AN ALGEBRAIC INTEGRATION FOR MAHLER MEASURE

MATILDE N. LALÍN

Abstract

There are many examples of several variable polynomials whose Mahler measure is expressed in terms of special values of polylogarithms. These examples are expected to be related to computations of regulators, as observed by Deninger [D] and, later, by Rodriguez-Villegas [R] and Maillot [M]. While Rodriguez-Villegas made this relationship explicit for the two-variable case, it is our goal to understand the three-variable case and shed some light on the examples with more variables.

1. Introduction

The (logarithmic) Mahler measure of a Laurent polynomial $P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is defined by

$$
\begin{equation*}
m(P):=\int_{0}^{1} \cdots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \cdots \mathrm{~d} \theta_{n} . \tag{1}
\end{equation*}
$$

Because of Jensen's formula, there is a simple expression for the Mahler measure in the one-variable case as a function on the roots of the polynomial. It is natural, then, to wonder what happens with several variables.

The problem of finding explicit closed formulas for Mahler measures of severalvariable polynomials is hard. However, several examples have been found, especially for cases of two and three variables. Some formulas have been completely proved, and some others have been established numerically and are strongly believed to be true.

A remarkable fact is that in most of these examples, the Mahler measure of polynomials with integral coefficients can be expressed in terms of special values of L-series or polylogarithms (i.e., Riemann zeta functions, Dirichlet L-series, L-series of varieties, zeta functions of number fields, etc.).

DUKE MATHEMATICAL JOURNAL

Vol. 138, No. 3, © 2007
Received 25 November 2005. Revision received 27 September 2006.
2000 Mathematics Subject Classification. Primary 11G55; Secondary 19F99.
Author's work partially supported by the University of Texas at Austin Harrington Fellowship and by the Institut des Hautes Études Scientifiques (France).

For instance, the first and simplest example in two variables was discovered by Smyth [S, Example 5]:

$$
\begin{equation*}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=L^{\prime}\left(\chi_{-3},-1\right) \tag{2}
\end{equation*}
$$

where χ_{-3} is the character of conductor 3 .
Another example was computed numerically by Boyd [Bo] (and studied by Deninger [D] and Rodriguez-Villegas [R]):

$$
\begin{equation*}
m\left(x+\frac{1}{x}+y+\frac{1}{y}+1\right) \stackrel{?}{=} L^{\prime}(E, 0) \tag{3}
\end{equation*}
$$

where E is the elliptic curve of conductor 15 which is the projective closure of the curve $x+1 / x+y+1 / y+1=0$ and $L(E, s)$ is the L-function of E.

Deninger [D] interpreted computations of Mahler measure in terms of Deligne periods of mixed motives, explaining some of the relations to the L-series via Beilinson's conjectures.

Rodriguez-Villegas [R] has clarified this relationship by explicitly computing the regulator and relating this machinery to the cases already (numerically) known by Boyd, proving some of them and deeply understanding the cases with two variables. Recently, Maillot [M] has sketched how one could continue these ideas for more variables.

It is our goal to develop these ideas and to apply them in order to understand the few known examples with three and more variables involving Dirichlet L-series, Riemann zeta functions, and polylogarithms. In this article, we describe a general situation and illustrate our explanation with a few examples. In [L2], we demonstrate the computational power of our method by showing how to prove many other formulas of Mahler measures and generalized Mahler measures as well.

2. Background

In this section, we describe some ingredients that are used in our construction.

2.1. Polylogarithms

The cases that we are going to study involve zeta functions or Dirichlet L-series, but they all may be thought of as special values of polylogarithms. In fact, this common feature seems to be the most appropriate way of dealing with the interpretation of these formulas. Here, we proceed to recall some definitions and establish some common notation.

Definition 1

The nth polylogarithm is the function defined by the power series

$$
\begin{equation*}
\operatorname{Li}_{n}(x):=\sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}}, \quad x \in \mathbb{C},|x|<1 \tag{4}
\end{equation*}
$$

This function can be continued analytically to $\mathbb{C} \backslash(1, \infty)$. We work with Zagier's modification of the polylogarithm (see [Z3]),

$$
\begin{equation*}
\mathscr{L}_{n}(x):=\operatorname{Re}_{n}\left(\sum_{j=0}^{n-1} \frac{2^{j} B_{j}}{j!}(\log |x|)^{j} \operatorname{Li}_{n-j}(x)\right), \tag{5}
\end{equation*}
$$

where B_{j} is the j th Bernoulli number and Re_{k} denotes Re or Im, depending on whether n is odd or even. This function is one-valued, continuous in $\mathbb{P}^{1}(\mathbb{C})$, and real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$.
\mathscr{L}_{n} satisfies very clean functional equations. The simplest ones are

$$
\mathscr{L}_{n}\left(\frac{1}{x}\right)=(-1)^{n-1} \mathscr{L}_{n}(x), \quad \mathscr{L}_{n}(\bar{x})=(-1)^{n-1} \mathscr{L}_{n}(x)
$$

For $n=2$, one obtains the Bloch-Wigner dilogarithm,

$$
\begin{equation*}
D(x)=\operatorname{Im}\left(\operatorname{Li}_{2}(x)-\log |x| \operatorname{Li}_{1}(x)\right)=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\log |x| \arg (1-x), \tag{6}
\end{equation*}
$$

which satisfies the well-known five-term relation

$$
\begin{equation*}
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0 \tag{7}
\end{equation*}
$$

For $n=3$, we obtain

$$
\begin{equation*}
\mathscr{L}_{3}(x)=\operatorname{Re}\left(\operatorname{Li}_{3}(x)-\log |x| \operatorname{Li}_{2}(x)+\frac{1}{3} \log ^{2}|x| \operatorname{Li}_{1}(x)\right) \tag{8}
\end{equation*}
$$

This modified trilogarithm satisfies more functional equations, such as the SpenceKummer relation:

$$
\begin{gather*}
\mathscr{L}_{3}\left(\frac{x(1-y)^{2}}{y(1-x)^{2}}\right)+\mathscr{L}_{3}(x y)+\mathscr{L}_{3}\left(\frac{x}{y}\right)-2 \mathscr{L}_{3}\left(\frac{x(1-y)}{y(1-x)}\right)-2 \mathscr{L}_{3}\left(\frac{y(1-x)}{y-1}\right) \\
\quad-2 \mathscr{L}_{3}\left(\frac{x(1-y)}{x-1}\right)-2 \mathscr{L}_{3}\left(\frac{1-y}{1-x}\right)-2 \mathscr{L}_{3}(x)-2 \mathscr{L}_{3}(y)+2 \mathscr{L}_{3}(1)=0 \tag{9}
\end{gather*}
$$

2.2. Polylogarithmic motivic complexes

Given a field F, consider $\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right]$, the free abelian group generated by the elements of \mathbb{P}_{F}^{1}. For each n, we are interested in working with this group modulo the (rational) functional equations of the nth polylogarithm. Unfortunately, the functional equations of higher polylogarithms are not known explicitly.

For X an algebraic variety, Goncharov [G1], [G2], [G3] has constructed some groups that conjecturally correspond to the groups in the previous paragraph, and they fit into polylogarithmic motivic complexes whose cohomology is related to Bloch
groups and is conjectured to be the motivic cohomology of X. A regulator can be defined in these complexes and is conjectured to coincide with Beilinson's regulator.

From now on, we follow [G1], [G2], and [G3]. We state definitions and results; the proofs may be found in the mentioned works.

Given a field F, one defines inductively some subgroups $\mathscr{R}_{n}(F)$ and then lets

$$
\begin{equation*}
\mathscr{B}_{n}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] / \mathscr{R}_{n}(F) . \tag{10}
\end{equation*}
$$

The classes of x in $\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right]$ and in $\mathscr{B}_{n}(F)$ are denoted by $\{x\}$ and $\{x\}_{n}$, respectively. We begin by setting

$$
\begin{equation*}
\mathscr{R}_{1}(F):=\left\langle\{x\}+\{y\}-\{x y\} ; x, y \in F^{*},\{0\},\{\infty\}\right\rangle . \tag{11}
\end{equation*}
$$

Thus, $\mathscr{B}_{1}(F)=F^{*}$. Now, we proceed to construct a family of morphisms:

$$
\begin{gather*}
\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] \xrightarrow{\delta_{n}} \begin{cases}\mathscr{B}_{n-1}(F) \otimes F^{*} & \text { if } n \geq 3, \\
\bigwedge^{2} F^{*} & \text { if } n=2,\end{cases} \\
\delta_{n}(\{x\})= \begin{cases}\{x\}_{n-1} \otimes x & \text { if } n \geq 3, \\
(1-x) \wedge x & \text { if } n=2, \\
0 & \text { if }\{x\}=\{0\},\{1\},\{\infty\} .\end{cases} \tag{12}
\end{gather*}
$$

Then one defines

$$
\begin{equation*}
\mathscr{A}_{n}(F):=\operatorname{ker} \delta_{n} . \tag{13}
\end{equation*}
$$

Note that any element $\alpha(t)=\sum n_{i}\left\{f_{i}(t)\right\} \in \mathbb{Z}\left[\mathbb{P}_{F(t)}^{1}\right]$ has a specialization $\alpha\left(t_{0}\right)=$ $\sum n_{i}\left\{f_{i}\left(t_{0}\right)\right\} \in \mathbb{Z}\left[\mathbb{P}_{F}^{1}\right]$ for every $t_{0} \in \mathbb{P}_{F}^{1}$.

Thus,

$$
\begin{equation*}
\mathscr{R}_{n}(F):=\left\langle\alpha(0)-\alpha(1) ; \alpha(t) \in \mathscr{A}_{n}(F(t))\right\rangle . \tag{14}
\end{equation*}
$$

Goncharov proves that $\mathscr{R}_{n}(\mathbb{C})$ is the subgroup of all the rational functional equations for the n-polylogarithm in \mathbb{C}. As stated at the beginning of Section 2.2, the philosophy is that $\mathscr{R}_{n}(F)$ should be the subgroup of all the rational functional equations for the n-polylogarithm in F.

Because of $\delta_{n}\left(\mathscr{R}_{n}(F)\right)=0$, it induces morphisms in the quotients

$$
\delta_{n}: \mathscr{B}_{n}(F) \rightarrow \mathscr{B}_{n-1}(F) \otimes F^{*}, \quad n \geq 3, \quad \delta_{2}: \mathscr{B}_{2}(F) \rightarrow \bigwedge^{2} F^{*}
$$

One obtains the complex

$$
\begin{aligned}
\mathscr{B}_{F}(n): \mathscr{B}_{n}(F) & \xrightarrow{\delta} \mathscr{B}_{n-1}(F) \otimes F^{*} \xrightarrow{\delta} \mathscr{B}_{n-2}(F) \otimes \bigwedge^{2} F^{*} \\
& \stackrel{\delta}{\rightarrow} \cdots \xrightarrow{\delta} \mathscr{B}_{2}(F) \otimes \bigwedge^{n-2} F^{*} \xrightarrow{\delta} \bigwedge^{n} F^{*},
\end{aligned}
$$

where

$$
\delta:\{x\}_{p} \otimes \bigwedge_{i=1}^{n-p} y_{i} \rightarrow \delta_{p}\left(\{x\}_{p}\right) \wedge \bigwedge_{i=1}^{n-p} y_{i}
$$

The following conjecture relates the cohomology of the complex $\mathscr{B}_{F}(n)$ to motivic cohomology.

CONJECTURE 2 ([G2, (3)])
We have

$$
\begin{equation*}
H^{i}\left(\mathscr{B}_{F}(n) \otimes \mathbb{Q}\right) \cong \operatorname{gr}_{n}^{\gamma} K_{2 n-i}(F) \otimes \mathbb{Q} \tag{15}
\end{equation*}
$$

Evidence supporting this conjecture is found, for instance, in the cases $n=1,2$. First, it is clear that $H^{1}\left(\mathscr{B}_{F}(1)\right) \cong F^{*}=K_{1}(F)$.

For $n=2$, it is known that

$$
\mathscr{B}_{2}(F) \cong \mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /\left\langle R_{2}(x, y) ; x, y \in F^{*},\{0\},\{\infty\}\right\rangle
$$

where

$$
R_{2}(x, y):=\{x\}+\{y\}+\{1-x y\}+\left\{\frac{1-x}{1-x y}\right\}+\left\{\frac{1-y}{1-x y}\right\}
$$

is the five-term relation of the dilogarithm.
Besides,

$$
\begin{align*}
H^{1}\left(\mathscr{B}_{F}(2)\right)_{\mathbb{Q}} & \cong K_{3}^{\text {ind }}(F)_{\mathbb{Q}} \tag{16}\\
H^{2}\left(\mathscr{B}_{F}(2)\right) & \cong K_{2}(F) \tag{17}\\
H^{n}\left(\mathscr{B}_{F}(n)\right) & \cong K_{n}^{M}(F) \tag{18}
\end{align*}
$$

The first assertion was proved by Suslin, the second one is Matsumoto's theorem, and the last one corresponds to the definition of Milnor's K-theory.

2.3. Regulators

Deninger [D] observed that the Mahler measure can be seen as a regulator evaluated in a cycle that may or may not have trivial boundary. More precisely,

$$
\begin{equation*}
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \pi \mathrm{i})^{n-1}} \int_{G} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right) . \tag{19}
\end{equation*}
$$

We have to explain the ingredients in this formula. In this section, we are concerned with $\eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)$. This form is described in the context of Goncharov's construction of the regulator on the polylogarithmic motivic complexes.

Let us establish some notation:

$$
\widehat{\mathscr{L}}_{n}(z):=\left\{\begin{array}{cl}
\mathscr{L}_{n}(z) & \text { if } n>1 \text { is odd } \\
\mathrm{i} \mathscr{L}_{n}(z) & \text { if } n \text { is even } .
\end{array}\right.
$$

For any integers $p \geq 1$ and $k \geq 0$, define

$$
\beta_{k, p}:=(-1)^{p} \frac{(p-1)!}{(k+p+1)!} \sum_{j=0}^{[(p-1) / 2]}\binom{k+p+1}{2 j+1} 2^{k+p-2 j} B_{k+p-2 j},
$$

where the B_{i} are Bernoulli numbers.

Definition 3

We consider the following 1-forms:

$$
\begin{gathered}
\widehat{\mathscr{L}}_{p, q}(x):=\widehat{\mathscr{L}}_{p}(x) \log ^{q-1}|x| \mathrm{d} \log |x|, \quad p \geq 2, \\
\widehat{\mathscr{L}}_{1, q}(x):=(\log |x| \mathrm{d} \log |1-x|-\log |1-x| \mathrm{d} \log |x|) \log ^{q-1}|x| .
\end{gathered}
$$

Recall that

$$
\operatorname{Alt}_{m} F\left(t_{1}, \ldots, t_{m}\right):=\sum_{\sigma \in S_{m}}(-1)^{|\sigma|} F\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right) .
$$

Now, we are ready to describe the differential forms.

Definition 4

Let x, x_{i} be rational functions on a complex variety X :

$$
\begin{align*}
& \eta_{n+m}(m+1):\{x\}_{n} \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& \rightarrow \\
& \quad \widehat{\mathscr{L}}_{n}(x) \operatorname{Alt}_{m}\left(\sum_{p \geq 0} \frac{1}{(2 p+1)!(m-2 p)!} \bigwedge_{j=1}^{2 p} \mathrm{~d} \log \left|x_{j}\right| \wedge \bigwedge_{j=2 p+1}^{m} \operatorname{diarg} x_{j}\right) \\
& \tag{20}\\
& \quad \sum_{1 \leq k, 1 \leq p \leq m} \beta_{k, p} \widehat{\mathscr{L}}_{n-k, k}(x) \\
& \\
& \quad \wedge \operatorname{Alt}_{m}\left(\frac{\log \left|x_{1}\right|}{(p-1)!(m-p)!} \bigwedge_{j=2}^{2 p} \mathrm{~d} \log \left|x_{j}\right| \wedge \bigwedge_{j=p+1}^{m} \operatorname{di} \arg x_{j}\right),
\end{align*}
$$

$$
\begin{align*}
& \eta_{m}(m): x_{1} \wedge \cdots \wedge x_{m} \\
& \quad \rightarrow \operatorname{Alt}_{m}\left(\sum_{p \geq 0} \frac{\log \left|x_{1}\right|}{(2 p+1)!(m-2 p-1)!} \bigwedge_{j=2}^{2 p+1} \mathrm{~d} \log \left|x_{j}\right| \wedge \bigwedge_{j=2 p+2}^{m} \operatorname{diarg} x_{j}\right) \tag{21}
\end{align*}
$$

These differential forms typically have singularities. In order to work with them, we need to have control of the residues. Let F be a field with discrete valuation v, residue field F_{v}, and group of units U. Let $u \rightarrow \bar{u}$ be the projection $U \rightarrow F_{v}^{*}$, and let π be a uniformizer for v. There is a homomorphism

$$
\theta: \bigwedge^{n} F^{*} \rightarrow \bigwedge^{n-1} F_{v}^{*}
$$

defined by

$$
\theta\left(\pi \wedge u_{1} \wedge \cdots \wedge u_{n-1}\right)=\bar{u}_{1} \wedge \cdots \wedge \bar{u}_{n-1}, \quad \theta\left(u_{1} \wedge \cdots \wedge u_{n}\right)=0
$$

Now, define $s_{v}: \mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] \rightarrow \mathbb{Z}\left[\mathbb{P}_{F_{v}}^{1}\right]$ by $s_{v}(\{x\})=\{\bar{x}\}$. It induces $s_{v}: \mathscr{B}_{m}(F) \rightarrow$ $\mathscr{B}_{m}\left(F_{v}\right)$. Then

$$
\begin{equation*}
\partial_{v}:=s_{v} \otimes \theta: \mathscr{B}_{m}(F) \otimes \bigwedge^{n-m} F^{*} \rightarrow \mathscr{B}_{m}\left(F_{v}\right) \otimes \bigwedge^{n-m-1} F_{v}^{*} \tag{22}
\end{equation*}
$$

defines a morphism of complexes

$$
\begin{equation*}
\partial_{v}: \mathscr{B}_{F}(n) \rightarrow \mathscr{B}_{F_{v}}(n-1)[-1] . \tag{23}
\end{equation*}
$$

Observation 5

The induced morphism

$$
\partial_{v}: H^{n}\left(\mathscr{B}_{F}(n)\right) \rightarrow H^{n-1}\left(\mathscr{B}_{F_{v}}(n-1)\right)
$$

coincides with the tame symbol defined by Milnor:

$$
\partial_{v}: K_{n}^{M}(F) \rightarrow K_{n-1}^{M}\left(F_{v}\right) .
$$

Let X be a complex variety. Let $X^{(1)}$ denote the set of the codimension-one, closed, irreducible subvarieties. Let $\mathscr{A}^{j}(X)(k)$ denote the space of smooth j-forms with values in $(2 \pi \mathrm{i})^{k} \mathbb{R}$. Let d be the de Rham differential on $\mathscr{A}^{j}(X)$, and let \mathscr{D} be the de Rham differential on distributions, so

$$
\mathrm{d}(\mathrm{~d} \arg x)=0, \quad \mathscr{D}(\mathrm{~d} \arg x)=2 \pi \delta(x) .
$$

The difference $\mathscr{D}-\mathrm{d}$ is the de Rham residue homomorphism.
Goncharov [G2] proves the following.

THEOREM 6

We have that $\eta_{n}(m)$ induces a homomorphism of complexes

such that:

- $\quad \eta_{n}(1)\left(\{x\}_{n}\right)=\widehat{\mathscr{L}}_{n}(x)$;
- $\quad \mathrm{d} \eta_{n}(n)\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\beta \operatorname{Re}_{n}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)$, where $\beta=1$ if n is odd and i if n is even;
- $\quad \eta_{n}(m)(*)$ defines a distribution on $X(\mathbb{C})$;
- the morphism $\eta_{n}(m)$ is compatible with residues

$$
\begin{align*}
& \mathscr{D} \circ \eta_{n}(m)-\eta_{n}(m+1) \circ \delta=2 \pi \mathrm{i} \sum_{Y \in X^{(1)}} \eta_{n-1}(m-1) \circ \partial_{v_{Y}}, \quad m<n, \tag{24}\\
& \mathscr{D} \circ \eta_{n}(n)-\beta \operatorname{Re}_{n}\left(\frac{\mathrm{~d} x_{1}}{x_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} x_{n}}{x_{n}}\right)=2 \pi \mathrm{i} \sum_{Y \in X^{(1)}} \eta_{n-1}(n-1) \circ \partial_{v_{Y}}, \tag{25}
\end{align*}
$$

where v_{Y} is the valuation defined by the divisor Y.

The relation of $\eta_{n}(\cdot)$ to the regulator is roughly as follows. As we mentioned in Conjecture 2, the cohomology of the first complex corresponds to the Adams filtration, which is the absolute cohomology. On the other hand, a slight modification of the second complex leads to Deligne cohomology. Now, $\eta_{n}(\cdot)$, as seen as a map between the cohomologies of these two complexes, is conjectured to have the same image as the regulator (see [G3]).

We also note that the final goal is not to work with $\mathbb{C}(X)$ but with X itself. For X a regular projective variety over a field F, Goncharov [G3] describes the difficulties for defining the complex $\mathscr{B}_{X}(n)$ as opposed to $\mathscr{B}_{F(X)}(n)$. Basically, it is known how to define $\mathscr{B}_{X}(n)$ when $X=\operatorname{Spec}(F)$ for an arbitrary field F, X is a regular curve over an arbitrary field F, or X is an arbitrary regular scheme but $n \leq 3$. Now, in terms of the relation between $\eta_{n}(\cdot)$, the regulator, and Beilinson's conjectures, the picture is much less known. As an illustration, the case $X=\operatorname{Spec}(F)$ for F a number field corresponds to Zagier's conjecture (see [Z2, Conjecture 1], [ZG]).

3. The two-variable case

Rodriguez-Villegas [R] has performed the explicit construction of the regulator and applied the ideas of Deninger [D] to explain many examples in two variables. This work was later continued by Boyd and Rodriguez-Villegas [BR1], [BR2].

Let $P \in \mathbb{C}[x, y]$. Then we may write

$$
\begin{aligned}
& P(x, y)=a_{d}(x) y^{d}+\cdots+a_{0}(x), \\
& P(x, y)=a_{d}(x) \prod_{n=1}^{d}\left(y-\alpha_{n}(x)\right) .
\end{aligned}
$$

By Jensen's formula,

$$
\begin{equation*}
m(P)=m\left(a_{d}\right)+\frac{1}{2 \pi \mathrm{i}} \sum_{n=1}^{d} \int_{\mathbb{T}^{1}} \log ^{+}\left|\alpha_{n}(x)\right| \frac{\mathrm{d} x}{x}=m\left(P^{*}\right)-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y) . \tag{26}
\end{equation*}
$$

Here,

$$
\eta(x, y):=-\mathrm{i} \eta_{2}(2)(x \wedge y)=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x
$$

is the regulator in this case, defined in the set $C=\{P(x, y)=0\}$ minus the set Z of zeros and poles of x and y. Also, $P^{*}=a_{d}(x)$, and γ is the union of paths in C where $|x|=1$ and $|y| \geq 1$. Finally, note that $\partial \gamma=\{P(x, y)=0\} \cap\{|x|=|y|=1\}$.

In general, $\eta(x, y)$ is closed in $C \backslash Z$ since $\mathrm{d} \eta(x, y)=\operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y}\right)$ (see Theorem 6). Now, the computation can be performed if we arrive at one of these two situations:
(1) $\quad \eta$ is exact, and $\partial \gamma \neq 0$: in this case, we can integrate using the Stokes theorem;
(2) $\quad \eta$ is not exact, and $\partial \gamma=0$: in this case, we can compute the integral by using the residue theorem.
Examples for the second case are found, for instance, in the family of Laurent polynomials $x+1 / x+y+1 / y+k$ studied by Boyd [Bo], Deninger [D], and RodriguezVillegas [R]. Technically, one needs $k \notin[-4,4]$ for these examples to be in the first case; otherwise, $\partial \gamma \neq 0$. However, Deninger has given an interpretation that allows an adaptation of the cases of $k \in(-4,4) \backslash\{0\}$ into this frame as well.

Following Theorem 6,

$$
\begin{equation*}
\eta(x, 1-x)=\mathrm{d} D(x) \tag{27}
\end{equation*}
$$

Thus, η is exact when

$$
\begin{equation*}
x \wedge y=\sum_{i} r_{i} x_{i} \wedge\left(1-x_{i}\right) \tag{28}
\end{equation*}
$$

in $\bigwedge^{2}\left(\mathbb{C}(C)^{*}\right) \otimes \mathbb{Q}$. This condition may be rephrased as the symbol $\{x, y\}$ is trivial in $K_{2}(\mathbb{C}(C))$.

In fact, if condition (28) is satisfied, we obtain

$$
\begin{equation*}
\eta(x, y)=\sum_{i} r_{i} \mathrm{~d} D\left(x_{i}\right)=\mathrm{d} D\left(\sum_{i} r_{i}\left\{x_{i}\right\}_{2}\right) . \tag{29}
\end{equation*}
$$

Finally, we write

$$
\partial \gamma=\sum_{k} \epsilon_{k}\left[w_{k}\right], \quad \epsilon_{k}= \pm 1,
$$

where $w_{k} \in C(\mathbb{C}),\left|x\left(w_{k}\right)\right|=\left|y\left(w_{k}\right)\right|=1$. Thus, we have the following.
THEOREM 7 (see [BR1], [BR2])
Let $P \in \mathbb{C}[x, y]$ be irreducible and such that x, y satisfies equation (28). Then

$$
2 \pi\left(\log \left|a_{d}\right|-m(P)\right)=D(\xi) \quad \text { for } \xi=\sum_{k} \sum_{i} \epsilon_{k} r_{i}\left\{x_{i}\left(w_{k}\right)\right\}_{2} .
$$

Boyd and Rodriguez-Villegas prove even more. Under certain assumptions, it is possible to apply Zagier's theorem, [Z4, Theorem 1], and relate the Mahler measure of P to a rational combination of terms of the form $|\Delta|^{1 / 2} \zeta_{F}(2) / \pi^{2[F: \mathbb{Q}]-2}$ for certain number fields F that depend on P (or, more specifically, on w_{k}).

3.1. An example for the two-variable case

To be concrete, we are going to examine the simplest example for the exact case in two variables. Consider Smyth's formula (see [S, Example 5]):

$$
\pi m(x+y-1)=\frac{3 \sqrt{3}}{4} L\left(\chi_{-3}, 2\right) .
$$

For this case,

$$
x \wedge y=x \wedge(1-x)
$$

Then

$$
2 \pi m(P)=-\int_{\gamma} \eta(x, y)=-\int_{\gamma} \eta(x, 1-x)=-D(\partial \gamma) .
$$

Here,

$$
\gamma=\left\{(x, y)| | x|=1,|1-x| \geq 1\}=\left\{\left(\mathrm{e}^{2 \pi \mathrm{i} \theta}, 1-\mathrm{e}^{2 \pi \mathrm{i} \theta}\right) \left\lvert\, \theta \in\left[\frac{1}{6} ; \frac{5}{6}\right]\right.\right\} .\right.
$$

Figure 1 shows the integration path γ.

Figure 1. Integration path for $x+y-1$

Then $\partial \gamma=\left[\bar{\xi}_{6}\right]-\left[\xi_{6}\right]\left(\right.$ where $\left.\xi_{6}=(1+\sqrt{3} \mathrm{i}) / 2\right)$, and we obtain

$$
2 \pi m(x+y-1)=D\left(\xi_{6}\right)-D\left(\bar{\xi}_{6}\right)=2 D\left(\xi_{6}\right)=\frac{3 \sqrt{3}}{2} L\left(\chi_{-3}, 2\right)
$$

4. The three-variable case

Our goal is to extend this situation to three variables. Let $P \in \mathbb{C}[x, y, z]$. We take

$$
\begin{align*}
\eta(x, y, z):= & \eta_{3}(3)(x \wedge y \wedge z) \\
= & \log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|-\mathrm{d} \arg y \wedge \mathrm{~d} \arg z\right) \\
& +\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|-\mathrm{d} \arg z \wedge \mathrm{~d} \arg x\right) \\
& +\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|-\mathrm{d} \arg x \wedge \mathrm{~d} \arg y\right) \tag{30}
\end{align*}
$$

This differential form is defined in the surface $S=\{P(x, y, z)=0\}$ minus the set Z of poles and zeros of x, y, and z.

We can express the Mahler measure of P as

$$
\begin{equation*}
m(P)=m\left(P^{*}\right)-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta(x, y, z) \tag{31}
\end{equation*}
$$

where P^{*}, following the previous notation, is the principal coefficient of the polynomial $P \in \mathbb{C}[x, y][z]$ and

$$
\Gamma=\{P(x, y, z)=0\} \cap\{|x|=|y|=1,|z| \geq 1\} .
$$

Recall that η is closed in $S \backslash Z$ since it verifies $\mathrm{d} \eta(x, y, z)=\operatorname{Re}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y} \wedge \frac{\mathrm{~d} z}{z}\right)$. Typically, one expects that integral (31) can be computed if we are in one of the two ideal situations that we described before. Either the form $\eta(x, y, z)$ is not exact, the
set Γ consists of closed subsets, and the integral is computed by residues or the form $\eta(x, y, z)$ is exact and the set Γ has nontrivial boundaries, so the Stokes theorem is used.

The first case leads to instances of Beilinson's conjectures and produces special values of L-functions of surfaces. Examples in this direction can be found in Bertin's work [B]. Bertin relates the Mahler measure of some K3 surfaces to the EisensteinKronecker series in a similar way as Rodriguez-Villegas does for two-variable cases (see [R]).

In the second case, we need that $\eta(x, y, z)$ is exact. We are going to concentrate on this case.

We are integrating on a subset of the surface S. In order for the element in the cohomology to be defined everywhere in the surface S, we need the residues to be zero. This situation is fulfilled when the tame symbols are zero (see Section 2.2). This condition is a problem for us because when η is exact, the tame symbols are zero.

As in the two-variable case, Theorem 6 implies

$$
\begin{equation*}
\eta(x, 1-x, y)=\mathrm{d} \omega(x, y) \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
\omega(x, y) & :=\eta_{3}(2)\left(\{x\}_{2} \otimes y\right) \\
& =-D(x) \mathrm{d} \arg y+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|) . \tag{33}
\end{align*}
$$

Thus, in order to apply the Stokes theorem, we need to require that

$$
\begin{equation*}
x \wedge y \wedge z=\sum r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i} \tag{34}
\end{equation*}
$$

in $\bigwedge^{3}\left(\mathbb{C}(S)^{*}\right) \otimes \mathbb{Q}$ for η to be exact. An equivalent way of expressing this condition is that $\{x, y, z\}$ is trivial in $K_{3}^{M}(\mathbb{C}(S))$.

In this case,

$$
\int_{\Gamma} \eta(x, y, z)=\sum r_{i} \int_{\Gamma} \eta\left(x_{i}, 1-x_{i}, y_{i}\right)=\sum r_{i} \int_{\partial \Gamma} \omega\left(x_{i}, y_{i}\right),
$$

where

$$
\partial \Gamma=\{P(x, y, z)=0\} \cap\{|x|=|y|=|z|=1\} .
$$

The set $\partial \Gamma$ seems to have no boundary. However, $\partial \Gamma$ as described above may contain singularities that may give rise to a boundary when desingularized. We thus change
our point of view. Namely, assume that $P \in \mathbb{R}[x, y, z]$ and is nonreciprocal (this condition is true for all the examples that we study); then,

$$
P(x, y, z)=P(\bar{x}, \bar{y}, \bar{z})
$$

This property together with the condition $|x|=|y|=|z|=1$ allows us to write

$$
\partial \Gamma=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\} \cap\{|x|=|y|=|z|=1\} .
$$

(This idea was proposed by Maillot [M].) Observe that we are integrating now on a path $\{|x|=|y|=|z|=1\}$ inside the curve

$$
C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\} .
$$

In order to easily compute

$$
\int_{\partial \Gamma} \omega(x, y),
$$

we have again the two possibilities that we had before. We are going to concentrate, as usual, on the case where $\omega(x, y)$ is exact.

The differential form ω is defined in the new curve C. As before, to ensure that it is defined everywhere, we need to ask that the residues be trivial. This fact is guaranteed by the triviality of tame symbols. This last condition is satisfied if ω is exact. Indeed, we have changed our ambient variety, and we now wonder when ω is exact in C (ω is not exact in S since that would imply that η is zero).

Fortunately, we have

$$
\begin{equation*}
\omega(x, x)=\mathrm{d} \mathscr{L}_{3}(x) \tag{35}
\end{equation*}
$$

by Theorem 6.
The condition for ω to be exact is not as easily established as in the preceding cases because ω is not multiplicative in the first variable. In fact, the first variable behaves as the dilogarithm; in other words, the transformations are ruled by the five-term relation. We may express the condition we need as

$$
\begin{equation*}
\{x\}_{2} \otimes y=\sum r_{i}\left\{x_{i}\right\}_{2} \otimes x_{i} \tag{36}
\end{equation*}
$$

in $\left(\mathscr{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}$. Assuming Conjecture 2 , this is equivalent to saying that a certain symbol for x and y is trivial in $\operatorname{gr}_{3}^{\gamma} K_{4}(\mathbb{C}(C)) \otimes \mathbb{Q}$. Then we have

$$
\int_{\gamma} \omega(x, y)=\left.\sum r_{i} \mathscr{L}_{3}\left(x_{i}\right)\right|_{\partial \gamma}
$$

where $\gamma=C \cap \mathbb{T}^{2}$.

Now, assume that

$$
\partial \gamma=\sum_{k} \epsilon_{k}\left[w_{k}\right], \quad \epsilon_{k}= \pm 1
$$

where $w_{k} \in C(\mathbb{C}),\left|x\left(w_{k}\right)\right|=\left|y\left(w_{k}\right)\right|=1$. Thus, we have proved the following.

THEOREM 8

Let $P(x, y, z) \in \mathbb{R}[x, y, z]$ be irreducible and nonreciprocal, let $S=\{P(x, y, z)=$ $0\}$, and let $C=\left\{\operatorname{Res}_{z}\left(P(x, y, z), P\left(x^{-1}, y^{-1}, z^{-1}\right)\right)=0\right\}$. Assume that

$$
\begin{equation*}
x \wedge y \wedge z=\sum_{i} r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i} \tag{37}
\end{equation*}
$$

in $\bigwedge^{3}\left(\mathbb{C}(S)^{*}\right) \otimes \mathbb{Q}$, and assume that

$$
\begin{equation*}
\left\{x_{i}\right\}_{2} \otimes y_{i}=\sum_{j} r_{i, j}\left\{x_{i, j}\right\}_{2} \otimes x_{i, j} \tag{38}
\end{equation*}
$$

in $\left(\mathscr{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}$ for all i. Then

$$
\begin{equation*}
4 \pi^{2}\left(m\left(P^{*}\right)-m(P)\right)=\mathscr{L}_{3}(\xi) \quad \text { for } \xi=\sum_{k} \sum_{i, j} \epsilon_{k} r_{i} r_{i, j}\left\{x_{i, j}\left(w_{k}\right)\right\}_{3} . \tag{39}
\end{equation*}
$$

By using Zagier's conjecture (see Zagier [Z2], Zagier and Gangl [ZG]), it is possible to formulate a conjecture that would imply, under certain additional circumstances, a relationship with $\zeta_{F}(3)$ in a similar fashion as Boyd and Rodriguez-Villegas have done for the two-variable case. We illustrate this phenomenon at the end of Section 4.1.

4.1. The case of $\operatorname{Res}_{\{0, m, m+n\}}$

We proceed to the study of a family of three-variable polynomials which comes from the world of resultants, namely, $\operatorname{Res}_{\{0, m, m+n\}}$. This family was computed in [DL], and the computation is quite involved, though elementary. The Mahler measure of $\operatorname{Res}_{\{0, m, m+n\}}$ is the same as the Mahler measure of a certain rational function. More precisely, we have the following.

THEOREM 9 ([DL, Theorem 6])
We have

$$
\begin{align*}
m\left(z-\frac{(1-x)^{m}(1-y)^{n}}{(1-x y)^{m+n}}\right)= & \frac{2 n}{\pi^{2}}\left(\mathscr{L}_{3}\left(\phi_{2}^{m}\right)-\mathscr{L}_{3}\left(-\phi_{1}^{m}\right)\right) \\
& +\frac{2 m}{\pi^{2}}\left(\mathscr{L}_{3}\left(\phi_{1}^{n}\right)-\mathscr{L}_{3}\left(-\phi_{2}^{n}\right)\right) \tag{40}
\end{align*}
$$

where ϕ_{1} is the root of $x^{m+n}+x^{n}-1=0$ which lies in the interval $[0,1]$ and ϕ_{2} is the root of $x^{m+n}-x^{n}-1=0$ which lies in $[1, \infty)$.

Proof

To see that $\eta(x, y, z)$ is exact, we need to solve equation (37) for this case. The equation for the wedge product becomes

$$
\begin{aligned}
x \wedge y \wedge z= & m x \wedge y \wedge(1-x)+n x \wedge y \wedge(1-y)-(m+n) x \wedge y \wedge(1-x y) \\
= & -m x \wedge(1-x) \wedge y+n y \wedge(1-y) \wedge x \\
& +m x y \wedge(1-x y) \wedge y-n x y \wedge(1-x y) \wedge x .
\end{aligned}
$$

After performing the Stokes theorem for the first time, we evaluate the form ω in the following element of $\mathscr{B}_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}$:

$$
\Delta=m\left(\{x y\}_{2} \otimes y-\{x\}_{2} \otimes y\right)-n\left(\{x y\}_{2} \otimes x-\{y\}_{2} \otimes x\right)
$$

We then compute the corresponding curve C. We take advantage of the fact that our equation has the shape $z=R(x, y)$. In order to compute C, we simply consider

$$
\begin{equation*}
R(x, y) R\left(x^{-1}, y^{-1}\right)=z \cdot z^{-1}=1 \tag{41}
\end{equation*}
$$

For this case,

$$
\frac{(1-x)^{m}(1-y)^{n}\left(1-x^{-1}\right)^{m}\left(1-y^{-1}\right)^{n}}{(1-x y)^{m+n}\left(1-x^{-1} y^{-1}\right)^{m+n}}=1 .
$$

Let us denote

$$
x_{1}=\frac{1-x}{1-x y}, \quad y_{1}=\frac{1-y}{1-x y}, \quad \widehat{x}_{1}=1-x_{1}, \widehat{y}_{1}=1-y_{1} .
$$

Then we may rewrite the equation for C as

$$
x_{1}^{m} y_{1}^{n} \widehat{x}_{1}^{n} \widehat{y}_{1}^{m}=1
$$

Now, we use the five-term relation

$$
\{x\}_{2}+\{y\}_{2}+\{1-x y\}_{2}+\left\{x_{1}\right\}_{2}+\left\{y_{1}\right\}_{2}=0
$$

Then we obtain
$\Delta=m\left(\{y\}_{2} \otimes y+\left\{x_{1}\right\}_{2} \otimes y+\left\{y_{1}\right\}_{2} \otimes y\right)-n\left(\{x\}_{2} \otimes x+\left\{x_{1}\right\}_{2} \otimes x+\left\{y_{1}\right\}_{2} \otimes x\right)$.
Observe that $x=\widehat{x}_{1} / y_{1}, y=\widehat{y}_{1} / x_{1}$.

Thus, we may write

$$
\begin{aligned}
\Delta= & m\left(\{y\}_{2} \otimes y+\left\{x_{1}\right\}_{2} \otimes \widehat{y}_{1}-\left\{x_{1}\right\}_{2} \otimes x_{1}+\left\{y_{1}\right\}_{2} \otimes \widehat{y}_{1}-\left\{y_{1}\right\}_{2} \otimes x_{1}\right) \\
& -n\left(\{x\}_{2} \otimes x+\left\{x_{1}\right\}_{2} \otimes \widehat{x}_{1}-\left\{x_{1}\right\}_{2} \otimes y_{1}+\left\{y_{1}\right\}_{2} \otimes \widehat{x}_{1}-\left\{y_{1}\right\}_{2} \otimes y_{1}\right) \\
= & m\{y\}_{2} \otimes y+\left\{x_{1}\right\}_{2} \otimes \widehat{y}_{1}^{m}-m\left\{x_{1}\right\}_{2} \otimes x_{1}-m\left\{\widehat{y}_{1}\right\}_{2} \otimes \widehat{y}_{1}-\left\{y_{1}\right\}_{2} \otimes x_{1}^{m} \\
& -n\{x\}_{2} \otimes x+n\left\{\widehat{x}_{1}\right\}_{2} \otimes \widehat{x}_{1}+\left\{x_{1}\right\}_{2} \otimes y_{1}^{n}-\left\{y_{1}\right\}_{2} \otimes \widehat{x}_{1}^{n}+n\left\{y_{1}\right\}_{2} \otimes y_{1} .
\end{aligned}
$$

Because of the equation for C,

$$
\begin{aligned}
& \left\{x_{1}\right\}_{2} \otimes y_{1}^{n} \widehat{y}_{1}^{m}-\left\{y_{1}\right\}_{2} \otimes x_{1}^{m} \widehat{x}_{1}^{n} \\
& \quad=-\left\{x_{1}\right\}_{2} \otimes x_{1}^{m} \widehat{x}_{1}^{n}+\left\{y_{1}\right\}_{2} \otimes y_{1}^{n} \widehat{y}_{1}^{m} \\
& \quad=-m\left\{x_{1}\right\}_{2} \otimes x_{1}+n\left\{\widehat{x}_{1}\right\}_{2} \otimes \widehat{x}_{1}+n\left\{y_{1}\right\}_{2} \otimes y_{1}-m\left\{\widehat{y}_{1}\right\}_{2} \otimes \widehat{y}_{1},
\end{aligned}
$$

we obtain

$$
\begin{array}{r}
\Delta= \\
\quad m\left(\{y\}_{2} \otimes y-\left\{\widehat{y}_{1}\right\}_{2} \otimes \widehat{y}_{1}-\left\{x_{1}\right\}_{2} \otimes x_{1}-\left\{\widehat{y}_{1}\right\}_{2} \otimes \widehat{y}_{1}-\left\{x_{1}\right\}_{2} \otimes x_{1}\right) \\
=m\left(\{x\}_{2} \otimes x-\left\{\widehat{x}_{1}\right\}_{2} \otimes \widehat{x}_{1}-\left\{y_{1}\right\}_{2} \otimes y_{1}-\left\{\widehat{x}_{1}\right\}_{2} \otimes \widehat{x}_{1}-\left\{y_{1}\right\}_{2} \otimes y_{1}\right) \\
\left.-2\left\{\widehat{y}_{1}\right\}_{2} \otimes \widehat{y}_{1}-2\left\{x_{1}\right\}_{2} \otimes x_{1}\right)-n\left(\{x\}_{2} \otimes x-2\left\{\widehat{x}_{1}\right\}_{2} \otimes \widehat{x}_{1} \otimes y_{1}\right) .
\end{array}
$$

We now need to study the path of integration. First, write $x=\mathrm{e}^{2 \mathrm{i} \alpha}, y=\mathrm{e}^{2 \mathrm{i} \beta}$ for $-\pi / 2 \leq \alpha, \beta \leq \pi / 2$. Then

$$
x_{1}=\mathrm{e}^{-\mathrm{i} \beta} \frac{\sin \alpha}{\sin (\alpha+\beta)}, \quad y_{1}=\mathrm{e}^{-\mathrm{i} \alpha} \frac{\sin \beta}{\sin (\alpha+\beta)}
$$

and

$$
\widehat{x}_{1}=\mathrm{e}^{\mathrm{i} \alpha} \frac{\sin \beta}{\sin (\alpha+\beta)}, \quad \widehat{y}_{1}=\mathrm{e}^{\mathrm{i} \beta} \frac{\sin \alpha}{\sin (\alpha+\beta)}
$$

Let $a=|\sin \alpha /(\sin (\alpha+\beta))|, b=|\sin \beta /(\sin (\alpha+\beta))|$. Then we may write

$$
x_{1}= \pm a \mathrm{e}^{-\mathrm{i} \beta}, \quad y_{1}= \pm b \mathrm{e}^{-\mathrm{i} \alpha}, \quad \widehat{x}_{1}= \pm b \mathrm{e}^{\mathrm{i} \alpha}, \quad \hat{y}_{1}= \pm a \mathrm{e}^{\mathrm{i} \beta}
$$

By means of the sine theorem, we may think of a, b, and 1 as the sides of a triangle with the additional condition

$$
a^{m} b^{n}=1
$$

(see Figure 2). The triangle determines the angles α and β, which are opposite to the sides a, b, respectively. We need to be careful and take the complement of an angle if it happens to be greater than $\pi / 2$. (This corresponds to the cases when the sines are

---- b

Figure 2. We are integrating over all the possible triangles. The angles are measured negatively if they are greater than $\pi / 2$, as α is in the case (2). We do not count the triangles pointing down, as in (3).
negatives.) However, we need to be cautious. In fact, the problem of constructing the triangle given the sides always has two symmetric solutions. We count each triangle once, so we multiply our final result by two. To sum up, a and b are enough to describe the set where the integration is performed.

Now, the boundaries (where the triangle degenerates) are three: $b+1=a$, $a+1=b$, and $a+b=1$. Let

$$
\phi_{1} \text { be the root of } x^{m+n}+x^{n}-1=0 \text { with } 0 \leq \phi_{1} \leq 1 \text {, }
$$

and let

$$
\phi_{2} \text { be the root of } x^{m+n}-x^{n}-1=0 \text { with } 1 \leq \phi_{2} .
$$

Then the first two conditions are translated as

$$
\begin{array}{llll}
a=\phi_{1}^{-n}, & b=\phi_{1}^{m}, & \alpha=0, & \beta=0, \\
a=\phi_{2}^{-n}, & b=\phi_{2}^{m}, & \alpha=0, & \beta=0 .
\end{array}
$$

The third condition is inconsequential since it requires both $a, b \leq 1$ (but they cannot be both equal to one at the same time) and $a^{m} b^{n}=1$.

Hence, the integration path (from condition $a+1=b$ to $b+1=a$) is

$$
\begin{array}{ll}
0 \leq \alpha \leq \theta_{1}, & 0 \geq \beta \geq-\frac{\pi}{2}, \\
\theta_{1} \leq \alpha \leq \frac{\pi}{2}, & \frac{\pi}{2} \geq \beta \geq \theta_{2}, \\
-\frac{\pi}{2} \leq \alpha \leq 0, & \theta_{2} \geq \beta \geq 0
\end{array}
$$

Here, θ_{1} is the angle that is opposite to the side a when the triangle is right-angled with hypotenuse b and θ_{2} is opposite to b when a is the hypotenuse. We do not need to compute those angles. In fact, we may describe the integration path as either

$$
0 \leq \alpha \leq \frac{\pi}{2}, \quad-\frac{\pi}{2} \leq \alpha \leq 0
$$

or

$$
0 \geq \beta \geq-\frac{\pi}{2}, \quad \frac{\pi}{2} \geq \beta \geq 0
$$

It is appropriate to think of it in this way because $\left\{x_{1}\right\}_{3}+\left\{\widehat{y}_{1}\right\}_{3}$ and $\left\{\widehat{x}_{1}\right\}_{3}+\left\{y_{1}\right\}_{3}$ change continuously around the right-angled triangles. Moreover, because of this property, everything reduces to evaluating \mathscr{L}_{3} in

$$
\Omega=m\left(\{y\}_{3}-2\left\{\widehat{y}_{1}\right\}_{3}-2\left\{x_{1}\right\}_{3}\right)-n\left(\{x\}_{3}-2\left\{\widehat{x}_{1}\right\}_{3}-2\left\{y_{1}\right\}_{3}\right)
$$

in the cases of $b+1=a$ and $a+1=b$ and computing the difference.
One can have problems when z is zero or has a pole. We have that z is zero for $x=1$ and $y=1$, but these conditions correspond to $\Delta=m\{y\}_{2} \otimes y$ and $\Delta=-n\{x\}_{2} \otimes x$. They lead to $\Omega=m\{y\}_{3}$ and $\Omega=-n\{x\}_{3}$, and they integrate to zero when the variables move in the unit circle.

The poles are at $x y=1$, which corresponds to $\Delta=(m-n)\{x\}_{2} \otimes x$. Integrating, we obtain $\Omega=(m-n)\{x\}_{3}$, which leads to zero when x moves in the unit circle.

We obtain

$$
4 \pi^{2} m(P)=2\left(4 n\left(\mathscr{L}_{3}\left(\phi_{2}^{m}\right)-\mathscr{L}_{3}\left(-\phi_{1}^{m}\right)\right)+4 m\left(\mathscr{L}_{3}\left(\phi_{1}^{n}\right)-\mathscr{L}_{3}\left(-\phi_{2}^{n}\right)\right)\right) .
$$

Finally,

$$
m(P)=\frac{2 n}{\pi^{2}}\left(\mathscr{L}_{3}\left(\phi_{2}^{m}\right)-\mathscr{L}_{3}\left(-\phi_{1}^{m}\right)\right)+\frac{2 m}{\pi^{2}}\left(\mathscr{L}_{3}\left(\phi_{1}^{n}\right)-\mathscr{L}_{3}\left(-\phi_{2}^{n}\right)\right)
$$

so we recover the result of [DL].
The case with $m=n=1$ is especially elegant. Here, the rational function has the form

$$
z=\frac{(1-x)(1-y)}{(1-x y)^{2}}
$$

and

$$
m(P)=\frac{4}{\pi^{2}}\left(\mathscr{L}_{3}(\phi)-\mathscr{L}_{3}(-\phi)\right)
$$

where $\phi^{2}+\phi-1=0$ and $0 \leq \phi \leq 1$. (In other words, $\phi=(-1+\sqrt{5}) / 2$.)

Moreover, we may use Zagier's conjecture (see [Z2, Conjecture 1], [ZG]) to describe this result in terms of the zeta function of $\mathbb{Q}(\sqrt{5})$. According to the conjecture, $H^{1}\left(\mathscr{B}_{\mathbb{Q}(\sqrt{5})}(3)\right)$ has rank 2 . We may take $\left\{\{1\}_{3},\{\phi\}_{3}\right\}$ as a basis. In order to see this, we need to check that $\{\phi\}_{2} \otimes \phi$ is trivial. That is the case because

$$
\begin{aligned}
\{\phi\}_{2} & =\left\{1-\phi^{2}\right\}_{2}=-\left\{\phi^{2}\right\}_{2}=2\{-\phi\}_{2}-2\{\phi\}_{2} \\
& =-2\{1+\phi\}_{2}-2\{\phi\}_{2}=-2\left\{\phi^{-1}\right\}_{2}-2\{\phi\}_{2}=0,
\end{aligned}
$$

which implies that $\{\phi\}_{2} \otimes \phi=0$. Then the conjecture predicts

$$
\zeta_{\mathbb{Q}(\sqrt{5})}(3) \sim_{\mathbb{Q}^{*}} \sqrt{5}\left|\begin{array}{cc}
\mathscr{L}_{3}(\phi) & \mathscr{L}_{3}(1) \\
\mathscr{L}_{3}\left(-\phi^{-1}\right) & \mathscr{L}_{3}(1)
\end{array}\right|=\sqrt{5} \zeta(3)\left(\mathscr{L}_{3}(\phi)-\mathscr{L}_{3}(-\phi)\right) .
$$

Indeed,

$$
\zeta_{\mathbb{Q}(\sqrt{5})}(3)=\frac{\zeta(3)}{\sqrt{5}}\left(\mathscr{L}_{3}(\phi)-\mathscr{L}_{3}(-\phi)\right)
$$

which allows us to write

$$
m\left(\operatorname{Res}_{\{0,1,2\}}\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\pi^{2} \zeta(3)}
$$

5. A few words about the four-variable case

Unfortunately, we do not have a general systematic method to describe algebraically the successive integration domains in more than three variables. Hence, we cannot formulate a precise general result. However, this does not prevent us from using a similar technique for some four-variable cases. In this section, we recall the list of differentials in four variables.

The sequence of differentials is as follows:

$$
\begin{align*}
& \eta(x, y, w, z):=-\mathrm{i} \eta_{4}(4)(x, y, w, z) \\
&=\frac{1}{4}\left(-\log |z| \operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y} \wedge \frac{\mathrm{~d} w}{w}\right)\right. \\
&+\log |w| \operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y} \wedge \frac{\mathrm{~d} z}{z}\right) \\
&-\log |y| \operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} w}{w} \wedge \frac{\mathrm{~d} z}{z}\right) \\
&+\log |x| \operatorname{Im}\left(\frac{\mathrm{d} y}{y} \wedge \frac{\mathrm{~d} w}{w} \wedge \frac{\mathrm{~d} z}{z}\right)+\eta(x, y, w) \wedge \mathrm{d} \arg z \\
&-\eta(x, y, z) \wedge \operatorname{darg} w \\
&+\eta(x, w, z) \wedge \mathrm{d} \arg y-\eta(y, w, z) \wedge \mathrm{d} \arg x) \tag{42}
\end{align*}
$$

where $\eta(x, y, z)$ denotes the differential previously defined for three variables.

We have

$$
\begin{equation*}
\eta(x, 1-x, y, w)=\mathrm{d} \omega(x, y, w), \tag{43}
\end{equation*}
$$

where

$$
\begin{align*}
\omega(x, y, w):= & -\mathrm{i} \eta_{4}(3)(x, y, w) \\
= & D(x)\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |w|-\mathrm{d} \arg y \wedge \mathrm{~d} \arg w\right) \\
& +\frac{1}{3} \eta(y, w) \wedge(\log |x| \mathrm{d} \log |1-x|-\log |1-x| \mathrm{d} \log |x|) \tag{44}
\end{align*}
$$

Next,

$$
\begin{equation*}
\omega(x, x, y)=\mathrm{d} \mu(x, y) \tag{45}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu(x, y):=-\mathrm{i} \eta_{4}(2)(x, y)=\mathscr{L}_{3}(x) \mathrm{d} \arg y-\frac{1}{3} D(x) \log |y| \mathrm{d} \log |x| . \tag{46}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\mu(x, x)=\mathrm{d} \mathscr{L}_{4}(x) . \tag{47}
\end{equation*}
$$

5.1. An example in four variables

In spite of the fact that we do not know how to treat the integration domains, we may still do the algebraic integration for some examples of four-variable polynomials. Here is an example.

We study the case of $\operatorname{Res}_{\{(0,0),(1,0),(0,1)\}}$, whose Mahler measure was first computed in [DL]. This is the case of the nine-variable polynomial that is the general (3×3) determinant. Because of homogeneities, this Mahler measure problem may be reduced to computing the Mahler measure of a four-variable polynomial. The result is the following.

THEOREM 10 ([DL, Theorem 7])
We have

$$
\begin{equation*}
m((1-x)(1-y)-(1-w)(1-z))=\frac{9}{2 \pi^{2}} \zeta(3) . \tag{48}
\end{equation*}
$$

Proof

First, we have to solve the equation with the wedge product:
$x \wedge y \wedge w \wedge z=-\frac{1}{x} \wedge y \wedge w \wedge z=-\frac{1}{x} \wedge y\left(1-\frac{1}{x}\right) \wedge w \wedge z+\frac{1}{x} \wedge\left(1-\frac{1}{x}\right) \wedge w \wedge z$.

Now, the first term on the right-hand side is

$$
\begin{aligned}
& -\frac{1}{x} \wedge y\left(1-\frac{1}{x}\right) \wedge w \wedge z=\frac{x}{w} \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge z \\
& \quad=\frac{x}{w}\left(1-y+\frac{y}{x}\right) \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge z-\left(1-y+\frac{y}{x}\right) \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge z
\end{aligned}
$$

Next, we use the formula for z as a function of the other variables:

$$
\begin{aligned}
\frac{x}{w} & \left(1-y+\frac{y}{x}\right) \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge z \\
= & \frac{x+y-x y}{w} \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge \frac{-w+x+y-x y}{w(1-w)} \\
= & \frac{x+y-x y}{w} \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge\left(1-\frac{x+y-x y}{w}\right) \\
& -\frac{x+y-x y}{w} \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge(1-w)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& -(x+y-x y) \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge(1-w) \\
& \quad=-\left(1-y+\frac{y}{x}\right) \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge(1-w)-x \wedge\left(y-\frac{y}{x}\right) \wedge w \wedge(1-w)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x \wedge y \wedge w \wedge z= & \frac{1}{x} \wedge\left(1-\frac{1}{x}\right) \wedge w \wedge z+\left(y-\frac{y}{x}\right) \wedge\left(1-y+\frac{y}{x}\right) \wedge w \wedge z(1-w) \\
& +\frac{x+y-x y}{w} \wedge\left(1-\frac{x+y-x y}{w}\right) \\
& \wedge\left(y-\frac{y}{x}\right) \wedge w-w \wedge(1-w) \wedge x \wedge\left(y-\frac{y}{x}\right) .
\end{aligned}
$$

The form ω is evaluated in the following element:

$$
\begin{aligned}
\Delta= & \left\{\frac{1}{x}\right\}_{2} \otimes w \wedge z+\left\{y-\frac{y}{x}\right\}_{2} \otimes w \wedge z(1-w) \\
& +\left\{\frac{x+y-x y}{w}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge w-\{w\}_{2} \otimes x \wedge\left(y-\frac{y}{x}\right) \\
= & -\{x\}_{2} \otimes w \wedge z+\left\{y-\frac{y}{x}\right\}_{2} \otimes w \wedge z(1-w) \\
& -\left\{z-\frac{z}{w}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge w-\{w\}_{2} \otimes x \wedge\left(y-\frac{y}{x}\right) .
\end{aligned}
$$

Figure 3. Integration set for $\operatorname{Res}_{\{(0,0),(1,0),(0,1)\}}$
For applying the Stokes theorem, we still apply the technique that is analogous to the computation of the equation for C in the three-variable case. We can apply the analogue of the equation (41),

$$
\left(1-\frac{(1-x)(1-y)}{1-w}\right)\left(1-\frac{\left(1-x^{-1}\right)\left(1-y^{-1}\right)}{1-w^{-1}}\right)=1,
$$

which can be simplified as

$$
x=1, \quad y=1, \quad w=x, \quad \text { or } \quad w=y .
$$

The above conditions correspond to two pyramids in the torus \mathbb{T}^{3}, as seen in Figure 3. We make the computation over the lower pyramid and then multiply the result by 2 .

In the case when $x=1$, we have $w=1$ or $z=1$. If $w=1, \Delta=0$.

$$
\begin{aligned}
& \text { If } z=1, \\
& \qquad \Delta=-\left\{1-\frac{1}{w}\right\}_{2} \otimes y \wedge w
\end{aligned}
$$

Then μ is evaluated on

$$
\Omega=\{w\}_{3} \otimes y,
$$

and Ω is integrated on the boundary, which is $y=1, w=1$, and $y=w$.
If $y=1, \Omega=0$. If $w=1$,

$$
\Omega=\{1\}_{3} \otimes y,
$$

which yields $2 \pi \zeta$ (3).

$$
\text { If } y=w
$$

$$
\Omega=\{y\}_{3} \otimes y
$$

whose integral is zero.
In the case when $y=1$, we have $w=1$ or $z=1$. If $w=1, \Delta=0$.
If $z=1$,
$\Delta=\left\{1-\frac{1}{x}\right\}_{2} \otimes w \wedge(1-w)-\left\{1-\frac{1}{w}\right\}_{2} \otimes\left(1-\frac{1}{x}\right) \wedge w-\{w\}_{2} \otimes x \wedge\left(1-\frac{1}{x}\right)$.
Only the term in the middle yields a nonzero differential form. In fact, the term in the middle yields

$$
\Omega=\{w\}_{3} \otimes\left(1-\frac{1}{x}\right)
$$

and Ω is integrated on the boundary, which is $x=1, w=1$, and $x=w$.
If $x=1, \Omega=0$. If $w=1$,

$$
\Omega=\{1\}_{3} \otimes\left(1-\frac{1}{x}\right) .
$$

This integration is equal to $\pi \zeta(3)$.

$$
\text { If } x=w,
$$

$$
\Omega=\{x\}_{3} \otimes\left(1-\frac{1}{x}\right),
$$

which integrates to zero.

When $w=x$ (in this case, $z=y$ unless $x=1$),

$$
\begin{aligned}
\Delta= & -\{x\}_{2} \otimes x \wedge y+\left\{y-\frac{y}{x}\right\}_{2} \otimes x \wedge y(1-x) \\
& -\left\{y-\frac{y}{x}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge x-\{x\}_{2} \otimes x \wedge\left(y-\frac{y}{x}\right)
\end{aligned}
$$

Then

$$
\Omega=-2\{x\}_{3} \otimes y-2\left\{y-\frac{y}{x}\right\}_{3} \otimes x-\{x\}_{3} \otimes\left(1-\frac{1}{x}\right)
$$

Now Ω is integrated on the boundary, which is $x=1, y=1$, and $x=y$ (see Figure 3).

If $x=1$,

$$
\Omega=-2\{1\}_{3} \otimes y
$$

which gives $4 \pi \zeta(3)$.
If $y=1$,

$$
\Omega=-2\left\{1-\frac{1}{x}\right\}_{3} \otimes x-\{x\}_{3} \otimes\left(1-\frac{1}{x}\right)
$$

Now, use the fact that

$$
\{x\}_{3}+\{1-x\}_{3}+\left\{1-\frac{1}{x}\right\}_{3}=\{1\}_{3}
$$

and the fact that $|x|=1$ to conclude

$$
-2\left\{1-\frac{1}{x}\right\}_{3} \otimes x=\{x\}_{3} \otimes x-\{1\}_{3} \otimes x
$$

The total integration in this case is $2 \pi \zeta(3)$.
If $x=y$,

$$
\Omega=-2\{x\}_{3} \otimes x-2\{x-1\}_{3} \otimes x-\{x\}_{3} \otimes\left(1-\frac{1}{x}\right)
$$

which leads to $-2 \oint \mu(x-1, x)$. (We do not need to compute this integral for the final result.)

When $w=y$ (in this case, $z=x$ unless $y=1$),

$$
\begin{aligned}
\Delta= & -\{x\}_{2} \otimes y \wedge x+\left\{y-\frac{y}{x}\right\}_{2} \otimes y \wedge\left(x-\frac{x}{y}\right) \\
& -\left\{x-\frac{x}{y}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y-\{y\}_{2} \otimes x \wedge\left(y-\frac{y}{x}\right) \\
= & \{x\}_{2} \otimes x \wedge y+\{y\}_{2} \otimes y \wedge x-\{y\}_{2} \otimes x \wedge\left(1-\frac{1}{x}\right) \\
& -\left\{y-\frac{y}{x}\right\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y-\left\{x-\frac{x}{y}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y .
\end{aligned}
$$

By the five-term relation,

$$
\begin{gathered}
\left\{1-\frac{1}{x}\right\}_{2}+\{y\}_{2}+\left\{1-y\left(1-\frac{1}{x}\right)\right\}_{2}+\left\{\frac{1}{x+y-x y}\right\}_{2}+\left\{\frac{1-y}{1-y+y / x}\right\}_{2}=0, \\
\{x\}_{2}+\{y\}_{2}-\left\{y-\frac{y}{x}\right\}_{2}-\{x+y-x y\}_{2}-\left\{x-\frac{x}{y}\right\}_{2}=0 .
\end{gathered}
$$

Then we obtain

$$
\begin{aligned}
\Delta= & \{x\}_{2} \otimes x \wedge y+\{y\}_{2} \otimes y \wedge x-\{y\}_{2} \otimes x \wedge\left(1-\frac{1}{x}\right)-\{x\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y \\
& -\{y\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y+\{x+y-x y\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y \\
& +\left\{x-\frac{x}{y}\right\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y-\{x\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y-\{y\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y \\
& +\{x+y-x y\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y+\left\{y-\frac{y}{x}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y \\
= & \{x\}_{2} \otimes x \wedge y+\{y\}_{2} \otimes y \wedge x-\{y\}_{2} \otimes x \wedge\left(1-\frac{1}{x}\right) \\
& -\{x\}_{2} \otimes(1-x)(1-y) \wedge y-\{y\}_{2} \otimes(1-x)(1-y) \wedge y \\
& +\left\{x-\frac{x}{y}\right\}_{2} \otimes\left(x-\frac{x}{y}\right) \wedge y+\{x+y-x y\}_{2} \otimes(1-x)(1-y) \wedge y \\
& +\left\{y-\frac{y}{x}\right\}_{2} \otimes\left(y-\frac{y}{x}\right) \wedge y .
\end{aligned}
$$

Now,

$$
-\{y\}_{2} \otimes x \wedge\left(1-\frac{1}{x}\right)-\{x\}_{2} \otimes(1-y) \wedge y
$$

is zero in the differential form.
Therefore,

$$
\begin{aligned}
\Omega= & \{x\}_{3} \otimes y+\{y\}_{3} \otimes x+\{1-x\}_{3} \otimes y+\{y\}_{3} \otimes(1-x)(1-y)+\left\{x-\frac{x}{y}\right\}_{3} \otimes y \\
& -\{(1-x)(1-y)\}_{3} \otimes y+\left\{y-\frac{y}{x}\right\}_{3} \otimes y
\end{aligned}
$$

and Ω is integrated on the boundary, which is $x=1, y=1$, and $x=y$.
If $x=1$,

$$
\Omega=\{1\}_{3} \otimes y+\{y\}_{3} \otimes(1-y)+\left\{1-\frac{1}{y}\right\}_{3} \otimes y
$$

whose integral is $3 \pi \zeta(3)$.

If $y=1$,

$$
\Omega=\{1\}_{3} \otimes x+\{1\}_{3} \otimes(1-x)
$$

which gives $3 \pi \zeta$ (3).
If $x=y$,

$$
\begin{aligned}
\Omega & =2\{x\}_{3} \otimes x+\{1-x\}_{3} \otimes x+2\{x\}_{3} \otimes(1-x)+2\{x-1\}_{3} \otimes x-\left\{(1-x)^{2}\right\}_{3} \otimes x \\
& =2\{x\}_{3} \otimes x-3\{1-x\}_{3} \otimes x+2\{x\}_{3} \otimes(1-x)-2\{x-1\}_{3} \otimes x
\end{aligned}
$$

which yields $3 \pi \zeta(3)+2 \oint \mu(x-1, x)$.
The poles are with $w=1$, but $\Delta=0$ in this case. On the other hand, if $z=0$, then $w=x+y-x y$. But $|w|=1$ implies that $x=1, y=1$, or $x=-y$. In the first two cases, $w=1$ and $\Delta=0$. In the third case,

$$
\Delta=-\{x\}_{2} \otimes x^{2} \wedge\left(1-x^{2}\right)-\left\{x^{2}\right\}_{2} \otimes x \wedge(1-x)
$$

which corresponds to zero if $|x|=1$.
Thus,

$$
8 \pi^{3} m(P)=36 \pi \zeta(3)
$$

Finally,

$$
m(P)=\frac{9}{2 \pi^{2}} \zeta(3)
$$

6. The n-variable case

The usual application of Jensen's formula (as in equation (26)) allows us to write, for $P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\begin{equation*}
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \pi \mathrm{i})^{n-1}} \int_{G} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right) \tag{49}
\end{equation*}
$$

where

$$
G=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\cdots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\} .
$$

(Recall that this is due to Deninger [D].)
It is easy to see that we can then follow a process that is analogous to the ones we followed for up to four variables. It remains, of course, to find a general algebraic way of describing the successive sets that we obtain by taking boundaries. Suppose that we do have a good description of the boundaries inside certain algebraic varieties,
say, $S_{1}=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\}, \ldots, S_{n-1}$. Write, as usual,

$$
\partial \gamma=\sum_{k} \epsilon_{k}\left[w_{k}\right], \quad \epsilon_{k}= \pm 1
$$

where γ is the collection of paths $S_{n-1} \cap\left\{\left|x_{1}\right|=1\right\}$. In principle, we should expect the following.

CONJECTURE 11

Let $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be nonreciprocal. Assume that the following conditions are satisfied:

$$
\begin{equation*}
x_{1} \wedge \cdots \wedge x_{n}=\sum_{i_{1}} r_{i_{1}} z_{i_{1}} \wedge\left(1-z_{i_{1}}\right) \wedge Y_{i_{1}} \tag{50}
\end{equation*}
$$

in $\bigwedge^{n}\left(\mathbb{C}\left(S_{1}\right)^{*}\right) \otimes \mathbb{Q}$;

$$
\begin{equation*}
\left\{z_{i_{1}}\right\}_{2} \otimes Y_{i_{1}}=\sum_{i_{2}} r_{i_{1}, i_{2}}\left\{z_{i_{1}, i_{2}}\right\}_{2} \otimes z_{i_{1}, i_{2}} \wedge Y_{i_{1}, i_{2}} \tag{51}
\end{equation*}
$$

in $\left(\mathscr{B}_{2}\left(\mathbb{C}\left(S_{2}\right)\right) \otimes \bigwedge^{n-2} \mathbb{C}\left(S_{2}\right)^{*}\right)_{\mathbb{Q}}$ for all i_{1}. More generally, assume that for $k=$ $4, \ldots, n-2$, we have

$$
\begin{equation*}
\left\{z_{i_{1}, \ldots, i_{k-1}}\right\}_{k} \otimes Y_{i_{1}, \ldots, i_{k-1}}=\sum_{i_{k}} r_{i_{1}, \ldots, i_{k-1}, i_{k}}\left\{z_{i_{1}, \ldots, i_{k-1}, i_{k}}\right\}_{k} \otimes z_{i_{1}, \ldots, i_{k-1}, i_{k}} \wedge Y_{i_{1}, \ldots, i_{k-1}, i_{k}} \tag{52}
\end{equation*}
$$

in $\left(\mathscr{B}_{k}\left(\mathbb{C}\left(S_{k}\right)\right) \otimes \bigwedge^{n-k} \mathbb{C}\left(S_{k}\right)^{*}\right)_{\mathbb{Q}}$ for all i_{1}, \ldots, i_{k-1}. Finally, assume that

$$
\begin{equation*}
\left\{z_{i_{1}, \ldots, i_{n-2}}\right\}_{n-1} \otimes Y_{i_{1}, \ldots, i_{n-2}}=\sum_{i_{n-1}} r_{i_{1}, \ldots, i_{n-2}, i_{n-1}}\left\{z_{i_{1}, \ldots, i_{n-2}, i_{n-1}}\right\}_{n-1} \otimes z_{i_{1}, \ldots, i_{n-2}, i_{n-1}} \tag{53}
\end{equation*}
$$

in $\left(\mathscr{B}_{n-1}\left(\mathbb{C}\left(S_{n-1}\right)\right) \otimes \mathbb{C}\left(S_{n-1}\right)^{*}\right)_{\mathbb{Q}}$ for all i_{1}, \ldots, i_{n-2}.
Then we may write

$$
\begin{equation*}
(2 \pi)^{n-1}\left(m\left(P^{*}\right)-m(P)\right)=\mathscr{L}_{n}(\xi) \tag{54}
\end{equation*}
$$

for

$$
\xi=\sum_{k} \sum_{i_{1}, \ldots, i_{n-1}} \epsilon_{k} r_{i_{1}} \cdots r_{i_{1}, \ldots, i_{n-1}}\left\{z_{i_{1}, \ldots, i_{n-1}}\left(w_{k}\right)\right\}_{n}
$$

Here, we have written $Y_{i_{1}}, Y_{i_{1}, i_{2}}, \ldots$ to denote elements in $\bigwedge^{n-2}\left(\mathbb{C}\left(S_{1}\right)^{*}\right) \otimes \mathbb{Q}$, $\bigwedge^{n-3}\left(\mathbb{C}\left(S_{2}\right)^{*}\right) \otimes \mathbb{Q}, \ldots$ A solution to equation (50) determines the $Y_{i_{1}}$'s. Once the $Y_{i_{1}}$'s
are defined, we solve equation (51) and obtain the $Y_{i_{1}, i_{2}}$'s. The procedure continues in this fashion until we reach the $Y_{i_{1}, \ldots, i_{n-2}}$'s.

Ideally, we expect that this setting explains the nature of the n-variable examples described in [L1].

6.1. The case of an n-variable family

Let us consider the case of the family of $(n+1)$-variable rational functions

$$
z=\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)
$$

whose Mahler measure was computed in [L1].
Though we are not able to perform all the steps for general n, we can at least prove that the first two differentials $\eta_{n+1}(n+1)$ and $\eta_{n+1}(n)$ are exact.

In this case, the wedge product is

$$
\begin{array}{r}
x_{1} \wedge \cdots \wedge x_{n} \wedge z=\sum_{i=1}^{n}\left(x_{1} \wedge \cdots \wedge x_{n} \wedge\left(1-x_{i}\right)-x_{1} \wedge \cdots \wedge x_{n} \wedge\left(1+x_{i}\right)\right) \\
=\sum_{i=1}^{n}(-1)^{i(n-1)}\left(x_{i} \wedge\left(1-x_{i}\right) \wedge x_{i+1} \wedge \cdots \wedge x_{i+n-1}\right. \\
\\
\left.-x_{i} \wedge\left(1+x_{i}\right) \wedge x_{i+1} \wedge \cdots \wedge x_{i+n-1}\right)
\end{array}
$$

with the cyclical convention that $x_{i+n}=x_{i}$.
Thus, we proved that $\eta=\eta_{n+1}(n+1)\left(x_{1}, \ldots, x_{n}, z\right)$ is exact. The next step is to integrate $\eta_{n+1}(n)$ evaluated on the following element:

$$
\Delta=\sum_{i=1}^{n}(-1)^{i(n-1)}\left(\left\{x_{i}\right\}_{2} \otimes x_{i+1} \wedge \cdots \wedge x_{i+n-1}-\left\{-x_{i}\right\}_{2} \otimes x_{i+1} \wedge \cdots \wedge x_{i+n-1}\right)
$$

We now prove that $\omega=\eta_{n+1}(n)(\Delta)$ is exact. This form is defined in the variety Z, which is the projective closure of the algebraic set determined by

$$
(-1)^{n}=\left(\frac{1-x_{1}}{1+x_{1}}\right)^{2} \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)^{2} .
$$

We now show that ω is trivial in $H_{D R}^{n-1}(Z)$. First, observe that

$$
Z=Z_{+} \cup Z_{-}
$$

where $Z_{ \pm}$is given by the equation

$$
\pm z^{*}=\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)
$$

and

$$
z^{*}= \begin{cases}1 & \text { if } n \text { is even } \\ i & \text { if } n \text { is odd }\end{cases}
$$

In general, consider the variety given by the projective closure of the zeros of

$$
\alpha=\left(\frac{1-x_{1}}{1+x_{1}}\right) \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)
$$

with α a nonzero complex number. This variety is birational to \mathbb{P}^{n-1}. (This is easy to see by setting $y_{i}=\left(1-x_{i}\right) /\left(1+x_{i}\right)$.)

Hence, we may think of each $Z_{ \pm}$as a copy of \mathbb{P}^{n-1}. The singular points for this birational map are when $x_{i}= \pm 1$.

Now, suppose that n is even, and suppose that $n=2 k$.
If we prove that ω can be extended to the whole $Z_{ \pm}$and that this extension is consistent with the birationality of $Z_{ \pm}$, it implies that ω is closed and that it may be seen as a class in $H_{D R}^{2 k-1}\left(\mathbb{P}^{2 k-1}\right)=0$, and then ω is exact.

In order to extend ω, we consider the points where some x_{i} is equal to $1,-1$ (the points where the equation has singularities) and $0, \infty$ (the points where ω is not defined).

Consider the diagram

which describes the relation between the tame symbol and the residue morphism.
We would like to see that

$$
\operatorname{Res}_{v}\left(\eta_{n+1}(n)\left(\left\{x_{1}\right\}_{2} \otimes x_{2} \wedge \cdots \wedge x_{n}\right)\right)=0
$$

where v is the valuation defined by $x_{i}= \pm 1,0, \infty$ for some i. Instead, we see that

$$
\eta_{n}(n-1)\left(\partial_{v}\left(\left\{x_{1}\right\}_{2} \otimes x_{2} \wedge \cdots \wedge x_{n}\right)\right)=0
$$

First, suppose that $x_{i}=1$. Then, if $i \neq 1$, reducing modulo $x_{i}-1$ implies that $x_{i}=1$, and the only term that is possibly nonzero in $\partial_{v}\left(\left\{x_{1}\right\}_{2} \otimes x_{2} \wedge \cdots \wedge x_{n}\right)$ is $v\left(x_{i}\right)\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \bar{x}_{n}$. However, x_{i} is clearly not a uniformizer for $x_{i}-1$. Then the tame symbol is zero. If $i=1,\left\{x_{1}\right\}_{2}$ reduces to $\{1\}_{2}$, which corresponds to zero in $\eta_{n}(n-1)$, so we get zero again. The case $x_{i}=-1$ is analogous.

Now, consider the case with $x_{i}=0$ for some i. Then it is easy to see

$$
\partial_{v}\left(\left\{x_{1}\right\}_{2} \otimes x_{2} \wedge \cdots \wedge x_{n}\right)= \begin{cases}\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \bar{x}_{n} & \text { if } i \neq 1 \tag{55}\\ 0 & \text { if } i=1\end{cases}
$$

Since $x_{i}=0$, we are now in the variety defined by the projective closure of the zeros of the equation

$$
1=\left(\frac{1-x_{1}}{1+x_{1}}\right)^{2} \cdots\left({\widehat{\left(\frac{1-x_{i}}{1+x_{i}}\right.}}^{2} \cdots\left(\frac{1-x_{n}}{1+x_{n}}\right)^{2}\right.
$$

We are in a situation that is analogous to the initial one. In other words, we are in the projective space $\mathbb{P}^{2 k-2}$. We proceed by induction. In order to prove that $\eta_{n-1}(n-$ 2) $\left(\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \bar{x}_{n}\right)$ is trivial, we can prove that the tame symbols $\partial_{w}\left(\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \bar{x}_{n}\right)$ are trivial by induction. However, $H_{D R}^{2 k-2}\left(\mathbb{P}^{2 k-2}\right) \cong$ \mathbb{R}, so even if the symbols are trivial, we are not able to conclude that the form $\eta_{n-1}(n-2)\left(\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \widehat{x}_{i} \wedge \cdots \wedge \bar{x}_{n}\right)$ is exact. What we can conclude is that it is either a generator for $H_{D R}^{2 k-2}\left(\mathbb{P}^{2 k-2}\right)$ or trivial. We eliminate the first possibility.

Suppose, in order to make notation easier, that $n=i$. Assume that $\eta_{n-1}(n-$ 2) $\left(\left\{\bar{x}_{1}\right\}_{2} \otimes \bar{x}_{2} \wedge \cdots \wedge \bar{x}_{n-1}\right)$ is a generator for $H_{D R}^{2 k-2}\left(\mathbb{P}^{2 k-2}\right)$. By Poincaré duality, the integral

$$
I=\int_{1=\left(\left(1-x_{1}\right) /\left(1+x_{1}\right)\right)^{2} \cdots\left(\left(1-x_{2 k-1}\right) /\left(1+x_{2 k-1}\right)\right)^{2}} \eta_{2 k-1}(2 k-2)\left(\left\{x_{1}\right\}_{2} \otimes x_{2} \wedge \cdots \wedge x_{2 k-1}\right)
$$

must be nonzero.
Now, the transformation $x_{i} \rightarrow x_{i}^{-1}$ does not change the orientation of the variety but changes the sign of the differential ω. Hence, $I=-I$, and that implies that $I=0$. Hence, ω cannot be a generator for $H_{D R}^{2 k-2}\left(\mathbb{P}^{2 k-2}\right)$, and it must be exact.

The case when $x_{i}=\infty$ is analogous.
Now, suppose that $n=2 k+1$ is odd. Then we may proceed as before. We have the fact that ω can be seen as a class in $H_{D R}^{2 k}\left(\mathbb{P}^{2 k}\right) \cong \mathbb{R}$, and we can conclude that is exact by using the same idea that we used for the even case.

To conclude, $\omega=\eta_{n+1}(n)(\Delta)$ is exact, and it must be the differential of certain $\mu=\eta_{n+1}(n-1)(\Omega)$. However, we were unable to find the precise formula for μ. The results of [L1] suggest that one should be able to continue this process to reach η_{n+1} (1).

Acknowledgments. I express my deepest gratitude to my Ph.D. supervisor, Fernando Rodriguez-Villegas, for his invaluable guidance and encouragement of this and other projects. I am grateful to Vincent Maillot for many enlightening discussions about cohomology and the n-variable case. I am also thankful to Herbert Gangl for helpful
discussions about polylogarithms and Bloch groups. I wish to express my appreciation for the careful work of the referees, which has certainly improved the clarity and exposition of this article, and to Amir Jafari for his comments on the final version.

This work is part of my Ph.D. dissertation at the Department of Mathematics at the University of Texas at Austin. I am indebted to the department and to John Tate for their generous support during my graduate studies.

References

[B] M. J. BERTIN, Mesure de Mahler d'hypersurfaces K3, preprint, arXiv:math/0501153v1 [math.NT]
[Bo] D. W. BOYD, Mahler's measure and special values of L-functions, Experiment. Math. 7 (1998), 37 -82. MR 1618282
[BR1] D. W. BOYD and F. RODRIGUEZ-VILLEGAS, Mahler's measure and the dilogarithm, I, Canad. J. Math. 54 (2002), 468-492.
[BR2] , Mahler's measure and the dilogarithm, II, with an appendix by N. M. Dunfield, preprint, arXiv:math/0308041v2 [math.NT]
[DL] C. D'ANDREA and M. N. LALÍN, On the Mahler measure of resultants in small dimensions, J. Pure Appl. Algebra 209 (2007), 393-410.
[D] C. DENINGER, Deligne periods of mixed motives, K-theory and the entropy of certain \mathbb{Z}^{n}-actions, J. Amer. Math. Soc. 10 (1997), 259-281. MR 1415320
[G1] A. B. GONCHAROV, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), 197-318. MR 1348706
[G2] , "Explicit regulator maps on polylogarithmic motivic complexes" in Motives, Polylogarithms and Hodge Theory, Part I (Irvine, Calif., 1998), Int. Press Lect. Ser. 3, I, Int. Press, Somerville, Mass., 2002, 245-276. MR 1978709
[G3] -, "Regulators" in Handbook of K-Theory, Vol. 1, 2, Springer, Berlin, 2005, 295-349. MR 2181826
[L1] M. N. LALÍN, Mahler measure of some n-variable polynomial families, J. Number Theory 116 (2006), 102 - 139. MR 2197862
[L2] , Mahler measures and computations with regulators, to appear in J. Number Theory, preprint, arXiv:math/0611624v2 [math.NT]
[M] V. MAILLOT, Mahler measure in Arakelov geometry, workshop lecture at "The many aspects of Mahler's measure," Banff International Research Station, Banff, Canada, 2003.
[R] F. RODRIGUEZ-villegas [Villegas] "Modular Mahler Measures, I" in Topics in Number Theory (University Park, Penn., 1997), Math. Appl. 467, Kluwer, Dordrecht, Netherlands, 1999, 17-48. MR 1691301
[S] C. J. SMYTH, On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), 49-63; Corrigendum, C. J. Smyth and G. Myerson, Bull. Austral. Math. Soc. 26 (1982), 317 -319. MR 0615132; MR 0683659
[Z1] D. ZAGIER, Hyperbolic manifolds and special values of Dedekind zeta-functions, Invent. Math. 83 (1986), 285-301. MR 0818354
[Z2] \quad The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann. 286 (1990), 613-624. MR 1032949
[Z3] \qquad , "Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields" in Arithmetic Algebraic Geometry (Texel, Netherlands, 1989), Progr. Math. 89, Birkhäuser, Boston, 1991, 391-430. MR 1085270
_-, "Special values and functional equations of polylogarithms" in Structural Properties of Polylogarithms, Math. Surveys Monogr. 37, Amer. Math. Soc., Providence, 1991, 377-400. MR 1148388
[ZG] D. ZAGIER and H. GANGL, "Classical and elliptic polylogarithms and special values of L-series" in The Arithmetic and Geometry of Algebraic Cycles (Banff, Canada, 1998), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer, Dordrecht, Netherlands, 2000, 561-615. MR 1744961

Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada; mlalin@math.ubc.ca

