THE AREAL MAHLER MEASURE UNDER A POWER CHANGE OF
VARIABLES

MATILDE N. LALIN AND SUBHAM ROY

ABSTRACT. The Mahler measure of a multivariable polynomial is given by an integral over the
unit torus, while the areal Mahler measure, defined by Pritsker [12], is given by an integral over
the product of unit disks. It is well-known that the classical Mahler measure is invariant under
the change of variables x — z”, where r is an integer, but this is not the case for the areal Mahler
measure. In this note we investigate how the areal Mahler measure changes with this transformation
and provide some specific examples.

1. INTRODUCTION

The (logarithmic) Mahler measure of a multivariable non-zero rational function P € C(z1, ..., z,)*
is given by
1 dxq dx,,
P) — log | P o) — - —2
Hl( ) (27”)n /]I‘n Og‘ (xb ) & ) T,

where T" = {(x1,...,2,) € C" : |21] = --- = |x,| = 1} is the n-dimensional unit torus and the
integration is taken with respect to the Haar measure.

When P is a single variable polynomial, m(P) can be expressed in terms of the roots of P
by means of Jensen’s formula. In the multivariable case, we do not know a general formula for
m(P) but many examples are known where m(P) is related to particular values of special functions
including the Riemann zeta function, L-functions, etc. The first such formula was given by Smyth
[14, B

) w(t+o+9) = 22000,00)

where L(x_3,s) is the Dirichlet L-function associated to the primitive character x_s of conductor
3, given by x_3(n) = (’73) The appearance of such special values has been explained in terms of
evaluations of regulators by Deninger [6], Boyd [3], and Rodriguez-Villegas [I3] (see also the book
of Brunault and Zudilin [4] for a more detailed exposition).

In this article we consider the (logarithmic) areal Mahler measure defined by Pritsker [12] for
PeC(xy,...,z,)~ as

mp(P) = - / log | P(z1, .., 2)|dA(z1) - - - dA(zy),

™

where

D" ={(z1,...,2,) €C" : |z4|,..., |z,| < 1}
is the product of n unit disks, and the measure is the natural measure in the A Bergman space.
The basic properties of this object (particularly for the one-variable polynomial case) have been
studied by Pritsker [12], Choi and Samuels [5], and Flammang [8]. In recent work [II] the authors
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of this note started a systematic study of examples of areal Mahler measure in the multivariable
case and they computed, among several cases,
1 113

3
— I(v_ 2.2 _
A (X 3 )+6 167 )

(2) mp(l+2+y) =

which should be compared to (|1]).
A property of the standard Mahler measure is its invariance respect to the following transforma-

tion. Let us write
= Y € Clor

where x™ = 27" --- 2" Let A be an n X n integer matrix with non-zero determinant, and define

PW(x) = Z ConX .

m

Then
(3) m(P) =m (PW).

(See Exercise 3.1 in [7].) While the above transformation has been described for polynomials, it is
straightforward to generalize it to rational functions.

The goal of this project is to investigate the simplest possible case of the above transformation,
namely, when one of the variables, x, is replaced by a power of itself, ", where r is a positive
integer, in the areal Mahler measure case. To illustrate this, we compute the areal Mahler measures
of 1+ 2" 4+ y®, where r and s are positive integers and we obtain results that are different from ,
which corresponds to the case r = s = 1. More precisely, we prove the following statement.

Theorem 1. Let r, s be positive integers. We have

mD(l—i—x”—i-ys)
3\f \/_r r+2 2 + 2 r+1 2 + 1
Am Lix-3,2) - 6 127 [C (1’ 3r >_g(1’ 3r )+C(1’ 3r >_<<1’ 3r )}

_2ZZ E\ (DR [ —hk—h+ it Lk—h+! +2,4]+s N
m L= L= \2h 2k*2h+1k(kr+2)(2k+;—2h+1) 6 \k/) kr+1

1<k h=0
_sv8 ()() xalk—g) s () P[5k g ik g 3]
T 0<i<k k)\j) (k+j)r+2)(k—j) 4 1<k K (kr+1)(2/€+1 %)
k—j
+£ZLi:J<%)<§)<k_j)(_1)kj+hF[_—hk‘ ht+lelik—h+1431
— \kJ i)\ 20 T ) ) R )

where ((s,x) = Y 7, m is the Hurwitz zeta-function and oFi[a,b;c; 2] is the hypergeometric

function given in .

Remark 2. For the case r = 1, the formula from Theorem[1] should be interpreted as a requlariza-
tion, namely the divergent terms ((1,1) with opposite signs cancel each other. More precisely, for
r =1, the line

3v3 r /3 r+2 2 + 2 r+1 2+ 1
R i 1 4 U R e R (= B ()
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should be replaced by

3v/3 1 V3

—L(x-3,2) — =+ —.

4 (X-3,2) 4 * AT

Remark 3. The result of Theorem[1] should be symmetric respect to r and s, which is certainly not
obvious to guess from the formula itself! This phenomenon is observed numerically, but we do not

have a direct proof of it.

We also compute the areal Mahler measure of a similar family, namely, (1 + x)" + 3* and obtain
interesting results depending on s.

Theorem 4. Let r, s be positive integers. We have

mp((1+2)" +y°)

_sV3 (E) (E)( st(’f—j) $ (§)22F1 L k+3k+ 5]

052 B NG) (R4 +2)(k =) Am g \E) (k+ 12k +3)
@ .
42 3 LZQ:J (_) (—> (k —j) (_1)k—]+h?F1 L —hk—h+3k—h+21] |
T o<j<k h=0 k) \J 2h 2k=i=2h(k + j + 2)(2k — 2h + 3)

Remark 5. We remark that Theorem[1] and Theorem [} should coincide in the case of r = 1. This
results in the identities

. k_2' . . A~
= 27 262k (k + 2) (2k — 25 + 3) 4 12
and
1\ 2 2
1 1 I 5 +2
= () e,
1<k r(;+2)

While equation 1S proven in Corollary we do not know how to prove equation , which can
be seen to be numerically true.

If, in addition, we set s = 1, we recover formula by employing the evaluation of o Fy [%, g; %; ﬂ ,
given in ((10)).

We also prove the following result, which explains the effect of the change x — 2" in general, as
r — 00.

Theorem 6. Let P(zy,...,x,) € C(z1,...,2,)* and let P(0,z,...,2,) € C(xa,...,2,)* be the
rational function resulting from P by setting x1 = 0. Let r be a positive integer. Then we have

lim mp(P(x], 22, ..., 2,)) = mp(P(0,x2,...,2,)).
r—o00

This article is organized as follows. We start with Section [2| where we compute the areal Mahler
measures of polynomials with two terms, namely mp(z" — a) and mp(2” + y*). We review some
necessary background on hypergeometric functions in Section [3] Theorem [ is proven in Section [4]
while Theorem [I] is proven in Section 5] The order is reversed because the proof of Theorem [I] is
considerably more involved. Finally, we close the article with the proof of Theorem [6] which is a
result of a different flavour than the others, in Section [6]
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2. THE CASE OF TWO TERMS

In this section we consider the effect of the transformation x +— 2" in the simplest possible
polynomials, namely those with only two monomials. Before proceeding with the discussion, we
recall the formula for the areal Mahler measure of a linear polynomial, which follows from [12],
Theorem 1.1] (see also equation (9) in [11]).

log*lal o] > 1,
(6) mp(x — a) =
a2~ 1) o] <1.

For the linear case of one variable we have the following result.

Proposition 7. Let r be a positive integer. We have

, log™ |a| lal > 1,
mo(t’ = a) =1, (lal? =1) Jal <1.

Proof. Let &, denote a primitive rth root of unity and let ar denote any rth root of a. By multi-
plicativity we have

r—1 r—1
mp(z" —a) = mp (H (x — a%ﬁ)) = me (x — aifﬁ) .
=0 =0
The conclusion follows immediately from equation (). O

Now we consider the case of " + y°.

Theorem 8. Let r, s be positive integers. We have
rs

mp(z" + y*) = N ts)

Proof. By definition and by Proposition [7]
1
mp(z" + y*) == /2 log [2" + y*|dA(x)dA(y)
D
— [ (Iw* =1) dAw)
=5 . ¥ y

1
—7“/ (p% - 1) pdp
0

rs
2(r+s)
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3. BACKGROUND ON HYPERGEOMETRIC FUNCTIONS

In this section we recall some standard results of hypergeometric functions which will be needed
for the proofs of Theorems [I| and |4 Recall that hypergeometric series are given by

(7) oFila, by c; 2] = Z (@)n(b)n 2"

(), n!

where (a), denotes the Pochhammer symbol given by (a)o = 1, and for n > 1,

n=0

(@), =ala+1)(a+2) - (a+n—1).
We will need the following result.

Theorem 9. [Gauss Hypergeometric Theorem, Eq. 15.1.20 in [1]] Let a,b, c € C such that ¢ ¢ Z<o
and Re(c —a —b) > 0. Then

L(e)l'(c—a—10)

Filebie ] = 5= S re =)

Corollary 10. Lett > 0. Then

3 (t>2 1 T2t+1)
— oz
= k) k+1 T (t+2)
Proof. We apply Theorem @ with a = b = —t and ¢ = 2 together with the fact that I'(2) = 1 to
obtain

I'(2(t+1)) N T Y (AN RERN (RN SN § | L N\ 1
Pagzy 2hlhn2l=2 Ga=2 (et DIk _Z(k> P

0<k 0<k 0<k

O

Lemma 11. Let § > —1 be a real number and n be a non negative integer (possibly 0). Then
2w 5l

7(—2 cos #)” cos(nf)df :(—1)”/ ’ (2 cos )P cos(nT)dr

3

o

2

_i n\ (D" [P — by g — by P — by
= \2h 2021 (B 4 n + 1 — 2h) '

Proof. We first notice that the equality between the integrals follows from the change of variables
0 + m = 7. We remark that cos(nf) = T,(cos @), where T,,(x) is the Chebyshev polynomial of the
first kind. By using this, together with the change of variables t = —2 cos ), we have

27

(8) / ¥ (2205 0)® cos(nf)d0 — /0 Lo, <—%) \/ﬁ_ﬁ.

The Chebyshev polynomials can be explicitly expressed as

T,(x) = [(x — \/9327—1>n + (:v + m>n]

Il
N
N3
>
~__
~—
S
[\
|
—_
SN—"
>
8]
3
S
>

1
2
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Then, using this, we can evaluate the integral in as

[on(-5) - () [ () ()
0 2) (4—1t2)2 2h) Jo 4 2 (4 —12)2
n (—1)n+h ' B+n—2h t? "
(Qh) on—2h+1 /ot 1_Z dt

(n) (=1)"+hy Fy [% — h,% _ p B3 l}

2
2h n=2h (B +n 41— 2h) ’

I I
— > — > —
T Mw\: I M
— o

— o

h=

[e=]

where the last identity follows from making the change u = ¢? and then applying equation 15.3.1
in [1]. O

Applications of Lemma [11| will naturally lead to evaluations of the hypergeometric function at
z = %. Here we record two identities that will be useful for simplifying some formulas:

1351
ol 222 —or
9) 21[2,2,2,4} T —3V3
and

(10) R {1 57 1] . 35v/3

raaia T T T
Equation (9) follows from the more general formula 07.23.03.2888.01 in [9] :

135 3 .
i[5 515912 = gastasinvE) - VAT ),

by setting z = %, while equation follows from formula 07.23.03.2933.01 in [10]:

157

o [5, o5 z} _ %(3 arcsin(y/z) — v/2(1 — 2)(3 + 22)),

by setting z = 1.

4. THE AREAL MAHLER MEASURE OF (1 +z)" +¢°

In this section we prove Theorem [4 which is simpler than Theorem To place the result in
perspective, we first consider the classical case.

Lemma 12. Let r, s be positive integers. We have
3v/3
m((1+2)" +y°) =r-—L{x-3,2).

Proof. First notice that the left-hand side is completely independent of s, since a particular case of
equation implies
m((1+2)" +y°) =m((1+2)" +v).
Let &, denote a primitive rth root of unity. We have

m((1+2)"+y) =m((1+2)"~y") =m (ﬂ(Hx—&fﬁy)) = ‘_ m(l+a—&ly) =rm(l+z+y),
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since m(1 + 2z — &y) = m(1 + = +y) for any j. The result follows from equation . O

Proof of Theorem[{] Let & be a primitive s root of unity and let @ = £. When z € D, (1 4 z)* is
well-defined, and we can consider the principal branch of the a-th power. By multiplicativity we
have

mp((1+ )" +y°) = mp((1+ o)’ me (1+2)° —€ly),

where we have extended the definition of mp to the algebraic functions (1+z)* —&Jy in the natural
way using the integral.
By definition and by application of equation @,

mp((1+ 2)* — £y) =— / log (1 + 2)* — Ey] dA(y)dA(2)

(11)
:9/ 1og|1+x|dA(:c>+i/ (11 + 2P — 1) dA().
DA{|142|>1} 2m

DN{[1+z|<1}

The first integral was already computed in the proof of the case of 1+ = + y (see the proof of [I1
Theorem 1.1]) and is given by

«

— log|1 + z|dA(x) = a | —L(x_3,2) + = — —
7T/]D)ﬂ{1+x|21} | ldA(@) (47r (X-3:2) 6 27

We now treat the second integral in . Writing x = pe? | we have

1

2T Jonfji4al<1}

(J1+ 2> — 1) dA()

2

1 [~ [t . . 1 5 [—2cos0 ‘ ‘
= / / (14 pe®)*(1 + pe=™®)* — 1) pdpdf + = / / (1 + pe®)* (1 + pe= ™)™ — 1) pdpdh
27 ™ 0
2

2n —2cos6
1 ( >< > [/ / Bk ik Jedpd9+/3 / pk+j+16i(k—j)9dpdg]
T 2m 0
1 —2cos 6
2 / pdpdf + / / pdpdt
m 27
3

I
| —
[en)
AN
Q
o~
/\
VR
~. O
~
| —— |
%
:\
F
+
<.
JF
,_.
R‘
b
Qb
=N
e
QL
>
+
o\
b
Q
2
>
e
el
JF
<
_l’_
—
=
<
=
=N
e
QL
>
| P
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We treat the integrals in separately for the cases k = j and k # j. When k = j, we have

—2cosf
S [ [ [
T o<k 0

S (s i

z—i—/S( 2 cos )2k +D) d@]
0<k 3

3
_F(2&+2) i 2F1[2;k+27k+2a4}
C6T(a+2)  dr & k: (k+1)(2k + 3)

V1 (o) [ b
A Am — \k (k+ )(2k+3)

_T@a+2) 1
S 6D(a+2)2 6

(13)

where we have applied Corollary [10, Lemma and equation @D
Note that the expression in (12) is conjugated under the change (k,7) — (j, k), when k # j.

Therefore, when k # j, we derive that

Q)G e

ksﬁj

5 () o
2 () s

= —2cosf ) ) )
/ / pk—i-j—i-lez(k—])@dpde
z 0
2

27

O.‘) o /;3(—2 cos 0)F 2 cos((k — §)0)do

15) =

(
<a> (a) (k: —j) (—1)f=*ho By [ — bk —h+ 3k — h+ 23]

S S S T

by Lemma
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Combining (12 . ., and ( ., we obtain
1

27 DN{|1+z|<1}

T@2a+2) 1 1 a\oF (5 k+3k+24] V3 o\ [a X_3(k —7)
_6F(a+2)2_6+ﬂl<k(l~c) (k + )(2k:+3) _70§jgk<k)(j)(k+j+2)(k—j)

+1Z s (@) ( k—j (—1)k—f+fgfﬂ1[§ hok—h+3;k— h+§,ﬂ.
T — \k/ \J 2h 2k=i=2h(k 4 5+ 2)(2k — 2h+3)

By recalling that o = %, we obtain the result.

(|1 + z|** — 1)dA(z)

5. THE AREAL MAHLER MEASURE OF 1+ x" + ¢°

In this section we prove Theorem [I} our main result. Before proceeding to its proof, we show
the following auxiliary statement.

Lemma 13. Forr > 1, we have

(—1)*1y_5(k) 3 T
2 Rhri2) 1t T om

T T+ 2 2r+2 r+1 2r+1
)05 () ()]

1<k

and forr =1,
(—1)*1x_g(h) ro1
=2I(y 2.92)— —— 4+ =
; kz(k—i-Q) (X 35 ) 4\/§+ 4
Proof. From the identity
1 1 r r?

Rr+2) 22 4k i1 2)
we have that

(=D"'x 1 (k) g (ED T Ixs(R) g (5D s (k)
(16) 3 k2(kr+2 52 i k +le kr+2

1<k

We consider the different terms on the right-hand side of . They are

k2 k2 (2k)2 2
1<k 1<k

1<k 1<k

oy (=D 'xos(h) _ g~ xeslh) g xos(2R) §Z X—;§k> - ;L(xg,Q),

(18) Z (—1) kX—S(k:) _ Z X_;;;(k) B 22 Y_3(2k

1<k 1<k 1<k

)_ X—3(k')_ 2m
_2%; P
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and finally

(_1)k_1X—3(k) X—3(k) X—3(2k)
— —_ 2 _
> s kr + 2 okr + 2 Zkr+2+zkr+1

1<k 1<k 1<k 1<k

1 1 1 1
_;ji%jr—i—r—f—?_;3j7"+27"+2+23]r+r+1_Z3jr+2r+1

0<j

1 r+ 2 2r +2 r+1 2r+1
o ) () () ()

By combining ([17] . and . with . we get the result for r > 1.
When r =1, ‘.D becomes

{62095
0]

Proof of Theorem[1 Our goal is to calculate mp (1 + 2" + y*). Since 1+2"+y* = H;;é (\S/ 1+am+ fgy)
and for any k # ¢ we have mp (\5/1 + "+ §§y) = myp (\S/l +zm 4+ §fy) , we can write

s—1
mp (142" +y°) = ZmD <\S/1—|—:177"—|—§£y> = smyp (\8/1—1—:E7"—|—y>.
=0

Here we note that the function v/1 + x” is well-defined when = € D, and, from now on, we consider
the principal branch of the s-th root.
By definition and by application of equation @, we obtain

<\/1+x"+y> 1/ (y)

1 1
(20) =— log |1+ 2"| dA(x)

" x +—/ <|1+xr|§—1) dA(x).
DA{[1+a7|>1} 27 Jpaf|i4er|<1}

For o = pe with 0 < p < 1 and 6 defined modulo 27, the condition |1 + 2"| > 1 is equivalent to

V1 -+ "

1+ p +2p" cos(rf) > 1 <= p" + 2cos(rf) > 0.

Therefore, for ¢ € ZN[0,r — 1], the condition |1 4+ z"| > 1 holds when (42: <0< (4”1 and 0 <
p <1, and, when (4”1 <0< (6“2) as well as (GZ 2)” <0< (M 1)” and {/—2cos 7“9 <p<l
Sumlarly, for ¢ € Z N[0, r — 1], the condition |1 —|— 2" <1 1mphes that that the second integral

needs to be evaluated when as well as 6”4 <6< 4€+7~3 and 0 < p <

/=2 cos(rf), and when 6é+2 <0< 6“'4)” and 0<p<l.
We start by evaluating the first mtegral in . Following the above discussion, we have

(4€+1 < 0 < (6€+2)
2r

r—1

(40+1)m
log|1 4+ 2"|dA(z) = ) Re
/Dm{|1+xr21} Z

2r 1
/ / log (14 p"e “"9) pdpdl
(4[*1)# 0
=0 T

(6£+2)m 1 (42 1)71'

" log (1 +p'e "9) pdpdf +

. — 2 / log (1+ p"e"”) pdpdf
% \/ —2cos(r0) L)Ll )ﬁ 1/ —2cos(rf)
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Since log (1 + p"e™?) = Z1§k(_1)k_1w7 we have

(42;—1)# 1 r ( 1)k71 (44;1)77 1
" r _irf o - " kr+1 _ikr@
Re P log (14 p"e") pdpdf | =Re Z—k Kunw /Op e dpd@]
2r 1<k‘
_1 (48;—1)7r
_ " oikro
=Re Zker AH d@]
L1<k
(—1) 7 ik(40+1) 7 ik(40—1)m
= He Zk2r(k:r—|—2) (6 oo )

:_Zk2 kr+2 | (kl)

1<k

Now, using the fact that —2 cos(rf)) = 2 cos(rf + m), we have

(6@;—2)7\' 1 (_1>k—1 (61&;2)7T 1
Re log (1+ p"e"’) pdpdf | = Re Z -~ / / P ek qpdp
w A/ 2 cos(rf+m) 1<k k W A/ 2 cos(rf+m)
)k—l (GZ;_T?)W k+2 ik
e[S [ (e ) e
(60+5)m
1)k_1 ? k+2\ ik(r—m)
7" Re Z m /44+5)7r <1 — (2 COS( )) ) € dr
T k+2
== Z i kr 9 (1 — (2cos(7)) T> cos(kT — km)dr
1 5m
——Z k COS( ) / ’ (1 — (2 COS(T))IH_%) cos(kT)dr
= r+2) Uy
Yeos(krm) (. (5km . {3k 1 (=1 Lcos(kr) [F ot 2
- e — ) —- 2 v kt)d
; k:2 1) (sm ( 3 ) sin ( 5 >) " ; K+ 2) /3; (2cos(7))"" " cos(kT)dr,

where we have set 7 = 76 + 7. By Lemma |11} we have

(60+2)m
3r 1

Re

(4l+1)7r

log (1 +p'e ”9) pd,od@]
A/ 2 cos(rf+m)

;W kr+2 ( (%T) ﬂm(%))

_lzz(k)( DY [ —hk—h+i4+3k—h+1+3:1]
r — \2h 2k—2h+1k(kzr+2)(2k+;—2h+1) '
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Similarly, we have

(4Z 1)7r

log (1 4 p"e™®) pdpd6

[64 2)7’ / —2 cos( T@) Og( e )p P ]
Z— sin k—ﬂ — sin k—ﬂ

r= k2 (kr +2) 3 2

__ZZ( ) hl?Fl[_ hk—h+7 +27k h+s +274}
e \2h 2k=2h 1k (kr + 2) (2k+;—2h+1)

Therefore, combining the above results we obtain

/ log |1+ 2" | dA(x)
DA{[1427|>1}

sin ( k DY [ —hk—h+i4+5k—h+1+3:7]
B Zk? kr—i—Q _2§§(2h) 2k 2h+1k(kr+2)(2k+;—2h+ )

(21)

k
—fZ k;)_QZLQJ(k;>(—1)h_12F1[— hok—htdiddik—htdi+5d]
~ k2 k’r—i—2 e \2h 2k=2h 1 L (kr + 2) (2k+;—2h+ )

The second integral in (20)) yields

1 / (
2 JpA{j14ar|<1}

e R CE L/ o o)
[ / <(1 +p'e ““9) (140" ”9) >pdpd9

(40+1)m
2r 0

1_'_pr zr@) (1+p e zr@) >pdpd6

/<4é;r3>w/{/m((
(

0

+
—
t e
5 3
O\)L
/N

(1+p"e “‘9) (14 premir?)" — )pdpd@]

1 ! 1 1 7(66;,«2)” Y/ —2cos(r0)
(22) == Z (s) (s) [ / / pltir 1 gir(k=0)8 g 570
2 (=0 0<k,j k) \Jj uenJo
(k.5)#(0,0)
<4£;3>ﬂ A/ —2cos(r0)
" (k++5)r+1 ir(k—7)0
(23) +[6£+4)W /0 p e dpdf

3r
(24) + / . /0

E : N sl
s ' 2kr+1 _1
. (k’) /(62+2>7r /0 P dpdd = ) :(
3r

1<k 1<k

p(k+j)r+1€ir(k—j)0dpd0] )

N
k) kr+1
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The combination of the inner sums of integrals and yields, when k = 3,

1 (6£+2)7r 7‘ 5 cos T,0+7T (44+3)7‘r /9 o r9 7r)
) [ [ L[
1<k k (ae+l)z (ot 1)
1 (64;—2)71- (44;-3)77
_ 5 v 2h+2 - oot 2
B (k) 2<I€T + 1) (4t+1)m (2 COS(TG + 7T)> do + K6€+4)7r <2 COS<T6 )) d@]
ISk 2r 3r
1 1\ 2 1 @ (42;1)77
—— s 2]§+% 2k+%
o 1<k k) 2(kr +1) /(4”23% (2 cos(r)) ar+ /<6z+31>ﬁ (2 cos(r)) dT]

57 s

(
_ %Z (ifm _ / (2 cos(r) 2 dr + / * (2 cos(r)) %+ dT]
(

5 us

w

N1 s 22
s 2 rdr.
k) kr—l—l/s; (2cos(7)) dr

Applying Lemma [I1] we get

(604+2)m (40+43)w

1\ 2 e A/ 2cos(rf+m) T A/ 2 cos(ro+m)
Z (lz) [/ s p2kr+1dpd9+/ 2 / p2kr+1dpd9

(4¢+1) (66+4)m
2r = 0 3r 0

NSRS RS ES 1)

(26) =2 <1;> 2(kr +1) (2k + 1+ 2)

We now treat the case when k # j. For the inner sum of integral , the k # j case yields

(66+4)m 1

1 1
s\ (s s (k+§)r+1 _ir(k—j)0
Z, <k> <j> /<6Z+2>w /0 P c dpdf
0<k,j
[y
(66+4)
_ % % 1 ’ k=)0 19
& k)\j) (k+j)r+2 (et
k)
=5 () () ()
& k)\j)r((k+7)r+2)(k—j) 3
i)
r A\ Kk ((k—i—j)r—l—Q)(k—j)'
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Now, the inner sum for integral (22)) in the k # j case gives

1 1 (6£+2)W 1/ 2 cos(ro+m)
(lf;) (E) / o r(k+)+1 gir(k—j adpde
O<k] 4Z+1)7r
k#j
1 1 (62+2)7r
s\ o 9 ) k+i+2 ir(k=7)0 g9
Oy m—
k#j
1 (l)(l) 1 /53" i i (e
== s ) (2 cos(7))kHitr k=D r=m) g7
st k)\j) (k+j)r+2
k#j
1 NN (0 P
=— (2) (s) —k:( ) 2/ (2 COS<T>>k+]+%6Z(k_])TdT.
o 7)) (k+3)r+2 Ja
k#j

The above expression gets conjugated under the change (k, j) — (j, k). That means that it suffices
to take the real part, and therefore it suffices to find

5

_O;k( )( )%/3(%05( ))EHI*E cos((k — )7)dr.

By Lemma [1]]
1 1 (Ge;—i;)“ A/2cos(rf+m)
Z s s pr(k—l-j)—O—leir(k—j)dedg
A\k/)\J acnrfy
0<k,j
k#j

(28) _lz 3 N\ (k= ()R [ —hk—h+ L+ 5ik—h+ 1+ 31
o — \k/) \J 2h 2k—j—2h (( : 2 .

k+j)r+2)(2k+2—-2h+1)

Similarly, we have

(4e+3

1 1 T 2 cos( r0+7r)
( )(8)/ / p(k+])+1 wr(k— jedpd9
(61’+4)7r
0<k,j

k#j
|45

(29) :‘Z Z(>(-><%j)(_l)kﬁf?ﬁ[_—hk htityik—hti+§i]

k h PR
0<j<k h=0 2k—3=2 ((k+])r+2)(2k+r 2h—|—1)
Collecting and , we have that the integral in (24)) yields

(60+4)m

i 37 ! . o
) (s) / / p(k+J)r+lezr(k7])9dpd‘9
J/ JEEE2 o

520 w72 D0

N | —

<

M1

2]
7N
T w |
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Combining , and , we derive that the integrals in and yield

1 r—1 1 1 (6£+2)'" —2cos 7”9)
_ s s (k+j)r+1 zr(k 7)0
S OO L [T i
=0 0<k,j
(k,5)#(0,0)
(4[+3)7T {/—2cos(r0)
+ / / p k+j)7’+1ei'r(k—j)6’dpde]
(60+4)m 0
3r
_ <%> 2F1[2’k+ +27k+ +274]
= \k A(kr+1) 2k + 1+ 2)
k—j )
IV
. —i—2h 2 .
0<j<k h=0 k) \J 2h 2k=i=2h (K +J)T+2)<2k+r 2h + )

Therefore,

1
—/ <|1+$T’
2 Jpn{j11ar|<1}

S50 25 D0 O e
6 \k) kr+1 2 S \k)\G) ((k+5)r +2)(k—3) o \k 4(k:r+1)(2k+1+r)
k#j

2h 2h=i=2h ((k + j)r + )(2k+— —2h+1)

i 1) dA(z)

k]J

OO

0<j<k h=0

1
J

By combining the above with the result of and Lemma [13|in equation (20) we conclude the
proof of the statement. 0

6. A LIMITING PROPERTY FOR THE AREAL MAHLER MEASURE

In this section we prove Theorem [0, which sheds light on how the change of variables z +— "
interacts with the areal Mahler measure as r — oo in generality.

Proof of Theorem[f. Without loss of generality, we can consider the polynomial case. Let

P(xy,....x0) = Y Gy @2 € Clay, . 3
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rls[mp [rfs]mp [rfs]mp [r]s] mp|
T[1|011L]2] 1]0.0745] 1 ]0037]10] I ]0.020
1210074 |2] 20049 5] 2]0024]10] 2 |0.013
130056 |2 3[0036(5]30.018]10] 3 |0.010
1410045 2] 4002 5] 4|0014]10] 4 |0.008
1500372 50024 (5|5 0011105 |0.006
1100020 | 2|10 0.013 | 5|10 0.006 | 10 | 10| 0.003
11200011 | 220]0.006 | 5|20 0.003 | 10| 20| 0.002

TABLE 1. Values of mp(1 + 2" + y*) given by Theorem

be a non-zero polynomial and recall that P(0,zs,...,x,) denotes the polynomial resulting from P
by setting x; = 0. Given 0 < R < 1, let Dy denote the disk at the origin of radius R. We have

lim/ / log |P(xY, z2, ..., z,)|dA(x1) - - - dA(z})
Dr—1 ]D)R

T—00

= lim / / log Cmy oo @y dA(z) - - - dA(xy,)
ree Jprot Dr mi,..., mn>0
2T
/ / / lim log Cony ooy PO | dpdOd A(zy) - - - dA(z,)
Dn=t (G m 20
:ﬂ—Rz / ].Og Z Co7m2 _____ mn]jgm e ‘/L‘Zzn dA(fL‘Q) o« 0. dA(fI/‘n)
]Dn—l
m1=0,ma,..., mp >0

B [ Mog|P(0, )| dA ) dA () = 7 o (PO 2,).
Dr—1
where the exchanges between integrals and limits follow from the fact that the integrand is bounded

.....

lim mp (P (27, x2,...,2,)) = Rlim R’myp (P (0,2,...,2,)) = mp (P (0,29,...,2,)).
r—00 51—
This concludes the proof of Theorem [6] U

7. CONCLUSION

In this article we have explored how the areal Mahler measure varies under the change of variables
x +— x", where r is a positive integer. This change of variables does not affect the standard Mahler
measure and it therefore represents a clear distinction between the standard definition and the
areal version.

While it would be difficult to explore the result of these limits directly from the formulas given
in Theorems [I] and [4] one can see Theorem [6]in action by doing some numerical experiments. This
is illustrated in Table [I} where the values mp(1l + 2" + y") are listed for some choices of r and
s. We see, first of all, the symmetry resulting from exchanging r and s, and we also see that the
value of mp(1 + " + y") approaches zero when 7 or s grow, as they approach mp(1 4+ y*) = 0 or
mp (1 + 2") = 0 respectively.

Similarly Table [2|illustrates the values of mp((1 + x)" + y*) for some choices of r and s. We see
again that as s grows, the value of mp((1 + z)" + y*) approaches zero, the value of mp((1 + z)").
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(r] s ] mp [r[s[ mp [Jr[s | mp |
111 10.11069 2| 1 ]0.29242 | 10| 1 | 1.96069
11 2 10.07440 | 2| 2 ]10.22139 | 10| 2 | 1.80754
11 3 10.05600 || 2| 3 |0.17800 | 10| 3 | 1.67597
11 4 10.04490 (2| 4 ]10.14880 || 10| 4 | 1.56188
115 1003746 | 2| 5 |0.12781 || 10| 5 | 1.46209
1110 ]0.02050 | 2| 10 | 0.07493 || 10 | 10 | 1.10694
11102 |0.00224 | 2| 10% | 0.00886 || 10 | 10? | 0.20495
11103 |0.00023 | 2|10 | 0.00090 || 10 | 10® | 0.02239
TABLE 2. Values of mp((1+ x)" + y°) given by Theorem 4

The table also shows that the value of mp((1 + z)" + y®) grows when r grows. Presumably, the
areal Mahler measure is multiplied by r.

It would be interesting to understand these phenomena in full generality, including to describe the
difference between mp(P) and mp(P™) for A an n x n integer matrix with non-zero discriminant

as in (3)).

1]

[12]
[13]

[14]
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