Mahler measure under variations of the base group

(joint with Oliver T. Dasbach) Matilde N. Lalín

University of Alberta
mlalin@math.ulberta.ca
http://www.math.ualberta.ca/~mlalin
Low dimensional topology and number theory - BIRS October 23, 2007

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

By Jensen's formula,
$m\left(a \prod\left(x-\alpha_{i}\right)\right)=\log |a|+\sum \log \max \left\{1,\left|\alpha_{i}\right|\right\}$.

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

By Jensen's formula,

$$
m\left(a \prod\left(x-\alpha_{i}\right)\right)=\log |a|+\sum \log \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

Examples in several variables

- Smyth (1981)

$$
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L(\chi-3,2)=\frac{\operatorname{Vol}(\mathrm{Fig} 8)}{2 \pi}
$$

- Boyd, Deninger, Rodriguez-Villegas (1997)

> E_{1} elliptic curve, projective closure of $x+\frac{1}{x}+y+\frac{1}{y}-1=0$. (50 decimal places)

Examples in several variables

- Smyth (1981)

$$
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{-3}, 2\right)=\frac{\operatorname{Vol}(\text { Fig8 })}{2 \pi}
$$

- Boyd, Deninger, Rodriguez-Villegas (1997)

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}-1\right) \stackrel{?}{=} L^{\prime}\left(E_{1}, 0\right)
$$

E_{1} elliptic curve, projective closure of $x+\frac{1}{x}+y+\frac{1}{y}-1=0$. (50 decimal places)

The general technique

Rodriguez-Villegas (1997)

$$
P_{\lambda}(x, y)=1-\lambda P(x, y) \quad P(x, y)=x+\frac{1}{x}+y+\frac{1}{y}
$$

Reciprocal

$$
\begin{gathered}
m(P, \lambda):=m\left(P_{\lambda}\right) \\
m(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log |1-\lambda P(x, y)| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} .
\end{gathered}
$$

Note

$$
|\lambda P(x, y)|<1, \quad \lambda \quad \text { small }, \quad x, y \in \mathbb{T}^{2}
$$

$$
\tilde{m}(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log (1-\lambda P(x, y)) \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
$$

$$
a_{n}:=\left[P(x, y)^{n}\right]_{0}
$$

Note

$$
\begin{gathered}
|\lambda P(x, y)|<1, \quad \lambda \text { small, } x, y \in \mathbb{T}^{2} \\
\tilde{m}(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log (1-\lambda P(x, y)) \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
=-\sum_{n=1}^{\infty} \frac{\lambda^{n}}{n} \frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} P(x, y)^{n} \frac{\mathrm{~d} x}{x} \frac{\mathrm{~d} y}{y}=-\sum_{n=1}^{\infty} \frac{a_{n} \lambda^{n}}{n} \\
a_{n}:=\left[P(x, y)^{n}\right]_{0}
\end{gathered}
$$

Let

$$
\begin{gathered}
u(P, \lambda)=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{1}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}=\sum_{n=0}^{\infty} a_{n} \lambda^{n} \\
\frac{\mathrm{~d} \tilde{m}(P, \lambda)}{\mathrm{d} \lambda}=-\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \frac{P(x, y)}{1-\lambda P(x, y)} \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{gathered}
$$

In the case $P=x+\frac{1}{x}+y+\frac{1}{y}$,

$$
a_{n}=\left\{\begin{array}{cc}
\binom{2 m}{m}^{2} & n=2 m \\
0 & \text { otherwise }
\end{array}\right.
$$

Definition

Γ finitely generated group with generators x_{1}, \ldots, x_{I}

$$
\begin{gathered}
Q=Q\left(x_{1}, \ldots, x_{l}\right)=\sum_{g \in \Gamma} c_{g} g \in \mathbb{C} \Gamma \\
Q^{*}=\sum_{g \in \Gamma} \overline{c_{g}} g^{-1} \in \mathbb{C} \Gamma \text { reciprocal. }
\end{gathered}
$$

$P=P\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma, P=P^{*},|\lambda|^{-1}>$ length of P,

Definition

Γ finitely generated group with generators x_{1}, \ldots, x_{I}

$$
\begin{gathered}
Q=Q\left(x_{1}, \ldots, x_{l}\right)=\sum_{g \in \Gamma} c_{g} g \in \mathbb{C} \Gamma \\
Q^{*}=\sum_{g \in \Gamma} \overline{c_{g}} g^{-1} \in \mathbb{C} \Gamma \text { reciprocal. }
\end{gathered}
$$

$P=P\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma, P=P^{*},|\lambda|^{-1}>$ length of P,

$$
\begin{aligned}
& m_{\Gamma}(P, \lambda)=-\sum_{n=1}^{\infty} \frac{a_{n} \lambda^{n}}{n} \\
& a_{n}=\left[P\left(x_{1}, \ldots, x_{l}\right)^{n}\right]_{0} .
\end{aligned}
$$

We also write

$$
u_{\Gamma}(P, \lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}
$$

for the generating function of the a_{n}.

for λ real and positive and $1 / \lambda$ larger than the length of $Q Q^{*}$.

We also write

$$
u_{\Gamma}(P, \lambda)=\sum_{n=0}^{\infty} a_{n} \lambda^{n}
$$

for the generating function of the a_{n}.
$Q\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{C} \Gamma$

$$
Q Q^{*}=\frac{1}{\lambda}\left(1-\left(1-\lambda Q Q^{*}\right)\right)
$$

for λ real and positive and $1 / \lambda$ larger than the length of $Q Q^{*}$.

$$
m_{\Gamma}(Q)=-\frac{\log \lambda}{2}-\sum_{n=1}^{\infty} \frac{b_{n}}{2 n}, \quad b_{n}=\left[\left(1-\lambda Q Q^{*}\right)^{n}\right]_{0} .
$$

Lück's combinatorial L^{2}-torsion.

K knot

$$
\Gamma=\pi_{1}\left(S^{3} \backslash K\right)=\left\langle x_{1}, \ldots, x_{g} \mid r_{1}, \ldots, r_{g-1}\right\rangle
$$

Fox matrix.

$$
\begin{gathered}
D(u+v)=D(u)+D(v) \\
D(u \cdot v)=D(u) \epsilon(v)+u D(v)
\end{gathered}
$$

Lück's combinatorial L²-torsion.

K knot

$$
\Gamma=\pi_{1}\left(S^{3} \backslash K\right)=\left\langle x_{1}, \ldots, x_{g} \mid r_{1}, \ldots, r_{g-1}\right\rangle
$$

Let

$$
F=\left(\begin{array}{ccc}
\frac{\partial r_{1}}{\partial x_{1}} & \cdots & \frac{\partial r_{1}}{\partial x_{g}} \\
\vdots & \ddots & \vdots \\
\frac{\partial r_{g-1}}{\partial x_{1}} & \cdots & \frac{\partial r_{g-1}}{\partial x_{g}}
\end{array}\right) \in M^{(g-1) \times g}(\mathbb{C} \Gamma)
$$

Fox matrix.

$$
\begin{gathered}
D(u+v)=D(u)+D(v) \\
D(u \cdot v)=D(u) \epsilon(v)+u D(v)
\end{gathered}
$$

Delete a column $F \rightsquigarrow A \in M^{(g-1) \times(g-1)}(\mathbb{C} \Gamma)$.

Theorem (Lück, 2002)
Suppose K is a hyperbolic knot. Then, for λ sufficiently large

$$
\frac{1}{3 \pi} \operatorname{Vol}(K)=-(g-1) \ln \lambda-\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{tr}_{\mathbb{C} \Gamma}\left(\left(1-\lambda A A^{*}\right)^{n}\right)
$$

Cayley Graphs

\lceil of order m

$$
\alpha: \Gamma \rightarrow \mathbb{C} \quad \alpha(g)=\overline{\alpha\left(g^{-1}\right)} \quad \forall g \in \Gamma
$$

Weighted Cayley graph:

- Vertices g_{1}, \ldots, g_{m}.
- (directed) Edge between g_{i} and g_{j} has weight $\alpha\left(g_{i}^{-1} g_{j}\right)$.

Weighted adjacency matrix

$$
A(\Gamma, \alpha)=\left\{\alpha\left(g_{i}^{-1} g_{j}\right)\right\}_{i, j}
$$

The Mahler measure over finite groups

「

$$
P \in \mathbb{C} \Gamma
$$

reciprocal
Assume monomials generate Γ.
Theorem
For Γ finite

$$
m_{\Gamma}(P, \lambda)=\frac{1}{|\Gamma|} \log \operatorname{det}(I-\lambda A)
$$

A is the adjacency matrix of the Cayley graph (with weights) and $\frac{1}{\lambda}>\rho(A)$.

Analytic continuation for $m_{\Gamma}(P, \lambda)$ to $\mathbb{C} \backslash \operatorname{Spec}(A)$.

Finite Abelian Groups

$$
\Gamma=\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{\mathbb{Z}} \mathbb{Z}
$$

Corollary

$$
m_{\Gamma}(P, \lambda)=\frac{1}{|\Gamma|} \log \left(\prod_{j_{1}, \ldots, j_{l}}\left(1-\lambda P\left(\xi_{m_{1}}^{j_{1}}, \ldots, \xi_{m_{l}}^{j_{l}}\right)\right)\right)
$$

where ξ_{k} is a primitive root of unity.
Babai (1979): Spectra of Cayley graph is related to irreducible characters of Γ.

Approximations

Proposition

For small λ,

$$
\lim _{m_{1}, \ldots, m_{l} \rightarrow \infty} m_{\mathbb{Z} / m_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{l} \mathbb{Z}}(P, \lambda)=m_{\mathbb{Z}}(P, \lambda)
$$

Where the limit is with $m_{1}, \ldots, m_{\text {I }}$ going to infinity independently.

- For $\Gamma=D_{\infty}, \Gamma_{m}=D_{m}$,

$$
\lim _{m \rightarrow \infty} m_{D_{m}}(P, \lambda)=m_{D_{\infty}}(P, \lambda) .
$$

- For $\Gamma=P S L_{2}(\mathbb{Z})=\left\langle x, y \mid x^{2}, y^{3}\right\rangle, \Gamma_{m}=\left\langle x, y \mid x^{2}, y^{3},(x y)^{m}\right\rangle$,

$$
\lim _{m \rightarrow \infty} m_{\Gamma_{m}}(P, \lambda)=m_{P S L_{2}(\mathbb{Z})}(P, \lambda) .
$$

$x+x^{-1}+y+y^{-1}$ revisited

Now $P=x+x^{-1}+y+y^{-1}$.

$$
\begin{gathered}
u_{\mathbb{Z} \times \mathbb{Z}}(P, \lambda)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{2} \lambda^{2 n}={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; 16 \lambda^{2}\right) \\
u_{\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}}(P, \lambda)=\sum_{n=0}^{\infty}\binom{4 n}{2 n} \lambda^{2 n} \\
u_{\mathbb{Z} * \mathbb{Z}}(P, \lambda)=\frac{3}{1+2 \sqrt{1-12 \lambda^{2}}}
\end{gathered}
$$

Generating function of the circuits of a d-regular tree (Bartholdi, 1999).

$$
\begin{gathered}
g_{d}(\lambda)=\frac{2(d-1)}{d-2+d \sqrt{1-4(d-1) \lambda^{2}}} . \\
x_{1}+x_{1}^{-1}+\cdots+x_{I}+x_{I}^{-1} \\
\left(1+x_{1}+\cdots+x_{I-1}\right)\left(1+x_{1}^{-1}+\cdots+x_{I-1}^{-1}\right)
\end{gathered}
$$

Recurrence relations $x+x^{-1}+y+y^{-1}$

Coefficients satisfy recurrence relations

$$
\begin{gathered}
\mathbb{Z} \times \mathbb{Z}: \quad n^{2} a_{2 n}-4(2 n-1)^{2} a_{2 n-2}=0 \\
\mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}: \quad n(2 n-1) a_{2 n}-2(4 n-1)(4 n-3) a_{2 n-2}=0 \\
\mathbb{Z} * \mathbb{Z}: \quad n a_{2 n}-2(14 n-9) a_{2 n-2}+96(2 n-3) a_{2 n-4}=0
\end{gathered}
$$

- \mathbb{Z}^{\prime}

Rodriguez - Villegas: $u(\lambda)$ periods of a holomorphic differential in the curve defined by $1=\lambda P(x, y)$.By Griffiths (1969)

$$
A(\lambda) u^{\prime \prime}+B(\lambda) u^{\prime}+C(\lambda) u=0
$$

Picard-Fuchs differential equation (A, B, C polynomials).
\Rightarrow Recurrence of the coefficients.

- This recurrence result extends to the case of Γ finitely generated abelian group.
- \mathbb{F}_{l}

By Haiman (1993): $u(\lambda)$ is algebraic. Algebraic functions in non-commuting variables.
$P=x+x^{-1}+y+y^{-1}$

$$
\Gamma=\left\langle x, y \mid x^{2} y=y x^{2}, y^{2} x=x y^{2}\right\rangle
$$

Domb (1960)

$$
a_{2 n}=\sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}
$$

Same as ordinary Mahler measure for

$$
1-\lambda\left(x+x^{-1}+z\left(y+y^{-1}\right)\right)\left(x+x^{-1}+z^{-1}\left(y+y^{-1}\right)\right)
$$

$$
n^{3} a_{2 n}-2(2 n-1)\left(5 n^{2}-5 n+2\right) a_{2 n-2}+6(n-1)^{3} a_{2 n-4}=0
$$

Rogers (2007)
$1-\lambda\left(4+\left(x+x^{-1}\right)\left(y+y^{-1}\right)+\left(y+y^{-1}\right)\left(z+z^{-1}\right)+\left(z+z^{-1}\right)\left(x+x^{-1}\right)\right)$

$$
{ }_{3} F_{2}\left(\frac{1}{3}, \frac{1}{2}, \frac{2}{3} ; 1,1 ;-\frac{108 \lambda}{(1-16 \lambda)^{3}}\right)=(1-16 \lambda) \sum_{n=0}^{\infty} a_{2 n} \lambda^{n}
$$

The diamond lattice

$$
\begin{gathered}
Q=(1+x+y)\left(1+x^{-1}+y^{-1}\right) \\
{\left[Q^{n}\right]_{0}=a_{n}}
\end{gathered}
$$

$$
n^{2} a_{n}-\left(10 n^{2}-10 n+3\right) a_{n-1}+9(n-1)^{2} a_{n-2}=0,
$$

Honeycomb lattice $(1+x+y)\left(1+x^{-1}+y^{-1}\right)$

$$
\begin{gathered}
P=x+x^{-1}+y+y^{-1}+x y^{-1}+x^{-1} y \\
{\left[P^{n}\right]_{0}=b_{n}}
\end{gathered}
$$

$$
n^{2} b_{n}-n(n-1) b_{n-1}-24(n-1)^{2} b_{n-2}-36(n-2)(n-1) b_{n-3}=0
$$

$$
\begin{gathered}
Q=3+P \\
b_{n}=\sum_{j=0}^{n}\binom{n}{j}(-3)^{n-j} a_{j}
\end{gathered}
$$

Triangular lattice $x+x^{-1}+y+y^{-1}+x y^{-1}+x^{-1} y$

