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Abstract
There are many examples of several variable polynomials whose Mahler measure is
expressed in terms of special values of polylogarithms. These examples are expected
to be related to computations of regulators, as observed by Deninger [D] and, later, by
Rodriguez-Villegas [R] and Maillot [M]. While Rodriguez-Villegas made this relation-
ship explicit for the two-variable case, it is our goal to understand the three-variable
case and shed some light on the examples with more variables.

1. Introduction
The (logarithmic) Mahler measure of a Laurent polynomial P ∈ C[x±1

1 , . . . , x±1
n ] is

defined by

m(P ) :=
∫ 1

0
· · ·

∫ 1

0
log|P (e2π iθ1, . . . , e2π iθn)| dθ1 · · · dθn. (1)

Because of Jensen’s formula, there is a simple expression for the Mahler measure
in the one-variable case as a function on the roots of the polynomial. It is natural, then,
to wonder what happens with several variables.

The problem of finding explicit closed formulas for Mahler measures of several-
variable polynomials is hard. However, several examples have been found, especially
for cases of two and three variables. Some formulas have been completely proved,
and some others have been established numerically and are strongly believed to be
true.

A remarkable fact is that in most of these examples, the Mahler measure of
polynomials with integral coefficients can be expressed in terms of special values of
L-series or polylogarithms (i.e., Riemann zeta functions, Dirichlet L-series, L-series
of varieties, zeta functions of number fields, etc.).
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For instance, the first and simplest example in two variables was discovered by
Smyth [S, Example 5]:

m(1 + x + y) = 3
√

3

4π
L(χ−3, 2) = L′(χ−3, −1), (2)

where χ−3 is the character of conductor 3.
Another example was computed numerically by Boyd [Bo] (and studied by

Deninger [D] and Rodriguez-Villegas [R]):

m
(
x + 1

x
+ y + 1

y
+ 1

)
?= L′(E, 0), (3)

where E is the elliptic curve of conductor 15 which is the projective closure of the
curve x + 1/x + y + 1/y + 1 = 0 and L(E, s) is the L-function of E.

Deninger [D] interpreted computations of Mahler measure in terms of Deligne pe-
riods of mixed motives, explaining some of the relations to the L-series via Beilinson’s
conjectures.

Rodriguez-Villegas [R] has clarified this relationship by explicitly computing the
regulator and relating this machinery to the cases already (numerically) known by
Boyd, proving some of them and deeply understanding the cases with two variables.
Recently, Maillot [M] has sketched how one could continue these ideas for more
variables.

It is our goal to develop these ideas and to apply them in order to understand
the few known examples with three and more variables involving Dirichlet L-series,
Riemann zeta functions, and polylogarithms. In this article, we describe a general
situation and illustrate our explanation with a few examples. In [L2], we demonstrate
the computational power of our method by showing how to prove many other formulas
of Mahler measures and generalized Mahler measures as well.

2. Background
In this section, we describe some ingredients that are used in our construction.

2.1. Polylogarithms
The cases that we are going to study involve zeta functions or Dirichlet L-series, but
they all may be thought of as special values of polylogarithms. In fact, this common
feature seems to be the most appropriate way of dealing with the interpretation of these
formulas. Here, we proceed to recall some definitions and establish some common
notation.

Definition 1
The nth polylogarithm is the function defined by the power series

Lin(x) :=
∞∑

k=1

xk

kn
, x ∈ C, |x| < 1. (4)
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This function can be continued analytically to C\(1, ∞). We work with Zagier’s
modification of the polylogarithm (see [Z3]),

Ln(x) := Ren

( n−1∑
j=0

2jBj

j !
(log |x|)j Lin−j (x)

)
, (5)

where Bj is the j th Bernoulli number and Rek denotes Re or Im, depending on whether
n is odd or even. This function is one-valued, continuous in P1(C), and real analytic
in P1(C)\{0, 1, ∞}.

Ln satisfies very clean functional equations. The simplest ones are

Ln

(1

x

)
= (−1)n−1Ln(x), Ln(x̄) = (−1)n−1Ln(x).

For n = 2, one obtains the Bloch-Wigner dilogarithm,

D(x) = Im
(
Li2(x) − log |x|Li1(x)

) = Im
(
Li2(x)

) + log |x| arg(1 − x), (6)

which satisfies the well-known five-term relation

D(x) + D(1 − xy) + D(y) + D
( 1 − y

1 − xy

)
+ D

( 1 − x

1 − xy

)
= 0. (7)

For n = 3, we obtain

L3(x) = Re
(

Li3(x) − log |x|Li2(x) + 1

3
log2 |x|Li1(x)

)
. (8)

This modified trilogarithm satisfies more functional equations, such as the Spence-
Kummer relation:

L3

(x(1 − y)2

y(1 − x)2

)
+ L3(xy) + L3

(x

y

)
− 2L3

(x(1 − y)

y(1 − x)

)
− 2L3

(y(1 − x)

y − 1

)
− 2L3

(x(1 − y)

x − 1

)
− 2L3

(1 − y

1 − x

)
− 2L3(x) − 2L3(y) + 2L3(1) = 0. (9)

2.2. Polylogarithmic motivic complexes
Given a field F , consider Z[P1

F ], the free abelian group generated by the elements of
P1

F . For each n, we are interested in working with this group modulo the (rational)
functional equations of the nth polylogarithm. Unfortunately, the functional equations
of higher polylogarithms are not known explicitly.

For X an algebraic variety, Goncharov [G1], [G2], [G3] has constructed some
groups that conjecturally correspond to the groups in the previous paragraph, and they
fit into polylogarithmic motivic complexes whose cohomology is related to Bloch



394 MATILDE N. LALÍN

groups and is conjectured to be the motivic cohomology of X. A regulator can be
defined in these complexes and is conjectured to coincide with Beilinson’s regulator.

From now on, we follow [G1], [G2], and [G3]. We state definitions and results;
the proofs may be found in the mentioned works.

Given a field F , one defines inductively some subgroups Rn(F ) and then lets

Bn(F ) := Z[P1
F ]/Rn(F ). (10)

The classes of x in Z[P1
F ] and in Bn(F ) are denoted by {x} and {x}n, respectively.

We begin by setting

R1(F ) := 〈{x} + {y} − {xy}; x, y ∈ F ∗, {0}, {∞}〉. (11)

Thus, B1(F ) = F ∗. Now, we proceed to construct a family of morphisms:

Z[P1
F ]

δn→
{

Bn−1(F ) ⊗ F ∗ if n ≥ 3,∧2
F ∗ if n = 2,

δn({x}) =
⎧⎨⎩

{x}n−1 ⊗ x if n ≥ 3,

(1 − x) ∧ x if n = 2,

0 if {x} = {0}, {1}, {∞}.
(12)

Then one defines

An(F ) := ker δn. (13)

Note that any element α(t) = ∑
ni{fi(t)} ∈ Z[P1

F (t)] has a specialization α(t0) =∑
ni{fi(t0)} ∈ Z[P1

F ] for every t0 ∈ P1
F .

Thus,

Rn(F ) := 〈
α(0) − α(1); α(t) ∈ An

(
F (t)

)〉
. (14)

Goncharov proves that Rn(C) is the subgroup of all the rational functional equa-
tions for the n-polylogarithm in C. As stated at the beginning of Section 2.2, the
philosophy is that Rn(F ) should be the subgroup of all the rational functional equa-
tions for the n-polylogarithm in F .

Because of δn(Rn(F )) = 0, it induces morphisms in the quotients

δn : Bn(F ) → Bn−1(F ) ⊗ F ∗, n ≥ 3, δ2 : B2(F ) →
2∧

F ∗.
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One obtains the complex

BF (n) : Bn(F )
δ→ Bn−1(F ) ⊗ F ∗ δ→ Bn−2(F ) ⊗

2∧
F ∗

δ→ · · · δ→ B2(F ) ⊗
n−2∧

F ∗ δ→
n∧

F ∗,

where

δ : {x}p ⊗
n−p∧
i=1

yi → δp({x}p) ∧
n−p∧
i=1

yi.

The following conjecture relates the cohomology of the complex BF (n) to motivic
cohomology.

CONJECTURE 2 ([G2, (3)])
We have

Hi
(
BF (n) ⊗ Q

) ∼= grγnK2n−i(F ) ⊗ Q. (15)

Evidence supporting this conjecture is found, for instance, in the cases n = 1, 2. First,
it is clear that H 1(BF (1)) ∼= F ∗ = K1(F ).

For n = 2, it is known that

B2(F ) ∼= Z[P1
F ]/〈R2(x, y); x, y ∈ F ∗, {0}, {∞}〉,

where

R2(x, y) := {x} + {y} + {1 − xy} +
{ 1 − x

1 − xy

}
+

{ 1 − y

1 − xy

}
is the five-term relation of the dilogarithm.

Besides,

H 1
(
BF (2)

)
Q

∼= K ind
3 (F )Q, (16)

H 2
(
BF (2)

) ∼= K2(F ), (17)

Hn
(
BF (n)

) ∼= KM
n (F ), (18)

The first assertion was proved by Suslin, the second one is Matsumoto’s theorem, and
the last one corresponds to the definition of Milnor’s K-theory.
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2.3. Regulators
Deninger [D] observed that the Mahler measure can be seen as a regulator evaluated
in a cycle that may or may not have trivial boundary. More precisely,

m(P ) = m(P ∗) + 1

(−2π i)n−1

∫
G

ηn(n)(x1, . . . , xn). (19)

We have to explain the ingredients in this formula. In this section, we are concerned
with ηn(n)(x1, . . . , xn). This form is described in the context of Goncharov’s con-
struction of the regulator on the polylogarithmic motivic complexes.

Let us establish some notation:

L̂n(z) :=
{

Ln(z) if n > 1 is odd,

i Ln(z) if n is even.

For any integers p ≥ 1 and k ≥ 0, define

βk,p := (−1)p
(p − 1)!

(k + p + 1)!

[(p−1)/2]∑
j=0

(
k + p + 1

2j + 1

)
2k+p−2jBk+p−2j ,

where the Bi are Bernoulli numbers.

Definition 3
We consider the following 1-forms:

L̂p,q(x) := L̂p(x) logq−1 |x| d log |x|, p ≥ 2,

L̂1,q(x) := (log |x| d log |1 − x| − log |1 − x| d log |x|) logq−1 |x|.
Recall that

AltmF (t1, . . . , tm) :=
∑
σ∈Sm

(−1)|σ |F (xσ (1), . . . , xσ (m)).

Now, we are ready to describe the differential forms.

Definition 4
Let x, xi be rational functions on a complex variety X:

ηn+m(m + 1) : {x}n ⊗ x1 ∧ · · · ∧ xm

→ L̂n(x)Altm
(∑

p≥0

1

(2p + 1)!(m − 2p)!

2p∧
j=1

d log |xj | ∧
m∧

j=2p+1

d i arg xj

)
+

∑
1≤k, 1≤p≤m

βk,pL̂n−k,k(x)

∧ Altm
( log |x1|

(p − 1)!(m − p)!

2p∧
j=2

d log |xj | ∧
m∧

j=p+1

d i arg xj

)
, (20)
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ηm(m) : x1 ∧ · · · ∧ xm

→ Altm
(∑

p≥0

log |x1|
(2p + 1)!(m − 2p − 1)!

2p+1∧
j=2

d log |xj | ∧
m∧

j=2p+2

d i arg xj

)
.

(21)

These differential forms typically have singularities. In order to work with them, we
need to have control of the residues. Let F be a field with discrete valuation v, residue
field Fv , and group of units U . Let u → ū be the projection U → F ∗

v , and let π be a
uniformizer for v. There is a homomorphism

θ :
n∧

F ∗ →
n−1∧

F ∗
v

defined by

θ(π ∧ u1 ∧ · · · ∧ un−1) = ū1 ∧ · · · ∧ ūn−1, θ(u1 ∧ · · · ∧ un) = 0.

Now, define sv : Z[P1
F ] → Z[P1

Fv
] by sv({x}) = {x̄}. It induces sv : Bm(F ) →

Bm(Fv). Then

∂v := sv ⊗ θ : Bm(F ) ⊗
n−m∧

F ∗ → Bm(Fv) ⊗
n−m−1∧

F ∗
v (22)

defines a morphism of complexes

∂v : BF (n) → BFv
(n − 1)[−1]. (23)

Observation 5
The induced morphism

∂v : Hn
(
BF (n)

) → Hn−1
(
BFv

(n − 1)
)

coincides with the tame symbol defined by Milnor:

∂v : KM
n (F ) → KM

n−1(Fv).

Let X be a complex variety. Let X(1) denote the set of the codimension-one, closed,
irreducible subvarieties. Let Aj (X)(k) denote the space of smooth j -forms with
values in (2π i)kR. Let d be the de Rham differential on Aj (X), and let D be the
de Rham differential on distributions, so

d(d arg x) = 0, D(d arg x) = 2πδ(x).
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The difference D − d is the de Rham residue homomorphism.
Goncharov [G2] proves the following.

THEOREM 6
We have that ηn(m) induces a homomorphism of complexes

such that:
� ηn(1)({x}n) = L̂n(x);
� dηn(n)(x1 ∧ · · · ∧ xn) = β Ren

(
dx1

x1
∧ · · · ∧ dxn

xn

)
, where β = 1 if n is odd and

i if n is even;
� ηn(m)(∗) defines a distribution on X(C);
� the morphism ηn(m) is compatible with residues

D ◦ ηn(m) − ηn(m + 1) ◦ δ = 2π i
∑

Y∈X(1)

ηn−1(m − 1) ◦ ∂vY
, m < n, (24)

D ◦ ηn(n) − β Ren

( dx1

x1
∧ · · · ∧ dxn

xn

)
= 2π i

∑
Y∈X(1)

ηn−1(n − 1) ◦ ∂vY
, (25)

where vY is the valuation defined by the divisor Y .

The relation of ηn(·) to the regulator is roughly as follows. As we mentioned in
Conjecture 2, the cohomology of the first complex corresponds to the Adams filtration,
which is the absolute cohomology. On the other hand, a slight modification of the
second complex leads to Deligne cohomology. Now, ηn(·), as seen as a map between
the cohomologies of these two complexes, is conjectured to have the same image as
the regulator (see [G3]).

We also note that the final goal is not to work with C(X) but with X itself. For X

a regular projective variety over a field F , Goncharov [G3] describes the difficulties
for defining the complex BX(n) as opposed to BF (X)(n). Basically, it is known how to
define BX(n) when X = Spec(F ) for an arbitrary field F , X is a regular curve over
an arbitrary field F , or X is an arbitrary regular scheme but n ≤ 3. Now, in terms
of the relation between ηn(·), the regulator, and Beilinson’s conjectures, the picture
is much less known. As an illustration, the case X = Spec(F ) for F a number field
corresponds to Zagier’s conjecture (see [Z2, Conjecture 1], [ZG]).
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3. The two-variable case
Rodriguez-Villegas [R] has performed the explicit construction of the regulator and
applied the ideas of Deninger [D] to explain many examples in two variables. This
work was later continued by Boyd and Rodriguez-Villegas [BR1], [BR2].

Let P ∈ C[x, y]. Then we may write

P (x, y) = ad(x)yd + · · · + a0(x),

P (x, y) = ad(x)
d∏

n=1

(
y − αn(x)

)
.

By Jensen’s formula,

m(P ) = m(ad) + 1

2π i

d∑
n=1

∫
T1

log+ |αn(x)| dx

x
= m(P ∗) − 1

2π

∫
γ

η(x, y). (26)

Here,

η(x, y) := −i η2(2)(x ∧ y) = log |x| d arg y − log |y| d arg x

is the regulator in this case, defined in the set C = {P (x, y) = 0} minus the set Z of
zeros and poles of x and y. Also, P ∗ = ad(x), and γ is the union of paths in C where
|x| = 1 and |y| ≥ 1. Finally, note that ∂γ = {P (x, y) = 0} ∩ {|x| = |y| = 1}.

In general, η(x, y) is closed in C\Z since dη(x, y) = Im
(

dx

x
∧ dy

y

)
(see

Theorem 6). Now, the computation can be performed if we arrive at one of these
two situations:
(1) η is exact, and ∂γ �= 0: in this case, we can integrate using the Stokes theorem;
(2) η is not exact, and ∂γ = 0: in this case, we can compute the integral by using

the residue theorem.
Examples for the second case are found, for instance, in the family of Laurent poly-
nomials x + 1/x + y + 1/y + k studied by Boyd [Bo], Deninger [D], and Rodriguez-
Villegas [R]. Technically, one needs k �∈ [−4, 4] for these examples to be in the first
case; otherwise, ∂γ �= 0. However, Deninger has given an interpretation that allows
an adaptation of the cases of k ∈ (−4, 4)\{0} into this frame as well.

Following Theorem 6,

η(x, 1 − x) = dD(x). (27)

Thus, η is exact when

x ∧ y =
∑

i

rixi ∧ (1 − xi) (28)
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in
∧2(C(C)∗) ⊗ Q. This condition may be rephrased as the symbol {x, y} is trivial in

K2(C(C)).
In fact, if condition (28) is satisfied, we obtain

η(x, y) =
∑

i

ri dD(xi) = dD
(∑

i

ri{xi}2

)
. (29)

Finally, we write

∂γ =
∑

k

εk[wk], εk = ±1,

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Thus, we have the following.

THEOREM 7 (see [BR1], [BR2])
Let P ∈ C[x, y] be irreducible and such that x, y satisfies equation (28). Then

2π
(
log |ad | − m(P )

) = D(ξ ) for ξ =
∑

k

∑
i

εkri

{
xi(wk)

}
2
.

Boyd and Rodriguez-Villegas prove even more. Under certain assumptions, it is pos-
sible to apply Zagier’s theorem, [Z4, Theorem 1], and relate the Mahler measure of
P to a rational combination of terms of the form ||1/2ζF (2)/π2[F :Q]−2 for certain
number fields F that depend on P (or, more specifically, on wk).

3.1. An example for the two-variable case
To be concrete, we are going to examine the simplest example for the exact case in
two variables. Consider Smyth’s formula (see [S, Example 5]):

πm(x + y − 1) = 3
√

3

4
L(χ−3, 2).

For this case,

x ∧ y = x ∧ (1 − x).

Then

2πm(P ) = −
∫

γ

η(x, y) = −
∫

γ

η(x, 1 − x) = −D(∂γ ).

Here,

γ = {
(x, y)

∣∣ |x| = 1, |1 − x| ≥ 1
} =

{
(e2π iθ , 1 − e2π iθ )

∣∣∣ θ ∈
[1

6
;

5

6

]}
.

Figure 1 shows the integration path γ .
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y (γ)

y = 1 – x|x| = 1

ξ6

Figure 1. Integration path for x + y − 1

Then ∂γ = [ξ̄6] − [ξ6] (where ξ6 = (1 + √
3i)/2), and we obtain

2πm(x + y − 1) = D(ξ6) − D(ξ̄6) = 2D(ξ6) = 3
√

3

2
L(χ−3, 2).

4. The three-variable case
Our goal is to extend this situation to three variables. Let P ∈ C[x, y, z]. We take

η(x, y, z) := η3(3)(x ∧ y ∧ z)

= log |x|
(1

3
d log |y| ∧ d log |z| − d arg y ∧ d arg z

)
+ log |y|

(1

3
d log |z| ∧ d log |x| − d arg z ∧ d arg x

)
+ log |z|

(1

3
d log |x| ∧ d log |y| − d arg x ∧ d arg y

)
. (30)

This differential form is defined in the surface S = {P (x, y, z) = 0} minus the set Z

of poles and zeros of x, y, and z.
We can express the Mahler measure of P as

m(P ) = m(P ∗) − 1

(2π)2

∫
�

η(x, y, z), (31)

where P ∗, following the previous notation, is the principal coefficient of the polyno-
mial P ∈ C[x, y][z] and

� = {
P (x, y, z) = 0

} ∩ {|x| = |y| = 1, |z| ≥ 1
}
.

Recall that η is closed in S\Z since it verifies dη(x, y, z) = Re
(

dx

x
∧ dy

y
∧ dz

z

)
.

Typically, one expects that integral (31) can be computed if we are in one of the two
ideal situations that we described before. Either the form η(x, y, z) is not exact, the
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set � consists of closed subsets, and the integral is computed by residues or the form
η(x, y, z) is exact and the set � has nontrivial boundaries, so the Stokes theorem is
used.

The first case leads to instances of Beilinson’s conjectures and produces special
values of L-functions of surfaces. Examples in this direction can be found in Bertin’s
work [B]. Bertin relates the Mahler measure of some K3 surfaces to the Eisenstein-
Kronecker series in a similar way as Rodriguez-Villegas does for two-variable
cases (see [R]).

In the second case, we need that η(x, y, z) is exact. We are going to concentrate
on this case.

We are integrating on a subset of the surface S. In order for the element in the
cohomology to be defined everywhere in the surface S, we need the residues to be
zero. This situation is fulfilled when the tame symbols are zero (see Section 2.2). This
condition is a problem for us because when η is exact, the tame symbols are zero.

As in the two-variable case, Theorem 6 implies

η(x, 1 − x, y) = dω(x, y), (32)

where

ω(x, y) := η3(2)({x}2 ⊗ y)

= −D(x) d arg y + 1

3
log |y|(log |1 − x| d log |x| − log |x| d log |1 − x|).

(33)

Thus, in order to apply the Stokes theorem, we need to require that

x ∧ y ∧ z =
∑

rixi ∧ (1 − xi) ∧ yi (34)

in
∧3(C(S)∗) ⊗ Q for η to be exact. An equivalent way of expressing this condition

is that {x, y, z} is trivial in KM
3 (C(S)).

In this case,∫
�

η(x, y, z) =
∑

ri

∫
�

η(xi, 1 − xi, yi) =
∑

ri

∫
∂�

ω(xi, yi),

where

∂� = {
P (x, y, z) = 0

} ∩ {|x| = |y| = |z| = 1
}
.

The set ∂� seems to have no boundary. However, ∂� as described above may contain
singularities that may give rise to a boundary when desingularized. We thus change
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our point of view. Namely, assume that P ∈ R[x, y, z] and is nonreciprocal (this
condition is true for all the examples that we study); then,

P (x, y, z) = P (x̄, ȳ, z̄).

This property together with the condition |x| = |y| = |z| = 1 allows us to write

∂� = {
P (x, y, z) = P (x−1, y−1, z−1) = 0

} ∩ {|x| = |y| = |z| = 1
}
.

(This idea was proposed by Maillot [M].) Observe that we are integrating now on a
path {|x| = |y| = |z| = 1} inside the curve

C = {
Resz

(
P (x, y, z), P (x−1, y−1, z−1)

) = 0
}
.

In order to easily compute ∫
∂�

ω(x, y),

we have again the two possibilities that we had before. We are going to concentrate,
as usual, on the case where ω(x, y) is exact.

The differential form ω is defined in the new curve C. As before, to ensure that it is
defined everywhere, we need to ask that the residues be trivial. This fact is guaranteed
by the triviality of tame symbols. This last condition is satisfied if ω is exact. Indeed,
we have changed our ambient variety, and we now wonder when ω is exact in C (ω is
not exact in S since that would imply that η is zero).

Fortunately, we have

ω(x, x) = dL3(x) (35)

by Theorem 6.
The condition for ω to be exact is not as easily established as in the preceding cases

because ω is not multiplicative in the first variable. In fact, the first variable behaves as
the dilogarithm; in other words, the transformations are ruled by the five-term relation.
We may express the condition we need as

{x}2 ⊗ y =
∑

ri{xi}2 ⊗ xi (36)

in
(
B2(C(C)) ⊗ C(C)∗

)
Q

. Assuming Conjecture 2, this is equivalent to saying that a

certain symbol for x and y is trivial in grγ3 K4(C(C)) ⊗ Q . Then we have∫
γ

ω(x, y) =
∑

riL3(xi)|∂γ ,

where γ = C ∩ T2.
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Now, assume that

∂γ =
∑

k

εk[wk], εk = ±1,

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Thus, we have proved the following.

THEOREM 8
Let P (x, y, z) ∈ R[x, y, z] be irreducible and nonreciprocal, let S = {P (x, y, z) =
0}, and let C = {Resz(P (x, y, z), P (x−1, y−1, z−1)) = 0}. Assume that

x ∧ y ∧ z =
∑

i

rixi ∧ (1 − xi) ∧ yi (37)

in
∧3(C(S)∗) ⊗ Q, and assume that

{xi}2 ⊗ yi =
∑

j

ri,j {xi,j }2 ⊗ xi,j (38)

in
(
B2(C(C)) ⊗ C(C)∗

)
Q

for all i. Then

4π2
(
m(P ∗) − m(P )

) = L3(ξ ) for ξ =
∑

k

∑
i,j

εkriri,j

{
xi,j (wk)

}
3
. (39)

By using Zagier’s conjecture (see Zagier [Z2], Zagier and Gangl [ZG]), it is possible
to formulate a conjecture that would imply, under certain additional circumstances,
a relationship with ζF (3) in a similar fashion as Boyd and Rodriguez-Villegas have
done for the two-variable case. We illustrate this phenomenon at the end of Sec-
tion 4.1.

4.1. The case of Res{0,m,m+n}
We proceed to the study of a family of three-variable polynomials which comes from
the world of resultants, namely, Res{0,m,m+n}. This family was computed in [DL],
and the computation is quite involved, though elementary. The Mahler measure of
Res{0,m,m+n} is the same as the Mahler measure of a certain rational function. More
precisely, we have the following.

THEOREM 9 ([DL, Theorem 6])
We have

m
(
z − (1 − x)m(1 − y)n

(1 − xy)m+n

)
= 2n

π2

(
L3(φm

2 ) − L3(−φm
1 )

)
+ 2m

π2

(
L3(φn

1 ) − L3(−φn
2 )

)
, (40)
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where φ1 is the root of xm+n + xn − 1 = 0 which lies in the interval [0, 1] and φ2 is
the root of xm+n − xn − 1 = 0 which lies in [1, ∞).

Proof
To see that η(x, y, z) is exact, we need to solve equation (37) for this case. The
equation for the wedge product becomes

x ∧ y ∧ z = mx ∧ y ∧ (1 − x) + nx ∧ y ∧ (1 − y) − (m + n)x ∧ y ∧ (1 − xy)

= −mx ∧ (1 − x) ∧ y + ny ∧ (1 − y) ∧ x

+ mxy ∧ (1 − xy) ∧ y − nxy ∧ (1 − xy) ∧ x.

After performing the Stokes theorem for the first time, we evaluate the form ω in
the following element of B2(C(C)) ⊗ C(C)∗:

 = m({xy}2 ⊗ y − {x}2 ⊗ y) − n({xy}2 ⊗ x − {y}2 ⊗ x).

We then compute the corresponding curve C. We take advantage of the fact that
our equation has the shape z = R(x, y). In order to compute C, we simply consider

R(x, y)R(x−1, y−1) = z · z−1 = 1. (41)

For this case,

(1 − x)m(1 − y)n(1 − x−1)m(1 − y−1)n

(1 − xy)m+n(1 − x−1y−1)m+n
= 1.

Let us denote

x1 = 1 − x

1 − xy
, y1 = 1 − y

1 − xy
, x̂1 = 1 − x1, ŷ1 = 1 − y1.

Then we may rewrite the equation for C as

xm
1 yn

1 x̂ n
1 ŷ m

1 = 1.

Now, we use the five-term relation

{x}2 + {y}2 + {1 − xy}2 + {x1}2 + {y1}2 = 0.

Then we obtain

 = m({y}2 ⊗ y + {x1}2 ⊗ y + {y1}2 ⊗ y) − n({x}2 ⊗ x + {x1}2 ⊗ x + {y1}2 ⊗ x).

Observe that x = x̂1/y1, y = ŷ1/x1.
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Thus, we may write

 = m({y}2 ⊗ y + {x1}2 ⊗ ŷ1 − {x1}2 ⊗ x1 + {y1}2 ⊗ ŷ1 − {y1}2 ⊗ x1)

− n({x}2 ⊗ x + {x1}2 ⊗ x̂1 − {x1}2 ⊗ y1 + {y1}2 ⊗ x̂1 − {y1}2 ⊗ y1)

= m{y}2 ⊗ y + {x1}2 ⊗ ŷ m
1 − m{x1}2 ⊗ x1 − m{̂y1}2 ⊗ ŷ1 − {y1}2 ⊗ xm

1

− n{x}2 ⊗ x + n{̂x1}2 ⊗ x̂1 + {x1}2 ⊗ yn
1 − {y1}2 ⊗ x̂ n

1 + n{y1}2 ⊗ y1.

Because of the equation for C,

{x1}2 ⊗ yn
1 ŷ m

1 − {y1}2 ⊗ xm
1 x̂ n

1

= −{x1}2 ⊗ xm
1 x̂ n

1 + {y1}2 ⊗ yn
1 ŷ m

1

= −m{x1}2 ⊗ x1 + n{̂x1}2 ⊗ x̂1 + n{y1}2 ⊗ y1 − m{̂y1}2 ⊗ ŷ1,

we obtain

 = m({y}2 ⊗ y − {̂y1}2 ⊗ ŷ1 − {x1}2 ⊗ x1 − {̂y1}2 ⊗ ŷ1 − {x1}2 ⊗ x1)

− n({x}2 ⊗ x − {̂x1}2 ⊗ x̂1 − {y1}2 ⊗ y1 − {̂x1}2 ⊗ x̂1 − {y1}2 ⊗ y1)

= m({y}2 ⊗ y − 2{̂y1}2 ⊗ ŷ1 − 2{x1}2 ⊗ x1) − n({x}2 ⊗ x − 2{̂x1}2 ⊗ x̂1

− 2{y1}2 ⊗ y1).

We now need to study the path of integration. First, write x = e2iα , y = e2iβ for
−π/2 ≤ α, β ≤ π/2. Then

x1 = e−iβ sin α

sin(α + β)
, y1 = e−iα sin β

sin(α + β)

and

x̂1 = eiα sin β

sin(α + β)
, ŷ1 = eiβ sin α

sin(α + β)
.

Let a = |sin α/(sin(α + β))|, b = |sin β/(sin(α + β))|. Then we may write

x1 = ±ae−iβ, y1 = ±be−iα, x̂1 = ±beiα, ŷ1 = ±aeiβ.

By means of the sine theorem, we may think of a, b, and 1 as the sides of a
triangle with the additional condition

ambn = 1

(see Figure 2). The triangle determines the angles α and β, which are opposite to the
sides a, b, respectively. We need to be careful and take the complement of an angle if
it happens to be greater than π/2. (This corresponds to the cases when the sines are



AN ALGEBRAIC INTEGRATION FOR MAHLER MEASURE 407

a

b

(1) (2) (3)

Figure 2. We are integrating over all the possible triangles. The angles are measured
negatively if they are greater than π/2, as α is in the case (2). We do not count

the triangles pointing down, as in (3).

negatives.) However, we need to be cautious. In fact, the problem of constructing the
triangle given the sides always has two symmetric solutions. We count each triangle
once, so we multiply our final result by two. To sum up, a and b are enough to describe
the set where the integration is performed.

Now, the boundaries (where the triangle degenerates) are three: b + 1 = a,
a + 1 = b, and a + b = 1. Let

φ1 be the root of xm+n + xn − 1 = 0 with 0 ≤ φ1 ≤ 1,

and let

φ2 be the root of xm+n − xn − 1 = 0 with 1 ≤ φ2.

Then the first two conditions are translated as

a = φ−n
1 , b = φm

1 , α = 0, β = 0,

a = φ−n
2 , b = φm

2 , α = 0, β = 0.

The third condition is inconsequential since it requires both a, b ≤ 1 (but they
cannot be both equal to one at the same time) and ambn = 1.

Hence, the integration path (from condition a + 1 = b to b + 1 = a) is

0 ≤ α ≤ θ1, 0 ≥ β ≥ −π

2
,

θ1 ≤ α ≤ π

2
,

π

2
≥ β ≥ θ2,

−π

2
≤ α ≤ 0, θ2 ≥ β ≥ 0.
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Here, θ1 is the angle that is opposite to the side a when the triangle is right-angled
with hypotenuse b and θ2 is opposite to b when a is the hypotenuse. We do not need
to compute those angles. In fact, we may describe the integration path as either

0 ≤ α ≤ π

2
, −π

2
≤ α ≤ 0

or

0 ≥ β ≥ −π

2
,

π

2
≥ β ≥ 0.

It is appropriate to think of it in this way because {x1}3+{̂y1}3 and {̂x1}3+{y1}3 change
continuously around the right-angled triangles. Moreover, because of this property,
everything reduces to evaluating L3 in

� = m({y}3 − 2{̂y1}3 − 2{x1}3) − n({x}3 − 2{̂x1}3 − 2{y1}3)

in the cases of b + 1 = a and a + 1 = b and computing the difference.
One can have problems when z is zero or has a pole. We have that z is zero

for x = 1 and y = 1, but these conditions correspond to  = m{y}2 ⊗ y and
 = −n{x}2 ⊗ x. They lead to � = m{y}3 and � = −n{x}3, and they integrate to
zero when the variables move in the unit circle.

The poles are at xy = 1, which corresponds to  = (m−n){x}2 ⊗x. Integrating,
we obtain � = (m − n){x}3, which leads to zero when x moves in the unit circle.

We obtain

4π2m(P ) = 2
(
4n(L3(φm

2 ) − L3(−φm
1 )) + 4m(L3(φn

1 ) − L3(−φn
2 ))

)
.

Finally,

m(P ) = 2n

π2

(
L3(φm

2 ) − L3(−φm
1 )

) + 2m

π2

(
L3(φn

1 ) − L3(−φn
2 )

)
,

so we recover the result of [DL]. �

The case with m = n = 1 is especially elegant. Here, the rational function has the
form

z = (1 − x)(1 − y)

(1 − xy)2
,

and

m(P ) = 4

π2

(
L3(φ) − L3(−φ)

)
,

where φ2 + φ − 1 = 0 and 0 ≤ φ ≤ 1. (In other words, φ = (−1 + √
5)/2.)
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Moreover, we may use Zagier’s conjecture (see [Z2, Conjecture 1], [ZG]) to
describe this result in terms of the zeta function of Q(

√
5). According to the conjecture,

H 1(BQ(
√

5)(3)) has rank 2. We may take {{1}3, {φ}3} as a basis. In order to see this,
we need to check that {φ}2 ⊗ φ is trivial. That is the case because

{φ}2 = {1 − φ2}2 = −{φ2}2 = 2{−φ}2 − 2{φ}2

= −2{1 + φ}2 − 2{φ}2 = −2{φ−1}2 − 2{φ}2 = 0,

which implies that {φ}2 ⊗ φ = 0. Then the conjecture predicts

ζQ(
√

5)(3) ∼Q∗
√

5

∣∣∣∣ L3(φ) L3(1)
L3(−φ−1) L3(1)

∣∣∣∣ =
√

5ζ (3)
(
L3(φ) − L3(−φ)

)
.

Indeed,

ζQ(
√

5)(3) = ζ (3)√
5

(
L3(φ) − L3(−φ)

)
,

which allows us to write

m(Res{0,1,2}) = 4
√

5ζQ(
√

5)(3)

π2ζ (3)
.

5. A few words about the four-variable case
Unfortunately, we do not have a general systematic method to describe algebraically
the successive integration domains in more than three variables. Hence, we cannot
formulate a precise general result. However, this does not prevent us from using a
similar technique for some four-variable cases. In this section, we recall the list of
differentials in four variables.

The sequence of differentials is as follows:

η(x, y, w, z) := −i η4(4)(x, y, w, z)

= 1

4

(
− log |z| Im

( dx

x
∧ dy

y
∧ dw

w

)
+ log |w| Im

( dx

x
∧ dy

y
∧ dz

z

)
− log |y| Im

( dx

x
∧ dw

w
∧ dz

z

)
+ log |x| Im

( dy

y
∧ dw

w
∧ dz

z

)
+ η(x, y, w) ∧ d arg z

− η(x, y, z) ∧ d arg w

+ η(x, w, z) ∧ d arg y − η(y, w, z) ∧ d arg x

)
, (42)

where η(x, y, z) denotes the differential previously defined for three variables.
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We have

η(x, 1 − x, y, w) = dω(x, y, w), (43)

where

ω(x, y, w) := −i η4(3)(x, y, w)

= D(x)
(1

3
d log |y| ∧ d log |w| − d arg y ∧ d arg w

)
+ 1

3
η(y, w) ∧ (log |x| d log |1 − x| − log |1 − x| d log |x|). (44)

Next,

ω(x, x, y) = dµ(x, y) (45)

with

µ(x, y) := −i η4(2)(x, y) = L3(x) d arg y − 1

3
D(x) log |y| d log |x|. (46)

Finally,

µ(x, x) = dL4(x). (47)

5.1. An example in four variables
In spite of the fact that we do not know how to treat the integration domains, we may
still do the algebraic integration for some examples of four-variable polynomials. Here
is an example.

We study the case of Res{(0,0),(1,0),(0,1)}, whose Mahler measure was first computed
in [DL]. This is the case of the nine-variable polynomial that is the general (3 × 3)-
determinant. Because of homogeneities, this Mahler measure problem may be reduced
to computing the Mahler measure of a four-variable polynomial. The result is the
following.

THEOREM 10 ([DL, Theorem 7])
We have

m
(
(1 − x)(1 − y) − (1 − w)(1 − z)

) = 9

2π2
ζ (3). (48)

Proof
First, we have to solve the equation with the wedge product:

x ∧y ∧w∧z = −1

x
∧y ∧w∧z = −1

x
∧y

(
1− 1

x

)
∧w∧z+ 1

x
∧

(
1− 1

x

)
∧w∧z.
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Now, the first term on the right-hand side is

−1

x
∧ y

(
1 − 1

x

)
∧ w ∧ z = x

w
∧

(
y − y

x

)
∧ w ∧ z

= x

w

(
1 − y + y

x

)
∧

(
y − y

x

)
∧ w ∧ z −

(
1 − y + y

x

)
∧

(
y − y

x

)
∧ w ∧ z.

Next, we use the formula for z as a function of the other variables:

x

w

(
1 − y + y

x

)
∧

(
y − y

x

)
∧ w ∧ z

= x + y − xy

w
∧

(
y − y

x

)
∧ w ∧ −w + x + y − xy

w(1 − w)

= x + y − xy

w
∧

(
y − y

x

)
∧ w ∧

(
1 − x + y − xy

w

)
− x + y − xy

w
∧

(
y − y

x

)
∧ w ∧ (1 − w).

Note that

−(x + y − xy) ∧
(
y − y

x

)
∧ w ∧ (1 − w)

= −
(

1 − y + y

x

)
∧

(
y − y

x

)
∧ w ∧ (1 − w) − x ∧

(
y − y

x

)
∧ w ∧ (1 − w).

Hence,

x ∧y ∧w∧z = 1

x
∧

(
1 − 1

x

)
∧ w ∧ z+

(
y − y

x

)
∧

(
1−y + y

x

)
∧ w ∧ z(1−w)

+ x + y − xy

w
∧

(
1 − x + y − xy

w

)
∧

(
y − y

x

)
∧ w − w ∧ (1 − w) ∧ x ∧

(
y − y

x

)
.

The form ω is evaluated in the following element:

 =
{1

x

}
2
⊗ w ∧ z +

{
y − y

x

}
2
⊗ w ∧ z(1 − w)

+
{x + y − xy

w

}
2
⊗

(
y − y

x

)
∧ w − {w}2 ⊗ x ∧

(
y − y

x

)
= −{x}2 ⊗ w ∧ z +

{
y − y

x

}
2
⊗ w ∧ z(1 − w)

−
{
z − z

w

}
2
⊗

(
y − y

x

)
∧ w − {w}2 ⊗ x ∧

(
y − y

x

)
.
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Figure 3. Integration set for Res{(0,0),(1,0),(0,1)}

For applying the Stokes theorem, we still apply the technique that is analogous
to the computation of the equation for C in the three-variable case. We can apply the
analogue of the equation (41),(

1 − (1 − x)(1 − y)

1 − w

)(
1 − (1 − x−1)(1 − y−1)

1 − w−1

)
= 1,

which can be simplified as

x = 1, y = 1, w = x, or w = y.

The above conditions correspond to two pyramids in the torus T3, as seen in
Figure 3. We make the computation over the lower pyramid and then multiply the
result by 2.

In the case when x = 1, we have w = 1 or z = 1. If w = 1,  = 0.
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If z = 1,

 = −
{

1 − 1

w

}
2
⊗ y ∧ w.

Then µ is evaluated on

� = {w}3 ⊗ y,

and � is integrated on the boundary, which is y = 1, w = 1, and y = w.
If y = 1, � = 0. If w = 1,

� = {1}3 ⊗ y,

which yields 2πζ (3).
If y = w,

� = {y}3 ⊗ y,

whose integral is zero.
In the case when y = 1, we have w = 1 or z = 1. If w = 1,  = 0.
If z = 1,

 =
{

1 − 1

x

}
2
⊗ w ∧ (1 − w) −

{
1 − 1

w

}
2
⊗

(
1 − 1

x

)
∧ w − {w}2 ⊗ x ∧

(
1 − 1

x

)
.

Only the term in the middle yields a nonzero differential form. In fact, the term in the
middle yields

� = {w}3 ⊗
(

1 − 1

x

)
,

and � is integrated on the boundary, which is x = 1, w = 1, and x = w.
If x = 1, � = 0. If w = 1,

� = {1}3 ⊗
(

1 − 1

x

)
.

This integration is equal to πζ (3).
If x = w,

� = {x}3 ⊗
(

1 − 1

x

)
,

which integrates to zero.
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When w = x (in this case, z = y unless x = 1),

 = −{x}2 ⊗ x ∧ y +
{
y − y

x

}
2
⊗ x ∧ y(1 − x)

−
{
y − y

x

}
2
⊗

(
y − y

x

)
∧ x − {x}2 ⊗ x ∧

(
y − y

x

)
.

Then

� = −2{x}3 ⊗ y − 2
{
y − y

x

}
3
⊗ x − {x}3 ⊗

(
1 − 1

x

)
.

Now � is integrated on the boundary, which is x = 1, y = 1, and x = y (see
Figure 3).

If x = 1,

� = −2{1}3 ⊗ y,

which gives 4πζ (3).
If y = 1,

� = −2
{

1 − 1

x

}
3
⊗ x − {x}3 ⊗

(
1 − 1

x

)
.

Now, use the fact that

{x}3 + {1 − x}3 +
{

1 − 1

x

}
3
= {1}3

and the fact that |x| = 1 to conclude

−2
{

1 − 1

x

}
3
⊗ x = {x}3 ⊗ x − {1}3 ⊗ x.

The total integration in this case is 2πζ (3).
If x = y,

� = −2{x}3 ⊗ x − 2{x − 1}3 ⊗ x − {x}3 ⊗
(

1 − 1

x

)
,

which leads to −2
∮

µ(x − 1, x). (We do not need to compute this integral for the
final result.)

When w = y (in this case, z = x unless y = 1),

 = −{x}2 ⊗ y ∧ x +
{
y − y

x

}
2
⊗ y ∧

(
x − x

y

)
−

{
x − x

y

}
2
⊗

(
y − y

x

)
∧ y − {y}2 ⊗ x ∧

(
y − y

x

)
= {x}2 ⊗ x ∧ y + {y}2 ⊗ y ∧ x − {y}2 ⊗ x ∧

(
1 − 1

x

)
−

{
y − y

x

}
2
⊗

(
x − x

y

)
∧ y −

{
x − x

y

}
2
⊗

(
y − y

x

)
∧ y.
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By the five-term relation,{
1 − 1

x

}
2
+ {y}2 +

{
1 − y

(
1 − 1

x

)}
2
+

{ 1

x + y − xy

}
2
+

{ 1 − y

1 − y + y/x

}
2
= 0,

{x}2 + {y}2 −
{
y − y

x

}
2
− {x + y − xy}2 −

{
x − x

y

}
2
= 0.

Then we obtain

 = {x}2 ⊗ x ∧ y + {y}2 ⊗ y ∧ x − {y}2 ⊗ x ∧
(

1 − 1

x

)
− {x}2 ⊗

(
x − x

y

)
∧ y

− {y}2 ⊗
(
x − x

y

)
∧ y + {x + y − xy}2 ⊗

(
x − x

y

)
∧ y

+
{
x − x

y

}
2
⊗

(
x − x

y

)
∧ y − {x}2 ⊗

(
y − y

x

)
∧ y − {y}2 ⊗

(
y − y

x

)
∧ y

+ {x + y − xy}2 ⊗
(
y − y

x

)
∧ y +

{
y − y

x

}
2
⊗

(
y − y

x

)
∧ y

= {x}2 ⊗ x ∧ y + {y}2 ⊗ y ∧ x − {y}2 ⊗ x ∧
(

1 − 1

x

)
− {x}2 ⊗ (1 − x)(1 − y) ∧ y − {y}2 ⊗ (1 − x)(1 − y) ∧ y

+
{
x − x

y

}
2
⊗

(
x − x

y

)
∧ y + {x + y − xy}2 ⊗ (1 − x)(1 − y) ∧ y

+
{
y − y

x

}
2
⊗

(
y − y

x

)
∧ y.

Now,

−{y}2 ⊗ x ∧
(

1 − 1

x

)
− {x}2 ⊗ (1 − y) ∧ y

is zero in the differential form.
Therefore,

� = {x}3 ⊗ y +{y}3 ⊗ x + {1− x}3 ⊗ y +{y}3 ⊗ (1 − x)(1 − y)+
{
x − x

y

}
3
⊗ y

− {
(1 − x)(1 − y)

}
3
⊗ y +

{
y − y

x

}
3
⊗ y,

and � is integrated on the boundary, which is x = 1, y = 1, and x = y.
If x = 1,

� = {1}3 ⊗ y + {y}3 ⊗ (1 − y) +
{

1 − 1

y

}
3
⊗ y,

whose integral is 3πζ (3).
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If y = 1,

� = {1}3 ⊗ x + {1}3 ⊗ (1 − x),

which gives 3πζ (3).
If x = y,

� = 2{x}3 ⊗ x+{1 − x}3 ⊗ x+2{x}3 ⊗ (1 − x)+2{x − 1}3 ⊗ x−{
(1−x)2

}
3
⊗ x

= 2{x}3 ⊗ x − 3{1 − x}3 ⊗ x + 2{x}3 ⊗ (1 − x) − 2{x − 1}3 ⊗ x,

which yields 3πζ (3) + 2
∮

µ(x − 1, x).
The poles are with w = 1, but  = 0 in this case. On the other hand, if z = 0,

then w = x + y − xy. But |w| = 1 implies that x = 1, y = 1, or x = −y. In the first
two cases, w = 1 and  = 0. In the third case,

 = −{x}2 ⊗ x2 ∧ (1 − x2) − {x2}2 ⊗ x ∧ (1 − x),

which corresponds to zero if |x| = 1.
Thus,

8π3m(P ) = 36πζ (3).

Finally,

m(P ) = 9

2π2
ζ (3). �

6. The n-variable case
The usual application of Jensen’s formula (as in equation (26)) allows us to write, for
P ∈ C[x1, . . . , xn],

m(P ) = m(P ∗) + 1

(−2π i)n−1

∫
G

ηn(n)(x1, . . . , xn), (49)

where

G = {
P (x1, . . . , xn) = 0

} ∩ {|x1| = · · · = |xn−1| = 1, |xn| ≥ 1
}
.

(Recall that this is due to Deninger [D].)
It is easy to see that we can then follow a process that is analogous to the ones

we followed for up to four variables. It remains, of course, to find a general algebraic
way of describing the successive sets that we obtain by taking boundaries. Suppose
that we do have a good description of the boundaries inside certain algebraic varieties,
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say, S1 = {P (x1, . . . , xn) = 0}, . . . , Sn−1. Write, as usual,

∂γ =
∑

k

εk[wk], εk = ±1,

where γ is the collection of paths Sn−1 ∩ {|x1| = 1}. In principle, we should expect
the following.

CONJECTURE 11
Let P (x1, . . . , xn) ∈ R[x1, . . . , xn] be nonreciprocal. Assume that the following
conditions are satisfied:

x1 ∧ · · · ∧ xn =
∑

i1

ri1zi1 ∧ (1 − zi1 ) ∧ Yi1 (50)

in
∧n(C(S1)∗) ⊗ Q;

{zi1}2 ⊗ Yi1 =
∑

i2

ri1,i2{zi1,i2}2 ⊗ zi1,i2 ∧ Yi1,i2 (51)

in
(
B2(C(S2)) ⊗ ∧n−2 C(S2)∗

)
Q

for all i1. More generally, assume that for k =
4, . . . , n − 2, we have

{zi1,...,ik−1}k ⊗ Yi1,...,ik−1 =
∑

ik

ri1,...,ik−1,ik {zi1,...,ik−1,ik }k ⊗ zi1,...,ik−1,ik ∧ Yi1,...,ik−1,ik (52)

in
(
Bk(C(Sk)) ⊗ ∧n−k C(Sk)∗

)
Q

for all i1, . . . , ik−1. Finally, assume that

{zi1,...,in−2}n−1 ⊗ Yi1,...,in−2 =
∑
in−1

ri1,...,in−2,in−1{zi1,...,in−2,in−1}n−1 ⊗ zi1,...,in−2,in−1 (53)

in
(
Bn−1(C(Sn−1)) ⊗ C(Sn−1)∗

)
Q

for all i1, . . . , in−2.
Then we may write

(2π)n−1
(
m(P ∗) − m(P )

) = Ln(ξ ) (54)

for

ξ =
∑

k

∑
i1,...,in−1

εkri1 · · · ri1,...,in−1

{
zi1,...,in−1 (wk)

}
n
.

Here, we have written Yi1 , Yi1,i2, . . . to denote elements in
∧n−2(C(S1)∗) ⊗ Q,∧n−3(C(S2)∗)⊗Q, . . . . A solution to equation (50) determines the Yi1 ’s. Once the Yi1 ’s
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are defined, we solve equation (51) and obtain the Yi1,i2 ’s. The procedure continues in
this fashion until we reach the Yi1,...,in−2 ’s.

Ideally, we expect that this setting explains the nature of the n-variable examples
described in [L1].

6.1. The case of an n-variable family
Let us consider the case of the family of (n + 1)-variable rational functions

z =
(1 − x1

1 + x1

)
· · ·

(1 − xn

1 + xn

)
whose Mahler measure was computed in [L1].

Though we are not able to perform all the steps for general n, we can at least
prove that the first two differentials ηn+1(n + 1) and ηn+1(n) are exact.

In this case, the wedge product is

x1 ∧ · · · ∧ xn ∧ z =
n∑

i=1

(
x1 ∧ · · · ∧ xn ∧ (1 − xi) − x1 ∧ · · · ∧ xn ∧ (1 + xi)

)
=

n∑
i=1

(−1)i(n−1)
(
xi ∧ (1 − xi) ∧ xi+1 ∧ · · · ∧ xi+n−1

− xi ∧ (1 + xi) ∧ xi+1 ∧ · · · ∧ xi+n−1

)
with the cyclical convention that xi+n = xi .

Thus, we proved that η = ηn+1(n + 1)(x1, . . . , xn, z) is exact. The next step is to
integrate ηn+1(n) evaluated on the following element:

 =
n∑

i=1

(−1)i(n−1)({xi}2 ⊗ xi+1 ∧ · · · ∧ xi+n−1 − {−xi}2 ⊗ xi+1 ∧ · · · ∧ xi+n−1).

We now prove that ω = ηn+1(n)() is exact. This form is defined in the variety
Z, which is the projective closure of the algebraic set determined by

(−1)n =
(1 − x1

1 + x1

)2
· · ·

(1 − xn

1 + xn

)2
.

We now show that ω is trivial in Hn−1
DR (Z). First, observe that

Z = Z+ ∪ Z−,

where Z± is given by the equation

±z∗ =
(1 − x1

1 + x1

)
· · ·

(1 − xn

1 + xn

)
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and

z∗ =
{

1 if n is even,

i if n is odd.

In general, consider the variety given by the projective closure of the zeros of

α =
(1 − x1

1 + x1

)
· · ·

(1 − xn

1 + xn

)
with α a nonzero complex number. This variety is birational to Pn−1. (This is easy to
see by setting yi = (1 − xi)/(1 + xi).)

Hence, we may think of each Z± as a copy of Pn−1. The singular points for this
birational map are when xi = ±1.

Now, suppose that n is even, and suppose that n = 2k.
If we prove that ω can be extended to the whole Z± and that this extension is

consistent with the birationality of Z±, it implies that ω is closed and that it may be
seen as a class in H 2k−1

DR (P2k−1) = 0, and then ω is exact.
In order to extend ω, we consider the points where some xi is equal to 1, −1

(the points where the equation has singularities) and 0, ∞ (the points where ω is not
defined).

Consider the diagram

which describes the relation between the tame symbol and the residue morphism.
We would like to see that

Resv

(
ηn+1(n)({x1}2 ⊗ x2 ∧ · · · ∧ xn)

) = 0,

where v is the valuation defined by xi = ±1, 0, ∞ for some i. Instead, we see that

ηn(n − 1)
(
∂v({x1}2 ⊗ x2 ∧ · · · ∧ xn)

) = 0.

First, suppose that xi = 1. Then, if i �= 1, reducing modulo xi − 1 implies that
xi = 1, and the only term that is possibly nonzero in ∂v({x1}2 ⊗ x2 ∧ · · · ∧ xn) is
v(xi){x̄1}2⊗x̄2∧· · · ∧ x̂i ∧· · ·∧ x̄n. However, xi is clearly not a uniformizer for xi −1.
Then the tame symbol is zero. If i = 1, {x1}2 reduces to {1}2, which corresponds to
zero in ηn(n − 1), so we get zero again. The case xi = −1 is analogous.
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Now, consider the case with xi = 0 for some i. Then it is easy to see

∂v({x1}2 ⊗ x2 ∧ · · · ∧ xn) =
{

{x̄1}2 ⊗ x̄2 ∧ · · · ∧ x̂i ∧ · · · ∧ x̄n if i �= 1,

0 if i = 1.
(55)

Since xi = 0, we are now in the variety defined by the projective closure of the zeros
of the equation

1 =
(1 − x1

1 + x1

)2
· · ·

̂(1 − xi

1 + xi

)2

· · ·
(1 − xn

1 + xn

)2
.

We are in a situation that is analogous to the initial one. In other words, we are in
the projective space P2k−2. We proceed by induction. In order to prove that ηn−1(n −
2)({x̄1}2 ⊗ x̄2 ∧ · · · ∧ x̂i ∧ · · · ∧ x̄n) is trivial, we can prove that the tame symbols
∂w({x̄1}2 ⊗ x̄2 ∧· · ·∧ x̂i ∧· · ·∧ x̄n) are trivial by induction. However, H 2k−2

DR (P2k−2) ∼=
R, so even if the symbols are trivial, we are not able to conclude that the form
ηn−1(n − 2)({x̄1}2 ⊗ x̄2 ∧ · · · ∧ x̂i ∧ · · · ∧ x̄n) is exact. What we can conclude is that
it is either a generator for H 2k−2

DR (P2k−2) or trivial. We eliminate the first possibility.
Suppose, in order to make notation easier, that n = i. Assume that ηn−1(n −

2)({x̄1}2 ⊗ x̄2 ∧ · · · ∧ x̄n−1) is a generator for H 2k−2
DR (P2k−2). By Poincaré duality, the

integral

I =
∫

1=((1−x1)/(1+x1))2 ··· ((1−x2k−1)/(1+x2k−1))2

η2k−1(2k − 2)({x1}2 ⊗ x2 ∧ · · · ∧ x2k−1)

must be nonzero.
Now, the transformation xi → x−1

i does not change the orientation of the variety
but changes the sign of the differential ω. Hence, I = −I , and that implies that I = 0.
Hence, ω cannot be a generator for H 2k−2

DR (P2k−2), and it must be exact.
The case when xi = ∞ is analogous.
Now, suppose that n = 2k + 1 is odd. Then we may proceed as before. We have

the fact that ω can be seen as a class in H 2k
DR(P2k) ∼= R, and we can conclude that is

exact by using the same idea that we used for the even case.
To conclude, ω = ηn+1(n)() is exact, and it must be the differential of certain

µ = ηn+1(n − 1)(�). However, we were unable to find the precise formula for µ.
The results of [L1] suggest that one should be able to continue this process to reach
ηn+1(1).
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