Mahler measure and regulators

Matilde N. Lalín

University of Bristish Columbia and Pacific Institute for the Mathematical Sciences
mlalin@math.ubc.ca
http://www.math.ubc.ca/~mlalin
March 2nd, 2007

Beilinson's conjectures

Mahler measure of one-variable polynomials

Pierce (1918) $P \in \mathbb{Z}[x]$ monic,

$$
\begin{gathered}
P(x)=\prod_{i}\left(x-\alpha_{i}\right) \\
\Delta_{n}=\prod_{i}\left(\alpha_{i}^{n}-1\right) \\
P(x)=x-2 \Rightarrow \Delta_{n}=2^{n}-1
\end{gathered}
$$

Lehmer (1933)

$$
\begin{gathered}
\frac{\Delta_{n+1}}{\Delta_{n}} \\
\lim _{n \rightarrow \infty} \frac{\left|\alpha^{n+1}-1\right|}{\left|\alpha^{n}-1\right|}=\left\{\begin{array}{cc}
|\alpha| & \text { if }|\alpha|>1 \\
1 & \text { if }|\alpha|<1
\end{array}\right.
\end{gathered}
$$

For

$$
\begin{gathered}
P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P)=|a| \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\}
\end{gathered}
$$

$$
m(P)=\log M(P)=\log |a|+\sum_{i} \log ^{+}\left|\alpha_{i}\right|
$$

Lehmer (1933)

$$
\begin{gathered}
\frac{\Delta_{n+1}}{\Delta_{n}} \\
\lim _{n \rightarrow \infty} \frac{\left|\alpha^{n+1}-1\right|}{\left|\alpha^{n}-1\right|}=\left\{\begin{array}{cc}
|\alpha| & \text { if }|\alpha|>1 \\
1 & \text { if }|\alpha|<1
\end{array}\right.
\end{gathered}
$$

For

$$
\begin{gathered}
P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P)=|a| \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\} \\
m(P)=\log M(P)=\log |a|+\sum_{i} \log ^{+}\left|\alpha_{i}\right|
\end{gathered}
$$

Kronecker's Lemma

$P \in \mathbb{Z}[x], P \neq 0$,

$$
m(P)=0 \Leftrightarrow P(x)=x^{n} \prod \phi_{i}(x)
$$

Lehmer's Question

$$
\begin{array}{r}
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right) \\
=0.162357612 \ldots
\end{array}
$$

Lehmer(1933) Does there exist $C>0$ such that $P(x) \in \mathbb{Z}[x]$

$$
\begin{aligned}
& m(P)=0 \text { or } m(P)>C ? ? \\
& \sqrt{\Delta_{379}}=1,794,327,140,357
\end{aligned}
$$

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula:

Mahler measure of multivariable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula:

$$
\int_{0}^{1} \log \left|\mathrm{e}^{2 \pi \mathrm{i} \theta}-\alpha\right| \mathrm{d} \theta=\log ^{+}|\alpha|
$$

recovers one-variable case.

Properties

- $m(P) \geq 0$ if P has integral coefficients.
- $m(P \cdot Q)=m(P)+m(Q)$
- α algebraic number, and P_{α} minimal polynomial over \mathbb{Q},

$$
m\left(P_{\alpha}\right)=[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha)
$$

where h is the logarithmic Weil height.

Jensen's formula \longrightarrow simple expression in one-variable case.

Several-variable case?

Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3) \\
\mathrm{L}\left(\chi_{-3}, s\right)=\sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \quad \chi_{-3}(n)=\left\{\begin{array}{cc}
1 & n \equiv 1 \bmod 3 \\
-1 & n \equiv-1 \bmod 3 \\
0 & n \equiv 0 \bmod 3
\end{array}\right. \\
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
\end{gathered}
$$

More examples in several variables

- D'Andrea \& L. (2003)

$$
\begin{gathered}
\pi^{2} m\left(\operatorname{Res}_{t}\left(x+y t+t^{2}, z+w t+t^{2}\right)\right) \\
=\pi^{2} m\left(z(1-x y)^{2}-(1-x)(1-y)\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\zeta(3)}
\end{gathered}
$$

- Boyd \& L. (2005)

$$
\pi^{2} m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\pi \mathrm{L}\left(\chi_{-4}, 2\right)+\frac{21}{8} \zeta(3)
$$

- L. (2003)

$$
\begin{gathered}
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=24 \mathrm{~L}\left(\chi_{-4}, 4\right) \\
\pi^{4} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)(1+y) z\right)=93 \zeta(5)
\end{gathered}
$$

- Known formulas for

$$
\pi^{n+2} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{n}}{1+x_{n}}\right)(1+y) z\right)
$$

Why do we get nice numbers?

Philosophy of Beilinson's conjectures

Global information from local information through L-functions

- Arithmetic-geometric object X (for instance, $X=\mathcal{O}_{F}, F$ a number field)
- L-function $\left(\mathrm{L}_{F}=\zeta_{F}\right)$
- Finitely-generated abelian group $K\left(K=\mathcal{O}_{F}^{*}\right)$
- Regulator map reg : $K \rightarrow \mathbb{R}($ reg $=\log |\cdot|)$

$$
(K \operatorname{rank} 1) \quad \mathrm{L}_{X}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \operatorname{reg}(\xi)
$$

(Dirichlet class number formula, for F real quadratic, $\left.\zeta_{F}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \log |\epsilon|, \epsilon \in \mathcal{O}_{F}^{*}\right)$

An algebraic integration for Mahler measure

Deninger (1997) General framework.
Rodriguez-Villegas (1997)

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

By Jensen's equality:

An algebraic integration for Mahler measure

Deninger (1997) General framework.
Rodriguez-Villegas (1997)

$$
\begin{aligned}
P(x, y) & =y+x-1 \quad X=\{P(x, y)=0\} \\
m(P) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |y+x-1| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

By Jensen's equality:

$$
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x}
$$

$$
\begin{gathered}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log ^{+}|1-x| \frac{\mathrm{d} x}{x} \\
=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
\end{gathered}
$$

where

$$
\begin{gathered}
\gamma=X \cap\{|x|=1,|y| \geq 1\} \\
\eta(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
\end{gathered}
$$

$$
\mathrm{d} \arg x=\operatorname{Im}\left(\frac{\mathrm{d} x}{x}\right)
$$

- $\eta(x, y)=-\eta(y, x)$
- $\eta\left(x_{1} x_{2}, y\right)=\eta\left(x_{1}, y\right)+\eta\left(x_{2}, y\right)$

Theorem

$$
\eta(x, 1-x)=\operatorname{di} D(x)
$$

Bloch-Wigner dilogarithm:

$$
\begin{gathered}
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x| \\
\operatorname{Li}_{2}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad|x|<1
\end{gathered}
$$

Use Stokes's Theorem:

$$
m(P)=-\frac{1}{2 \pi} D(\partial \gamma)
$$

$$
x=\mathrm{e}^{2 \pi \mathrm{i} \theta}
$$

$$
\begin{gathered}
y(\gamma(\theta))=1-\mathrm{e}^{2 \pi \mathrm{i} \theta}, \quad \theta \in[1 / 6 ; 5 / 6] \\
\partial \gamma=\left[\bar{\xi}_{6}\right]-\left[\xi_{6}\right]
\end{gathered}
$$

$$
\begin{gathered}
2 \pi m(x+y+1)=D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right) \\
=2 D\left(\xi_{6}\right)=\frac{3 \sqrt{3}}{2} \mathrm{~L}\left(\chi_{-3}, 2\right)
\end{gathered}
$$

In general,

$$
P(x, y) \in \mathbb{Q}[x, y]
$$

$$
\begin{gathered}
m(P)=m\left(P^{*}\right)-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y) \\
P(x, y)=P^{*}(x) y^{d_{y}}+\ldots
\end{gathered}
$$

Need

$$
x \wedge y=\sum_{j} r_{j} z_{j} \wedge\left(1-z_{j}\right) \quad \text { in } \quad \bigwedge^{2}\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q}
$$

$\left(\{x, y\}=0\right.$ in $\left.K_{2}(\mathbb{C}(X)) \otimes \mathbb{Q}\right)$.

$$
\int_{\gamma} \eta(x, y)=\left.\sum r_{j} D\left(z_{j}\right)\right|_{\partial \gamma}
$$

F field. Bloch group:

$$
\mathcal{B}_{2}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /\left\langle\{0\},\{\infty\}, R_{2}(x, y)\right\rangle
$$

$$
R_{2}(x, y)=\{x\}_{2}+\{y\}_{2}+\{1-x y\}_{2}+\left\{\frac{1-x}{1-x y}\right\}_{2}+\left\{\frac{1-y}{1-x y}\right\}_{2}
$$

is the five-term relation for D.

$\mathcal{B}_{3}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /$ "functional equations of $\mathcal{L}_{3}(x)^{\prime \prime}$
F field. Bloch group:

$$
\mathcal{B}_{2}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /\left\langle\{0\},\{\infty\}, R_{2}(x, y)\right\rangle
$$

$$
R_{2}(x, y)=\{x\}_{2}+\{y\}_{2}+\{1-x y\}_{2}+\left\{\frac{1-x}{1-x y}\right\}_{2}+\left\{\frac{1-y}{1-x y}\right\}_{2}
$$

is the five-term relation for D.

$$
\mathcal{L}_{3}(x):=\operatorname{Re}\left(\operatorname{Li}_{3}(x)-\log |x| \operatorname{Li}_{2}(x)+\frac{1}{3} \log ^{2}|x| \operatorname{Li}_{1}(x)\right)
$$

$\mathcal{B}_{3}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /$ "functional equations of $\mathcal{L}_{3}(x)^{\prime \prime}$

The three-variable case

Theorem
L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$
X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}
$$

$$
\begin{aligned}
x \wedge y \wedge z & =\sum_{i} r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i}
\end{aligned} \quad \text { in } \quad \bigwedge^{3}\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q}, ~ 子 \quad \text { in } \quad\left(\mathcal{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}} .
$$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

The three-variable case

Theorem
L. (2005)
$P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,
$X=\{P(x, y, z)=0\}, \quad C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}$
$\{x, y, z\}=0 \quad$ in $\quad K_{3}^{M}(\mathbb{C}(X)) \otimes \mathbb{Q}$
$\left\{x_{i}\right\}_{2} \otimes y_{i} \quad$ trivial in $\quad \operatorname{gr}_{3}^{\gamma} K_{4}(\mathbb{C}(C)) \otimes \mathbb{Q}(?)$

Then

$$
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathcal{L}_{3}(\xi) \quad \xi \in \mathcal{B}_{3}(\overline{\mathbb{Q}})_{\mathbb{Q}}
$$

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.
- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for n-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} determined by $x+\frac{1}{x}+y+\frac{1}{y}+k=0$.

Rogers \& L (2006)
For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

Kurokawa \& Ochiai (2005)

For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right)
$$

Rogers \& L (2006)
For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

Kurokawa \& Ochiai (2005)
For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

$h=\frac{1}{\sqrt{2}}$ in both equations, and some K-theory,
Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})
$$

Rodriguez-Villegas (1997)

$h=\frac{1}{\sqrt{2}}$ in both equations, and some K-theory,
Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})
$$

Rodriguez-Villegas (1997)
$k=3 \sqrt{2}\left(\right.$ modular curve $\left.X_{0}(24)\right)$

$$
\begin{gathered}
m(3 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+3 \sqrt{2}\right)=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right) \\
q \in \mathbb{Q}^{*}, \quad q \stackrel{?}{=} \frac{5}{2}
\end{gathered}
$$

For $|k|>4, x+\frac{1}{x}+y+\frac{1}{y}+k$ does not intersect \mathbb{T}^{2}.

$$
m(k)=-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \eta(x, y)
$$

where

$$
\gamma=X \cap\{|x|=1\}
$$

$$
\eta(x, y)=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
$$

We are evaluating the regulator in $\{x, y\} \in K_{2}(E)_{\mathbb{Q}}$.

Computing the regulator

$$
E(\mathbb{C}) \cong \mathbb{C} / \mathbb{Z}+\tau \mathbb{Z} \cong \mathbb{C}^{*} / q^{\mathbb{Z}}
$$

$z \bmod \Lambda=\mathbb{Z}+\tau \mathbb{Z}$ is identified with $\mathrm{e}^{2 i \pi z}$.
Bloch regulator function

$$
R_{\tau}\left(\mathrm{e}^{2 \pi \mathrm{i}(a+b \tau)}\right)=\frac{y_{\tau}^{2}}{\pi} \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{\mathrm{e}^{2 \pi \mathrm{i}(b n-a m)}}{(m \tau+n)^{2}(m \bar{\tau}+n)}
$$

y_{τ} is the imaginary part of τ.

Theorem

L. \& Rogers (2006), after results of Beilinson, Bloch, idea of Deninger
E / \mathbb{R} elliptic curve, x, y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^{1}$

$$
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}((x) \diamond(y))\right)
$$

where Ω_{0} is the real period and $\Omega=\int_{\gamma} \omega$.

In our case,

$$
\mathbb{Z}[E(\mathbb{C})]^{-} \ni(x) \diamond(y)=8(P), \quad P \quad \text { 4-torsion. }
$$

Isogenies \rightsquigarrow Functional eq for the regulator.
Functional eq for the regulator \rightsquigarrow Functional eq for the Mahler measure

Big picture

$$
\begin{gathered}
\cdots \rightarrow\left(K_{3}(\overline{\mathbb{Q}}) \supset\right) K_{3}(\partial \gamma) \rightarrow K_{2}(X, \partial \gamma) \rightarrow K_{2}(X) \rightarrow \ldots \\
\partial \gamma=X \cap \mathbb{T}^{2}
\end{gathered}
$$

- $\eta(x, y)$ is exact, then $\{x, y\} \in K_{3}(\partial \gamma)$. We have $\partial \gamma \neq \emptyset$ and we use Stokes's Theorem.
$\rightsquigarrow D, 1+x+y$
- $\partial \gamma=\emptyset$, then $\{x, y\} \in K_{2}(C)$. We have $\eta(x, y)$ is not exact. $\rightsquigarrow L$-function, $1+x+\frac{1}{x}+y+\frac{1}{y}$

Big picture in three variables

$$
\begin{gathered}
\cdots \rightarrow K_{4}(\partial \Gamma) \rightarrow K_{3}(X, \partial \Gamma) \rightarrow K_{3}(X) \rightarrow \ldots \\
\partial \Gamma=X \cap \mathbb{T}^{3} \\
\cdots \rightarrow\left(K_{5}(\overline{\mathbb{Q}}) \supset\right) K_{5}(\partial \gamma) \rightarrow K_{4}(C, \partial \gamma) \rightarrow K_{4}(C) \rightarrow \ldots \\
\partial \gamma=C \cap \mathbb{T}^{2}
\end{gathered}
$$

