## Mahler measure and evaluation of regulators

Matilde N. Lalín

Institut des Hautes Etudes Scientifiques and Clay Mathematics Institute mlalin@ihes.fr http://www.math.ubc.ca/~mlalin

June 2nd, 2006

## Mahler measure for one-variable polynomials

Pierce (1918): $P \in \mathbb{Z}[x]$ monic,

$$
\begin{gathered}
P(x)=\prod_{i}\left(x-\alpha_{i}\right) \\
\Delta_{n}=\prod_{i}\left(\alpha_{i}^{n}-1\right) \\
P(x)=x-2 \Rightarrow \Delta_{n}=2^{n}-1
\end{gathered}
$$

Lehmer (1933):

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha^{n+1}-1\right|}{\left|\alpha^{n}-1\right|}=\left\{\begin{array}{cc}
|\alpha| & \text { if }|\alpha|>1 \\
1 & \text { if }|\alpha|<1
\end{array}\right.
$$

For

$$
\begin{gathered}
P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P)=|a| \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\} \\
m(P)=\log M(P)=\log |a|+\sum_{i} \log ^{+}\left|\alpha_{i}\right|
\end{gathered}
$$

## Kronecker's Lemma

$P \in \mathbb{Z}[x], P \neq 0$,

$$
m(P)=0 \Leftrightarrow P(x)=x^{k} \prod \Phi_{n_{i}}(x)
$$

where $\Phi_{n_{i}}$ are cyclotomic polynomials

## Lehmer's question

Lehmer (1933)

$$
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)
$$

$=\log (1.176280818 \ldots)=0.162357612 \ldots$

$$
\sqrt{\Delta_{379}}=1,794,327,140,357
$$

## Does there exist $\quad C>0, \quad$ for all $\quad P(x) \in \mathbb{Z}[x]$

## Lehmer's question

Lehmer (1933)

$$
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)
$$

$=\log (1.176280818 \ldots)=0.162357612 \ldots$

$$
\sqrt{\Delta_{379}}=1,794,327,140,357
$$

Does there exist $\quad C>0, \quad$ for all $\quad P(x) \in \mathbb{Z}[x]$

$$
m(P)=0 \quad \text { or } \quad m(P)>C ? ?
$$

## Lehmer's question

Lehmer (1933)

$$
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)
$$

$=\log (1.176280818 \ldots)=0.162357612 \ldots$

$$
\sqrt{\Delta_{379}}=1,794,327,140,357
$$

Does there exist $\quad C>0, \quad$ for all $\quad P(x) \in \mathbb{Z}[x]$

$$
m(P)=0 \quad \text { or } \quad m(P)>C ? ?
$$

Is the above polynomial the best possible?

## Mahler measure of polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Given

$$
\begin{array}{r}
P(x)=a_{d} \prod_{n=1}^{d}\left(x-\alpha_{n}\right) \in \mathbb{C}[x] \\
m(P)=\log \left|a_{d}\right|+\sum_{n=1}^{d} \log ^{+}\left|\alpha_{n}\right|
\end{array}
$$

Jensen's formula:

$$
\int_{0}^{1} \log \left|\mathrm{e}^{2 \pi \mathrm{i} \theta}-\alpha\right| \mathrm{d} \theta=\log ^{+}|\alpha|
$$

recovers one-variable case.

## Properties

- $m(P) \geq 0$ if $P$ has integral coefficients.
- $m(P \cdot Q)=m(P)+m(Q)$
- $\alpha$ algebraic number, and $P_{\alpha}$ minimal polynomial over $\mathbb{Q}$,

$$
m\left(P_{\alpha}\right)=[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha)
$$

where $h$ is the logarithmic Weil height.

## Boyd \& Lawton <br> $P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$

$$
\lim _{k_{2} \rightarrow \infty} \ldots \lim _{k_{n} \rightarrow \infty} m\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right)=m\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

Jensen's formula $\longrightarrow$ simple expression in one-variable case.

Several-variable case?

## Examples in several variables

## Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

Boyd, Deninger, Rodriguez-Villegas (1997)

$$
\begin{aligned}
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right) \stackrel{?}{=} \frac{\mathrm{L}^{\prime}\left(E_{k}, 0\right)}{B_{k}} \quad k \in \mathbb{N}, \quad k \neq 4 \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4\right)=2 \mathrm{~L}^{\prime}(\chi-4,-1) \\
& m\left(x+\frac{1}{x}+y+\frac{1}{y}-4 \sqrt{2}\right)=\mathrm{L}^{\prime}(A, 0) \\
& A: Y^{2}=X^{3}-44 X+112
\end{aligned}
$$

## Examples in three variables

- Condon (2003):

$$
\pi^{2} m\left(z-\left(\frac{1-x}{1+x}\right)(1+y)\right)=\frac{28}{5} \zeta(3)
$$

- D'Andrea \& L. (2003):

$$
\pi^{2} m\left(z(1-x y)^{2}-(1-x)(1-y)\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\zeta(3)}
$$

- Boyd \& L. (2005):

$$
\pi^{2} m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\pi \mathrm{L}\left(\chi_{-4}, 2\right)+\frac{21}{8} \zeta(3)
$$

## Examples with more than three variables

L. (2003):

$$
\begin{gathered}
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=24 \mathrm{~L}\left(\chi_{-4}, 4\right) \\
\pi^{4} m\left(1+\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{4}}{1+x_{4}}\right) z\right)=62 \zeta(5)+\frac{14}{3} \pi^{2} \zeta(3) \\
\pi^{4} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)(1+y) z\right)=93 \zeta(5)
\end{gathered}
$$

Known formulas for $n$.

## Polylogarithms

The kth polylogarithm is

$$
\operatorname{Li}_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \quad x \in \mathbb{C}, \quad|x|<1
$$

It has an analytic continuation to $\mathbb{C} \backslash[1, \infty)$.
Zagier:


## $B_{j}$ is $j$ th Bernoulli number <br> $\operatorname{Re}_{k}=\operatorname{Re}$ or $\operatorname{Im}$ if $k$ is odd or even. <br> One-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$, continuous in $\mathbb{P}^{1}(\mathbb{C})$.

## Polylogarithms

The kth polylogarithm is

$$
\operatorname{Li}_{k}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \quad x \in \mathbb{C}, \quad|x|<1
$$

It has an analytic continuation to $\mathbb{C} \backslash[1, \infty)$.
Zagier:

$$
\mathcal{L}_{k}(x):=\operatorname{Re}_{k}\left(\sum_{j=0}^{k-1} \frac{2^{j} B_{j}}{j!}(\log |x|)^{j} \operatorname{Li}_{k-j}(x)\right)
$$

$B_{j}$ is $j$ th Bernoulli number
$\mathrm{Re}_{k}=\operatorname{Re}$ or $\operatorname{Im}$ if $k$ is odd or even.
One-valued, real analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$, continuous in $\mathbb{P}^{1}(\mathbb{C})$.
$\mathcal{L}_{k}$ satisfies lots of functional equations

$$
\mathcal{L}_{k}\left(\frac{1}{x}\right)=(-1)^{k-1} \mathcal{L}_{k}(x) \quad \mathcal{L}_{k}(\bar{x})=(-1)^{k-1} \mathcal{L}_{k}(x)
$$

Bloch-Wigner dilogarithm $(k=2)$

$$
D(x):=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

Five-term relation

$$
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0
$$

## Philosophy of Beilinson's conjectures

- Arithmetic-geometric object $X$ (for instance, $X=\mathcal{O}_{F}, F$ a number field)
- L-function $\left(L_{F}=\zeta_{F}\right)$
- Finitely-generated abelian group $K\left(K=\mathcal{O}_{F}^{*}\right)$
- Regulator map reg : $K \rightarrow \mathbb{R}($ reg $=\log |\cdot|)$

$$
(K \text { rank } 1) \quad L_{X}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \operatorname{reg}(\xi)
$$

(Dirichlet class number formula, for $F$ real quadratic, $\left.\zeta_{F}^{\prime}(0) \sim_{\mathbb{Q}^{*}} \log |\epsilon|, \epsilon \in \mathcal{O}_{F}^{*}\right)$

## An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : $P(x, y) \in \mathbb{C}[x, y]$

$$
\begin{gathered}
m(P)=m\left(P^{*}\right)-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y) \\
\eta(x, y)=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x
\end{gathered}
$$

## An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : $P(x, y) \in \mathbb{C}[x, y]$

$$
\begin{gathered}
m(P)=m\left(P^{*}\right)-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y) \\
\eta(x, y)=\log |x| \mathrm{d} \arg y-\log |y| \mathrm{d} \arg x \\
\eta(x, 1-x)=\mathrm{d} D(x) \quad \mathrm{d} \eta(x, y)=\operatorname{Im}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y}\right)
\end{gathered}
$$

## The three-variable case

$$
P(x, y, z)=(1-x)-(1-y) z \quad X=\{P(x, y, z)=0\}
$$



$$
=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log ^{+}\left|\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
$$



$$
\Gamma=X \cap\{|x|=|y|=1,|z| \geq 1\}
$$



## The three-variable case

$$
\begin{gathered}
P(x, y, z)=(1-x)-(1-y) z \quad X=\{P(x, y, z)=0\} \\
m(P)=m(1-y)+\frac{1}{(2 \pi \mathrm{i})^{3}} \int_{\mathbb{T}^{3}} \log \left|z-\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \frac{\mathrm{~d} z}{z} \\
=\frac{1}{(2 \pi \mathrm{i})^{2}} \iint_{\mathbb{T}^{2}} \log ^{+}\left|\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{gathered}
$$

$$
\Gamma=X \cap\{|x|=|y|=1,|z| \geq 1\}
$$



## The three-variable case

$$
P(x, y, z)=(1-x)-(1-y) z \quad X=\{P(x, y, z)=0\}
$$

$$
\begin{gathered}
m(P)=m(1-y)+\frac{1}{(2 \pi \mathrm{i})^{3}} \int_{\mathbb{T}^{3}} \log \left|z-\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \frac{\mathrm{~d} z}{z} \\
=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log ^{+}\left|\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
=-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \log |z| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{gathered}
$$

$$
\Gamma=X \cap\{|x|=|y|=1,|z| \geq 1\}
$$

## The three-variable case

$$
P(x, y, z)=(1-x)-(1-y) z \quad X=\{P(x, y, z)=0\}
$$

$$
\begin{gathered}
m(P)=m(1-y)+\frac{1}{(2 \pi \mathrm{i})^{3}} \int_{\mathbb{T}^{3}} \log \left|z-\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \frac{\mathrm{~d} z}{z} \\
=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log ^{+}\left|\frac{1-x}{1-y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
=-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \log |z| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y}
\end{gathered}
$$

$$
\Gamma=X \cap\{|x|=|y|=1,|z| \geq 1\}
$$

$$
=-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta(x, y, z)
$$

$$
\begin{gathered}
\eta(x, y, z)=\log |x|\left(\frac{1}{3} \mathrm{~d} \log |y| \wedge \mathrm{d} \log |z|-\mathrm{d} \arg y \wedge \mathrm{~d} \arg z\right) \\
+\log |y|\left(\frac{1}{3} \mathrm{~d} \log |z| \wedge \mathrm{d} \log |x|-\mathrm{d} \arg z \wedge \mathrm{~d} \arg x\right) \\
+\log |z|\left(\frac{1}{3} \mathrm{~d} \log |x| \wedge \mathrm{d} \log |y|-\mathrm{d} \arg x \wedge \mathrm{~d} \arg y\right) \\
\mathrm{d} \eta(x, y, z)=\operatorname{Re}\left(\frac{\mathrm{d} x}{x} \wedge \frac{\mathrm{~d} y}{y} \wedge \frac{\mathrm{~d} z}{z}\right)
\end{gathered}
$$

$$
\eta(x, 1-x, y)=\mathrm{d} \omega(x, y)
$$

where

$$
\omega(x, y)=-D(x) \mathrm{d} \arg y
$$

$$
+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
$$

$$
z=\frac{1-x}{1-y}
$$

$$
\eta(x, y, z)=-\eta(x, 1-x, y)-\eta(y, 1-y, x)
$$



$$
\eta(x, 1-x, y)=\mathrm{d} \omega(x, y)
$$

where

$$
\begin{gathered}
\omega(x, y)=-D(x) \mathrm{d} \arg y \\
+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|) \\
z=\frac{1-x}{1-y} \\
\eta(x, y, z)=-\eta(x, 1-x, y)-\eta(y, 1-y, x)
\end{gathered}
$$

$$
m(P)=\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta(x, 1-x, y)+\eta(y, 1-y, x)=\frac{1}{(2 \pi)^{2}} \int_{\partial \Gamma} \omega(x, y)+\omega(y, x)
$$

$$
\begin{gathered}
\omega(x, x)=\mathrm{d} \mathcal{L}_{3}(x) \\
\Gamma=X \cap\{|x|=|y|=1,|z| \geq 1\}
\end{gathered}
$$

Maillot: if $P \in \mathbb{R}[x, y, z]$,

$$
\partial \Gamma=\gamma=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\} \cap\{|x|=|y|=1\}
$$

$\omega$ defined in

$$
C=\left\{P(x, y, z)=P\left(x^{-1}, y^{-1}, z^{-1}\right)=0\right\}
$$

Want to apply Stokes' Theorem again.

$$
\begin{aligned}
& \frac{(1-x)\left(1-x^{-1}\right)}{(1-y)\left(1-y^{-1}\right)}=1 \\
& C=\{x=y\} \cup\{x y=1\}
\end{aligned}
$$



$$
\begin{gathered}
m((1-x)-(1-y) z)=\frac{1}{4 \pi^{2}} \int_{\gamma} \omega(x, y)+\omega(y, x) \\
\omega(x, x)=\mathrm{d} \mathcal{L}_{3}(x) \\
=\frac{1}{4 \pi^{2}} 8\left(\mathcal{L}_{3}(1)-\mathcal{L}_{3}(-1)\right)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

In general

$$
m(P)=m\left(P^{*}\right)-\frac{1}{(2 \pi)^{2}} \int_{\Gamma} \eta(x, y, z)
$$

Need

$$
x \wedge y \wedge z=\sum r_{i} x_{i} \wedge\left(1-x_{i}\right) \wedge y_{i}
$$

in $\bigwedge^{3}\left(\mathbb{C}(X)^{*}\right) \otimes \mathbb{Q}$,
$\left(\{x, y, z\}=0\right.$ in $\left.K_{3}^{M}(\mathbb{C}(X)) \otimes \mathbb{Q}\right)$ then

$$
\begin{gathered}
\int_{\Gamma} \eta(x, y, z)=\sum r_{i} \int_{\Gamma} \eta\left(x_{i}, 1-x_{i}, y_{i}\right) \\
=\sum r_{i} \int_{\partial \Gamma} \omega\left(x_{i}, y_{i}\right)
\end{gathered}
$$

$$
\omega(x, y)=-D(x) \mathrm{d} \arg y
$$

$$
+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
$$

$$
R_{2}(x, y)=[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-y}{1-x y}\right]
$$

in $\mathbb{Z}\left[\mathbb{P}_{\mathbb{C}}^{1}(C)\right]$
$F$ field,

$$
B_{2}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /\left\langle[0],[\infty], R_{2}(x, y)\right\rangle
$$

Need

$$
[x]_{2} \otimes y=\sum r_{i}\left[x_{i}\right]_{2} \otimes x_{i}
$$

in $\left(B_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}$.
Then

$$
\int_{\gamma} \omega(x, y)=\sum r_{i} \mathcal{L}_{3}\left(x_{i}\right) \mid \partial \gamma
$$

$$
\begin{gathered}
\omega(x, y)=-D(x) \mathrm{d} \arg y \\
+\frac{1}{3} \log |y|(\log |1-x| \mathrm{d} \log |x|-\log |x| \mathrm{d} \log |1-x|)
\end{gathered}
$$

Let

$$
R_{2}(x, y)=[x]+[y]+[1-x y]+\left[\frac{1-x}{1-x y}\right]+\left[\frac{1-y}{1-x y}\right]
$$

in $\mathbb{Z}\left[\mathbb{P}_{\mathbb{C}(C)}^{1}\right]$.
$F$ field,

$$
B_{2}(F):=\mathbb{Z}\left[\mathbb{P}_{F}^{1}\right] /\left\langle[0],[\infty], R_{2}(x, y)\right\rangle
$$

Need

$$
[x]_{2} \otimes y=\sum r_{i}\left[x_{i}\right]_{2} \otimes x_{i}
$$

in $\left(B_{2}(\mathbb{C}(C)) \otimes \mathbb{C}(C)^{*}\right)_{\mathbb{Q}}$.
Then

$$
\int_{\gamma} \omega(x, y)=\left.\sum r_{i} \mathcal{L}_{3}\left(x_{i}\right)\right|_{\partial \gamma}
$$

## Big picture in three variables

$$
\begin{gathered}
\cdots \rightarrow K_{4}(\partial \Gamma) \rightarrow K_{3}(X, \partial \Gamma) \rightarrow K_{3}(X) \rightarrow \cdots \\
\partial \Gamma=X \cap \mathbb{T}^{3} \\
\cdots \rightarrow\left(K_{5}(\overline{\mathbb{Q}}) \supset\right) K_{5}(\partial \gamma) \rightarrow K_{4}(C, \partial \gamma) \rightarrow K_{4}(C) \rightarrow \cdots \\
\partial \gamma=C \cap \mathbb{T}^{2}
\end{gathered}
$$

## Deninger(1997)

$$
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \mathrm{i} \pi)^{n-1}} \int_{\Gamma} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
\Gamma=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\cdots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\}
$$

## Deninger(1997)

$$
m(P)=m\left(P^{*}\right)+\frac{1}{(-2 \mathrm{i} \pi)^{n-1}} \int_{\Gamma} \eta_{n}(n)\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
\Gamma=\left\{P\left(x_{1}, \ldots, x_{n}\right)=0\right\} \cap\left\{\left|x_{1}\right|=\cdots=\left|x_{n-1}\right|=1,\left|x_{n}\right| \geq 1\right\}
$$

$$
\begin{gathered}
\pi^{2 n} m\left(1+\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{2 n}}{1+x_{2 n}}\right) z\right) \\
=\sum_{h=1}^{n} c_{n, h} \pi^{2 n-2 h} \zeta(2 h+1)
\end{gathered}
$$

## Identities

Boyd (1997), Rodriguez-Villegas (2000)

$$
7 m\left(y^{2}+2 x y+y-x^{3}-2 x^{2}-x\right)=5 m\left(y^{2}+4 x y+y-x^{3}+x^{2}\right)
$$

## Rogers (2005)



## Identities

Boyd (1997), Rodriguez-Villegas (2000)

$$
7 m\left(y^{2}+2 x y+y-x^{3}-2 x^{2}-x\right)=5 m\left(y^{2}+4 x y+y-x^{3}+x^{2}\right)
$$

Rogers (2005)

$$
m\left(4 n^{2}\right)+m\left(\frac{4}{n^{2}}\right)=2 m\left(2 n+\frac{2}{n}\right)
$$

where

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}-k\right)
$$

## Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$ :

$$
r(\{x, y\})=-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
$$

$\gamma$ generates $H_{1}(E, \mathbb{Z})^{-}$

$$
r(\{x, y\})=D^{E}((x) \diamond(y))
$$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

$$
\pi D^{E} \sim L(E, 2)
$$

is HARD (requires complex multiplication or modular case)

## Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$ :

$$
r(\{x, y\})=-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
$$

$\gamma$ generates $H_{1}(E, \mathbb{Z})^{-}$

$$
r(\{x, y\})=D^{E}((x) \diamond(y))
$$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

is HARD (requires complex multiplication or modular case)

## Idea in the Elliptic Curve case

- For $\{x, y\} \in K_{2}(E)$ :

$$
r(\{x, y\})=-\frac{1}{2 \pi} \int_{\gamma} \eta(x, y)
$$

$\gamma$ generates $H_{1}(E, \mathbb{Z})^{-}$

$$
r(\{x, y\})=D^{E}((x) \diamond(y))
$$

if $(x),(y)$ supported on $E_{\text {tors }}(\overline{\mathbb{Q}})$.

$$
\pi D^{E} \sim L(E, 2)
$$

is HARD (requires complex multiplication or modular case)

$$
m\left(\frac{4}{n^{2}}\right)=m\left(2 n+\frac{2}{n}\right)+m\left(2 \mathrm{i} n+\frac{2}{\mathrm{i} n}\right)
$$

Rogers \& L. (in progress)

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})
$$

curve is $X_{0}(24)$


