

nv a positive integer such that the image of v0 in (Ov/(πv))
× is gnv

v . Then φv(v0)= nvφv(gv).

Hence, by Proposition 2.4, v0 is unramified and split if and only if φv0(O×
v0
)= 0 and

− (deg v0) ψ∞ (π∞)+
∑

v �=v0,v∞

nvφv (gv)≡ 0 (mod �),

which is equivalent to

ρ
−(deg v0)ψ∞(π∞)
�

∏
v �=v0,v∞

ρ
nvφv(gv)
� = 1.

By the definition of ρ� and nv above and the construction of χv,�(v0) from

Section 3, we see that χv,�(v0)= σ(
gnv
v

v
)� = σ(b�)nv = ρ

nv
� and, hence, the above equality can

be written as

D (v0) := ρ
−(deg v0)ψ∞(π∞)
�

∏
v �=v0,v∞

χv,� (v0)
φv(gv) = 1.

Thus, v0 �= v∞ is unramified and split if and only if φv0(O×
v0
)= 0 and

D (v0)= 1. (23)
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Since D(v0) is a �th root of unity, we can rewrite (23) as

1

�

�−1∑
j=0

D (v0)
j =

⎧⎨
⎩1 if v0 is unramified and split,

0 otherwise,
(24)

and this is the criterion that we will use in the generating series.

Analogously, we also have that v∞ is unramified and split if and only if

φv∞(O×
v∞)= 0 and

ρ
−(deg v∞)ψ∞(π∞)
� = 1,

since deg v∞ = 1.

We claim that the Dirichlet series for cyclic extensions splitting at a fixed place

v0 �= v∞ is

FS (s)= 1

�2

�−1∑
j=0

�−1∑
k=0

�−1∑
r=0

ρ
−rkdeg v0

�

×
∏

v �=v0,v∞

(
1 +

(
ξ

j deg v
� χv,� (v0)

k + · · · + ξ
(�−1) j deg v
� χv,� (v0)

(�−1)k
)

Nv−(�−1)s
)

×
(
1 +

(
ξ

j deg v∞
� + · · · + ξ

(�−1) j deg v∞
�

)
Nv−(�−1)s

∞
)
.

Recall by Propositions 2.2–2.4 the cyclic extensions splitting at a fixed place v0 �= v∞
are in one-to-one correspondence with the maps φ : πZ

∞ × ∏
v O×

v → Z/�Z satisfying (8),

together with the splitting conditions (23) and φv0(O×
v0
)= 0. Let Cond(φ) be the conductor

of such a map φ, and v be a place of the conductor. For each fixed j,k, r in the first line

above, the ith term ρ
−rkdeg v0

� ξ
i j deg v
� χv,�(v0)

ikNv−(�−1)s in the Euler product corresponds to

the map where φv(gv)= i and ψ∞(π∞)= r for 1 ≤ i ≤ �− 1. Considering all the places v of

Cond(φ) (including v∞, which is accounted for in the last line of the equation), the term

in the j,k, rth Dirichlet series above corresponding to the global map φ equals

(
ξ
∑

v jφv(gv)deg v
�

)
× ρ

−rkdeg v0

�

∏
v �=v0,v∞

χv,� (v0)
kφv(gv) × N (Cond (φ))−(�−1)s

.

Summing over j, we obtain zero unless condition (8) is satisfied. Summing over r covers

all the possible values of ψ∞(π∞). Finally, summing over k yields zero unless condi-

tion (23) is satisfied. Thus the sum of those terms over k, j, together with the correcting

factor 1
�2 will yield N(Cond(φ))−(�−1)s if both conditions (8) and (23) are satisfied, and zero

otherwise.
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We also remark that the constant term of FS(s) is � if � | deg v0, and 1 otherwise.

When v0 = v∞, we have

FS (s)= 1

�2

�−1∑
j=0

�−1∑
k=0

�−1∑
r=0

ρ
−rkdeg v∞
�

∏
v �=v∞

(
1 +

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s

)

= 1

�

�−1∑
j=0

∏
v �=v∞

(
1 +

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s

)
= 1

�
FU (s) .

By considering the definitions of χv∞(v) and χv(v∞), the previous two formulas

can both be written as

FS (s)= 1

�2

�−1∑
j=0

�−1∑
k=0

�−1∑
r=0

ρ
−rkdeg v0

�

×
∏
v �=v0

(
1 +

(
ξ

j deg v
� χv,� (v0)

k + · · · + ξ
(�−1) j deg v
� χv,� (v0)

(�−1)k
)

Nv−(�−1)s
)
,

which is valid for any place v0.

Separating the term with k= 0 from the terms with k �= 0, we obtain

FS (s)= 1

�
FU (s)+ 1

�2

�−1∑
j=0

�−1∑
k=1

(
�−1∑
r=0

ρ
−rkdeg v0

�

)
M j,k (s, v0, split) , (25)

where M j,k(s, v0, split) is given by (16).

Applying Theorem 2.5 and Lemmas 3.2 and 3.3 to the generating function FS(s),

we get

N (Z/�Z, n, v0, split)= −1

�
Resu=q−1

1

1 + (�− 1)udeg v0

A(u)
un+1

− �− 1

�

�−1∑
j=1

Res
u=

(
ξ

j
� q

)−1

1

�
(
1 + b (v0)udeg v0

) B (u)
un+1

+ O
(
q(1/2+ε)n) . (26)

The residue computation is similar to the residue computation leading to the

count of N(Z/�Z, n, v0, ramified) above, but we repeat it for completeness. For the residue

involving the function A(u), we have

Resu=q−1
1

1 + (�− 1)udeg v0

A(u)
un+1

= lim
u→q−1

d�−2

du�−2

1

1 + (�− 1)udeg v0

H� (u)
un+1

,
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where H�(u) is given by (21). This yields

Resu=q−1
1

1 + (�− 1)udeg v0

A(u)
un+1

=
�−2∑
i=0

(−1)i (n + 1) · · · (n + i)qn+i+1 d�−2−i

du�−2−i

1

1 + (�− 1)udeg v0
H� (u)

∣∣∣∣
u=q−1

,

which gives qn P (n), where P is a polynomial of degree �− 2 as before. Using the

definition of H�(u), the leading term of the polynomial P (n) is

− n�−2

(�− 2)!

(
1 − q−2)�−1

qn 1

1 + (�− 1)q− deg v0

�−2∏
j=1

∏
v

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)

= −C�

1

1 + (�− 1)q− deg v0
qnn�−2.

For the residues involving the function B(u), we note as before that since the poles are of

order one, their contribution is of order O(qn), and they will contribute to the constant

coefficient of the polynomial PS(n).

Then, replacing in (26), we obtain that

N (Z/�Z, n, v0, split)= 1

�
(
1 + (�− 1)q− deg v0

)C� qn PS (n)+ O
(
q(1/2+ε)n)

as claimed.

Finally, we now consider the Dirichlet series for cyclic extensions for which a

fixed place v0 is inert. It is given by

FI (s)=FU (s)− FS (s) .

Using (25), and applying Theorem 2.5 and Lemmas 3.2 and 3.3 to the generating

function FI (s), we get

N (Z/�Z, n, v0, inert)= (�− 1)

(
−1

�
Resu=q−1

1

1 + (�− 1)udeg v0

A(u)
un+1

−�− 1

�

�−1∑
j=1

Res
u=

(
ξ

j
� q

)−1
1

�
(
1 + b (v0)udeg v0

) B (u)
un+1

⎞
⎠ + O

(
q(1/2+ε)n) ,

4327The Distribution of Fq-Points on Cyclic �-Covers of Genus g

 at U
niversite de M

ontreal on Septem
ber 4, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


which proves that

N (Z/�Z, n, v0, inert)= (�− 1) N (Z/�Z, n, v0, split)+ O
(
q(1/2+ε)n) .

This concludes the proof of Corollary 1.2. �

We are now ready to prove the main result.

Theorem 4.2. Let VR,VS,VI be three finite and disjoint sets of places of K. Let

N (Z/�Z, n;VR,VS,VI )

be the number of extensions of Fq(X) with Galois group Z/�Z such that the degree of the

conductor is n, and that are ramified at the places of VR (completely) split at the places

of VS, and inert at the places of VI . Let V = VR ∪ VS ∪ VI . Then,

N (Z/�Z, n;VR,VS,VI )= C�

(∏
v∈V

cv

)
qn PVR,VS,VI (n)+ O

(
q(

1
2 +ε)n

)
,

and
N (Z/�Z, n;VR,VS,VI )

N (Z/�Z, n)
=

(∏
v∈V

cv

)(
1 + O

(
1

n

))
,

where PVR,VS,VI (X) ∈ R[X] is a monic polynomial of degree �− 2 and C� is given by

C� =
(
1 − q−2

)�−1

(�− 2)!

�−2∏
j=1

∏
v∈VK

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
.

In addition,

cv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�− 1)q− deg v

1 + (�− 1)q− deg v
if v ∈ VR,

1

�
(
1 + (�− 1)q− deg v

) if v ∈ VS,

�− 1

�
(
1 + (�− 1)q− deg v

) if v ∈ VI . �

Proof. Let VU = VS ∪ VI .

We first construct the Dirichlet generating series with prescribed conditions for

VR, VU , and VS = {v1, . . . , vn} ⊂ VU . In other words, for the elements v ∈ VI we will only

prescribe that they are in VU and we will ignore the inert condition for the moment.
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We claim that the generating series is then

FVR,VS⊂VU (s)

= 1

�n+1

�−1∑
j=0

�−1∑
k1=0

· · ·
�−1∑
kn=0

�−1∑
r=0

ρ
−r

∑n
h=1 kh deg vh

�

×
∏

v �∈VR∪VU

(
1 +

(
ξ

j deg v
�

n∏
h=1

χv,� (vh)
kh + · · · + ξ

(�−1) j deg v
�

n∏
h=1

χv,� (vh)
(�−1)kh

)
Nv−(�−1)s

)

×
∏
v∈VR

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s.

Let us prove that the above formula is correct. Recall by Propositions 2.2–2.4 that the

cyclic extensions that are ramified at the primes of VR, unramified at the primes of VU ,

and split at the primes of VS are in one-to-one correspondence with the maps φ : πZ

∞ ×∏
v O×

v → Z/�Z satisfying (8), together with the ramification conditions: φv is nontrivial

on O×
v for v ∈ VR, φv(O×

v )= 0 for v ∈ VU , and the splitting conditions (23) for v ∈ VS. Thus

consider all the possible choices of parameters ({rv}, r) where φ is determined by setting

φv(gv)= rv and ψ∞(π∞)= r in such a way that φ is ramified at the primes of VR, unramified

at the primes of VU , and split at the primes of VS. Therefore we have 0< rv ≤ �− 1 for

all v ∈ VR, and rv = 0 for all primes of VU . For each fixed j,k1, . . . ,kn, the map φ with

parameters ({rv}, r) corresponds to the component

⎛
⎝ ∏
v �∈VR∪VU

ρ
−r

∑n
h=1 kh deg vh

� ξ
jrv deg v
�

n∏
h=1

χv,� (vh)
rvkh

⎞
⎠ ×

⎛
⎝ ∏
v∈VR

ξ
rv j deg v
�

⎞
⎠ × N (Cond (φ))−(�−1)s

of the Euler product. Summing over all j,k1, . . . ,kn, we obtain that the coefficient of

N(Cond(φ))−(�−1)s is given by

(
�−1∑
k1=0

ρ
−rk1 deg v1

�

∏
v

χv,� (v1)
rvk1

)
× · · · ×

⎛
⎝ �−1∑

kn=0

ρ
−rkn deg vn

�

∏
v

χv,� (vn)
rvkn

⎞
⎠

×
⎛
⎝�−1∑

j=0

ξ
j
∑

v|Cond(φ) rv deg v
�

⎞
⎠

=
⎧⎨
⎩�

n+1 if
∑

v|Cond(φ) rv deg v ≡ 0 (mod �) and φ is split at v1, . . . , vn,

0 otherwise.
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We now write the generating series as FVR,VS⊂VU (s)=F1
VR,VS⊂VU

(s)+ F2
VR,VS⊂VU

(s),

where the first series contributes to the main term and the second to the error term.

Taking (k1, . . . ,kn)= (0, . . . ,0) in FVR,VS⊂VU (s), we have

F1
VR,VS⊂VU

(s)= 1

�n

⎛
⎝ ∏
v∈VR

(�− 1) Nv−(�−1)s

1 + (�− 1) Nv−(�−1)s

∏
v∈VU

1

1 + (�− 1) Nv−(�−1)s
A (s)

+ (�− 1)
∏
v∈VR

b (v) Nv−(�−1)s

1 + b (v) Nv−(�−1)s

∏
v∈VU

1

1 + b (v) Nv−(�−1)s
B (s)

⎞
⎠ ,

where as usual j = 0 gives the function A(s) defined by (17) and the other values of j give

�− 1 copies of the function B(s) defined by (18).

Taking (k1, . . . ,kn) �= (0, . . . ,0) in FVR,VS⊂VU (s), we have

F2
VR,VS⊂VU

(s)= 1

�n+1

�−1∑
j=0

�−1∑
k1 ,...,kn=0

(k1 ,...,kn)�=(0,...,0)

G (s)Mj,k1,...,kn (s;VR,VS,VU )

where

G (s)=
�−1∑
r=0

ρ
−r

∑n
h=1 kh deg vh

�

∏
v∈VR

(
ξ

j deg v
� + · · · + ξ

(�−1) j deg v
�

)
Nv−(�−1)s

is analytic for all s ∈ C, and where for each fixed vector (k1, . . . ,kn) �= (0, . . . ,0), and for

each 0 ≤ j ≤ �− 1, we have that

M j,k1,...,kn (s;VR,VS,VU )

=
∏

v �∈VR∪VU

(
1 +

(
ξ

j deg v
�

n∏
h=1

χv,� (vh)
kh + · · · + ξ

(�−1) j deg v
�

n∏
h=1

χv,� (vh)
(�−1)kh

)
Nv−(�−1)s

)

as defined in Lemma 3.2.

Let N ′(Z/�Z, n;VR,VS,VI ) be the number of extensions where the degree of the

conductor is n and with the prescribed ramification conditions at the primes of VR and

VS, and unramified at the primes of VI , that is, the extensions counted by the generating
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series FVR,VS⊂VU (s) above. By Theorem 2.5, and Lemmas 3.2 and 3.3,

N ′ (Z/�Z, n;VR,VS,VI )

− 1

�n

⎛
⎝Resu=q−1

∏
v∈VR

(�− 1)udeg v

1 + (�− 1)udeg v

∏
v∈VU

1

1 + (�− 1)udeg v

A(u)
un+1

+ (�− 1)
�−1∑
j=1

Res
u=

(
ξ

j
� q

)−1

∏
v∈VR

b (v)udeg v

1 + b (v)udeg v

∏
v∈VU

1

1 + b (v)udeg v

B (u)
un+1

⎞
⎠

+ O
(
q(1/2+ε)n) .

As before, the residue involving the function A(u) yields qn times a polynomial

in n of degree �− 2, and the residues of B(u) are O(qn), so they contribute to the constant

coefficient of the polynomial, and not to the main term. The main term when n tends to

infinity is then given by the leading term of the polynomial which is

− 1

�n

⎛
⎝Resu=q−1

∏
v∈VR

(�− 1)udeg v

1 + (�− 1)udeg v

∏
v∈VU

1

1 + (�− 1)udeg v

A(u)
un+1

⎞
⎠

= 1

�n

∏
v∈VR

(�− 1)q− deg v

1 + (�− 1)q− deg v

∏
v∈VU

1

1 + (�− 1)q− deg v
C�q

nn�−2. (27)

We now proceed to add the conditions at the primes of VI = VU \ VS. Using

inclusion–exclusion, it is easy to see that

N (Z/�Z, n;VR,VS,VI )=
∑

ṼI ⊂VI

(−1)|ṼI |N ′
(
Z/�Z, n;VR,VS ∪ ṼI ,VI \ ṼI

)
. (28)

We can rewrite the above equation in terms of the generating series. Let FVR,VS,VI (s) be

the generating series for the extensions counted by N(Z/�Z, n;VR,VS,VI ). Then, it follows

from (28) that

FVR,VS,VI (s)=
∑

ṼI ⊂VI

(−1)|ṼI |FVR,VS∪ṼI ⊂VU
(s)

=
∑

ṼI ⊂VI

(−1)|ṼI |
(
F1

VR,VS∪ṼI ⊂VU
(s)+ F2

VR,VS∪ṼI ⊂VU
(s)

)
,
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and the main term will be given by the sum of the poles of the generating series

F1
VR,VS∪ṼI ⊂VU

(s). Using (27), this is given by

C�q
nn�−2

⎛
⎝ ∑

ṼI ⊂VI

(−1)|ṼI |

�|VS|∪|ṼI |
∏
v∈VR

(�− 1)q− deg v

1 + (�− 1)q− deg v

∏
v∈VU

1

1 + (�− 1)q− deg v

⎞
⎠

= C�q
nn�−2

(
1

�

)|VS| (�− 1

�

)|VI | ∏
v∈VR

(�− 1)q− deg v

1 + (�− 1)q− deg v

∏
v∈VU

1

1 + (�− 1)q− deg v

= C�

⎛
⎝ ∏
v∈VR∪VS∪VI

cv

⎞
⎠qnn�−2,

where the cv are as in Theorem 4.2.

Dividing the last line by (19) completes the proof of the statement. �

4.1 Quadratic extensions

We now look specifically at the case �= 2 as we obtain the number of quadratic exten-

sions of K with conductor n with no error term, and the ramified case with a better error

term without using the Tauberian theorem. The generating function F is

F (s)= 2 +
∑

Gal(L/K)∼=Z/2Z

D (L/K)−s =
∏
v

(
1 + Nv−s) +

∏
v

(
1 + (−1)deg v Nv−s

)
.

In this case,

A (s)=
∏
v

(
1 + Nv−s) =

∏
v

(
1 − Nv−2s

)
(1 − Nv−s)

= ζK (s)
ζK (2s)

=
(
1 − q1−2s

) (
1 + q−s

)
1 − q1−s

.

After making the change of variables u= q−s, we obtain

A(u) :=
(
1 − qu2

)
(1 + u)

1 − qu
.

Analogously,

B (s)=
∏
v

(
1 + (−1)deg v Nv−s

)
=

(
1 − q1−2s

) (
1 − q−s

)
1 + q1−s
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which equals A(−u) after the change of variables u= q−s. Then,

F (u)= A(u)+ A(−u)

= (
1 − qu2) ( 1 + u

1 − qu
+ 1 − u

1 + qu

)
.

By identifying the coefficients in the power series expansion in u of the above

rational function for n> 0 with the coefficients of

2 +
∞∑

n=1

N (Z/2Z, n)un,

we finally obtain that

N (Z/2Z, n)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + (−1)n

) (
qn − qn−2

)
n ≥ 3,

2q2 n = 2,

0 n = 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
(
qn − qn−2

)
n> 2, n even,

2q2 n = 2,

0 n odd.

(29)

Remark 4.3. Recall that the number of square-free monic polynomials of degree d> 1

is qd − qd−1. In this case, we are counting twice the number of square-free monic poly-

nomials. The counting happens twice since every monic square-free polynomial f gives

two quadratic extensions corresponding to K(
√

f ) and K(
√
β f )where β is a non-square

in F×
q . �

We now proceed to the ramified case.

FR (u)= udeg v0

1 + udeg v0
A(u)+ (−u)deg v0

1 + (−u)deg v0
A(−u)

= (
1 − qu2)

⎛
⎝ udeg v0 (1 + u)(

1 + udeg v0
)
(1 − qu)

+ (−u)deg v0 (1 − u)(
1 + (−u)deg v0

)
(1 + qu)

⎞
⎠ .

We have

A(u)= (
1 − qu2) 1 + u

1 − qu

= 1 + (q + 1)u+ q2u2 +
∞∑

n=3

(
qn − qn−2)un.
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Thus,

udeg v0

1 + udeg v0
A(u)=

( ∞∑
k=1

(−1)k−1 ukdeg v0

)(
1 + (q + 1)u+ q2u2 +

∞∑
n=3

(
qn − qn−2)un

)

=
∞∑

k=1

(−1)k−1 ukdeg v0 + (q + 1)
∞∑

k=1

(−1)k−1 ukdeg v0+1 + q2
∞∑

k=1

(−1)k−1 ukdeg v0+2

+
∞∑

k=1

∞∑
n=3

(−1)k−1 (
qn − qn−2)ukdeg v0+n

=
∞∑

k=1

(−1)k−1 ukdeg v0 + (q + 1)
∞∑

k=1

(−1)k−1 ukdeg v0+1 + q2
∞∑

k=1

(−1)k−1 ukdeg v0+2

+
∞∑

m=3+deg v0

⌊
m−3

deg v0

⌋∑
k=1

(−1)k−1
(
qm−kdeg v0 − qm−kdeg v0−2

)
um

=
∞∑

m=3+deg v0

1 − q−2

1 + q− deg v0
qm−deg v0um + Oq (1)

∞∑
m=deg v0

um.

By identifying the coefficients of FR(u) with the power series

∞∑
n=1

N (Z/2Z, n, v0, ramified)un,

we obtain,

N (Z/2Z, n, v0, ramified)=
(
1 − q−2

)
1 + q− deg v0

qn−deg v0 + Oq (1) .

5 Distribution of the Number of Points on Covers

We explain in this section how the results of this paper apply to the distribution for the

number of Fq-points on covers C on the moduli space Hg,�. We prove Theorem 1.3 and

make a comparison with the results of [1].

Consider an �-cyclic cover C → P1 defined over Fq and let L be the function field

of C . As mentioned in Section 2.2, the genus gC of the cover C is related to the discrimi-

nant Disc(L/K) via

2gC = (�− 1)
[−2 + deg Cond (L/K)

]
,

4334 A. Bucur et al.

 at U
niversite de M

ontreal on Septem
ber 4, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


which implies

n = 2gC

�− 1
+ 2, (30)

where n is the degree of Cond(L/K).

Recall that the zeta function of a curve C is given by

ZC (u)= exp

( ∞∑
n=1

#C
(
Fqn

) un

n

)
. (31)

Moreover,

ZL (u)= ZC (u)

with the usual identification u= q−s.

We recall that VK is the set of places of K. Suppose that L/K is a Galois exten-

sion. We can write

ZL (u)=
∏
v∈VK

(
1 − uf(v)deg v

)−r(v)
, (32)

where, for each place v, we denote by e(v), f(v), and r(v) the ramification degree, the

inertia degree and the number of places of L above v, respectively.

Taking the logarithm on both sides of the equality ZC (u)= ZL(u) using (31) and

(32), we obtain
∞∑

n=0

#C
(
Fqn

) un

n
=

∑
v∈VK

∞∑
m=1

r (v)
umf(v)deg v

m
.

Equating the coefficients of un on both sides gives

#C
(
Fqn

) =
∑
v∈VK

f(v)deg v|n

r (v) f (v)deg v. (33)

The above discussion implies that the fiber above an Fq-point of P1 that corre-

sponds to the place v of degree 1 of K contains

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� distinct Fq-points if v splits completely,

1 Fq-point if v ramifies,

0 Fq-points if v is inert.
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More generally, a place v of K corresponds to a Galois orbit of rational points of

the same degree of P1. The fiber above each point in the orbit contains

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� distinct points of degree deg v if v splits completely,

1 point of degree deg v if v ramifies,

1 point of degree �deg v if v is inert.

To get the distribution of #C (Fq) over Hg,�, we use the relative densities

N
(
Z/�Z, 2g

�−1 + 2;VR,VS,VI

)
N

(
Z/�Z, 2g

�−1 + 2
)

where we take the sets VR,VS,VI to be mutually disjoint, and such that VR ∪ VS ∪ VI is a

subset of the set of places of degree 1 in VK .

Then, using (33) with n= 1 and Theorem 1.1, we get

∣∣{C ∈Hg,�
(
Fq

)
: #C

(
Fq

) = m
}∣∣∣∣Hg,�

(
Fq

)∣∣
=

∑
�|VS|+|VR|=m

N
(
Z/�Z, 2g

�−1 + 2;VR,VS,VI

)
N

(
Z/�Z, 2g

�−1 + 2
)

∼
∑

�|VS|+|VR|=m

(
�− 1

q + �− 1

)|VR| ( q

� (q + �− 1)

)|VS| ( (�− 1)q

� (q + �− 1)

)q+1−|VR|

= Prob

(
q+1∑
i=1

Xi = m

)
,

where the Xi are the random variables of Theorem 1.3.

5.1 Affine models

We compare the results of this paper with the results of [1] concerning the irreducible

components H(d1,...,d�) of Hg,�. To describe these components, we write the covers con-

cretely in terms of affine models. Each such cover has an affine model of the form

C : Y� = f (X)= β f1 f2
2 · · · f�−1

�−1 (34)
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where the fi ∈ Fq[X] are monic, square-free, pairwise coprime, of degrees d1, . . . ,d�−1. The

degree of the conductor depends on the degrees d1, . . . ,d�−1 and whether there is ramifi-

cation at the place at infinity. The ramification at the place at infinity is determined by

whether the total degree of the polynomial is divisible by �. When d1 + · · · + (�− 1)d�−1

is a multiple of �, then the cover does not ramify at infinity, otherwise there is ramifica-

tion at infinity. In the first case, the degree of the conductor is d1 + · · · + d�−1 and in the

second case it is d1 + · · · + d�−1 + 1.

By the Riemann–Hurwitz formula the genus of this cover is given by

gC = (�− 1) (d1 + · · · + d�−1 − 2) /2

in the first case, and by

gC = (�− 1) (d1 + · · · + d�−1 − 1) /2,

in the second. Both equations are compatible with the relation (30) between the genus

gC and the degree of the conductor n.

For a given conductor, each β ∈ F×
q /(F

×
q )
� yields a different cover given by for-

mula (34). That is, there is one such extension for each element of F×
q /(F

×
q )
�. Using the

notation from [1], we define

F(d1,...,d�−1) = {( f1, . . . , f�−1) : fi monic, square-free, pairwise coprime,

deg fi = di, i = 1, . . . , �− 1
}
.

We consider, for d1 + · · · + (�− 1)d�−1 ≡ 0 (mod �),

F[d1,...,d�−1] =F(d1,...,d�−1) ∪
�−1⋃
j=1

F(d1,...,dj−1,...,d�−1). (35)

The elements in the first term correspond to affine models from Equation (34) in the

case in which there is no ramification at infinity. The elements in the other terms cor-

respond to affine models where there is ramification at infinity (of index j in the term

F(d1,...,dj−1,...,d�−1)).

Now suppose that we want to count the number of covers of genus g. For a con-

ductor f1 f2
2 · · · f�−1

�−1 , there are � different covers according to the class of the leading

coefficient as an element of F×
q /(F

×
q )
�. In addition, we need to consider that isomorphic

covers are obtained by taking automorphisms of P1(Fq), namely the q(q2 − 1) elements

of PGL2(Fq) (see [1, Section 7] for details).
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We denote by H(d1,...,d�) the corresponding component of Hg, indexed by tuples

(d1, . . . ,d�) with the properties that (�− 1)(d1 + · · · + d�−1 − 2)= 2g and d1 + 2d2 + · · · +
(�− 1)d�−1 ≡ 0 (mod �). The discussion in the previous paragraphs implies

|H(d1,...,d�−1)|′ = �

q
(
q2 − 1

) |F[d1,...,d�−1]|

where, as usual, the ′ notation means that the covers C on the moduli space are counted

with the usual weights 1/|Aut(C )|.
Thus, we can write

|Hg,�
(
Fq

) |′ = �

q
(
q2 − 1

) ∑
d1+···+d�−1=2(g+2)/(�−1)

d1+···+(�−1)d�−1≡0 (mod �)

|F[d1,...,d�−1]|. (36)

Formula (3.1) of [1] says that

|F(d1,...,d�−1)| =
L�−2qd1+···+d�−1

ζq (2)�−1

(
1 + O

(
�−1∑
h=2

qε(dh+···+d�−1)−dh + q−d1/2

))
, (37)

where

L�−2 =
�−2∏
j=1

∏
v �=v∞

(
1 − jq−2 deg v(

1 + q− deg v
) (

1 + jq− deg v
)
)
.

The formula above may be rewritten as

|F(d1,...,d�−1)| =
(�− 2)!C�qd1+···+d�−1(

1 + (�− 1)q−1
)

(
1 + O

(
�−1∑
h=2

qε(dh+···+d�−1)−dh + q−d1/2

))
.

By combining Equations (35) and (36) with the line above, we obtain

q
(
q2 − 1

) |Hg,�
(
Fq

) |′ = (�− 2)!C�q
n

∑
d1+···+d�−1=n

d1+···+(�−1)d�−1≡0 (mod �)

�+ ET

= C�n
�−2qn + ET,

where ET denotes an error term and, in the last line, we used that the number of solu-

tions of d1 + · · · + d�−1 = n is given by ∼ n�−2

(�−2)! .

Thus the result of Theorem 4.1 is compatible with the result of Theorem 3.1

from [1], in the sense that summing the main terms of (37) gives the same number of

elements of Hg,�(Fq) computed in this paper, even if the error terms coming from (37) are

only valid when min{d1, . . . ,d�−1} → ∞.
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