Bernoulli Numbers
Junior Number Theory Seminar - University of Texas at Austin

September 6th, 2005
Matilde N. Lalín

I will mostly follow [2].

Definition and some identities

Definition 1 Bernoulli numbers are defined as $B_{0}=1$ and recursively as

$$
(m+1) B_{m}=-\sum_{k=0}^{m-1}\binom{m+1}{k} B_{k},
$$

so we find $B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42}, \ldots, B_{12}=-\frac{691}{2730}, \ldots$

Lemma 2

$$
\frac{t}{\mathrm{e}^{t}-1}=\sum_{m=0}^{\infty} B_{m} \frac{t^{m}}{m!}
$$

PROOF. Write $\frac{t}{\mathrm{e}^{t}-1}=\sum_{m=0}^{\infty} a_{m} \frac{t^{m}}{m!}$ and multiply by $\mathrm{e}^{t}-1$,

$$
t=\sum_{n=1}^{\infty} \frac{t^{n}}{n!} \sum_{m=0}^{\infty} a_{m} \frac{t^{m}}{m!},
$$

equate coefficients for t^{m+1} gives $a_{0}=1$ and

$$
\sum_{k=0}^{m}\binom{m+1}{k} a_{k}=0
$$

Theorem 3 (J. Bernoulli) Let m be a positive integer and define

$$
S_{m}(n)=1^{m}+\ldots+(n-1)^{m}
$$

then

$$
(m+1) S_{m}(n)=\sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k} .
$$

PROOF. In $e^{k t}=\sum_{m=0}^{\infty} k^{m} \frac{t^{m}}{m!}$ substitute $k=0,1, \ldots, n-1$ and add,

$$
\begin{aligned}
\sum_{m=0}^{\infty} S_{m}(n) \frac{t^{m}}{m!} & =1+\mathrm{e}^{t}+\ldots+\mathrm{e}^{(n-1) t}=\frac{\mathrm{e}^{n t}-1}{t} \frac{t}{\mathrm{e}^{t}-1} \\
& =\sum_{k=1}^{\infty} n^{k} \frac{t^{k-1}}{k!} \sum_{j=0}^{\infty} B_{j} \frac{t^{j}}{j!}
\end{aligned}
$$

now equate the coefficients of t^{m} and multiply by $(m+1)$!.

Definition 4

$$
B_{m}(x)=\sum_{k=0}^{m}\binom{m}{k} B_{k} x^{m-k}
$$

are called Bernoulli polynomials.
So $B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}$, etc.
Then Theorem 3 may be stated as

$$
S_{m}(n)=\frac{1}{m+1}\left(B_{m+1}(n)-B_{m+1}\right)
$$

Lemma 5

$$
\frac{t \mathrm{e}^{x t}}{\mathrm{e}^{t}-1}=\sum_{m=0}^{\infty} B_{m}(x) \frac{t^{m}}{m!}
$$

PROOF. First note that

$$
B_{m}^{\prime}(x)=\sum_{k=0}^{m-1}\binom{m}{k}(m-k) B_{k} x^{m-1-k}=m B_{m-1}(x)
$$

Also

$$
\int_{0}^{1} B_{m}(x) \mathrm{d} x=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k}=0, \quad m \geq 1 .
$$

Now let $F(x, t)=\sum_{m=0}^{\infty} B_{m}(x) \frac{t^{m}}{m!}$, differentiating,

$$
\frac{\partial}{\partial x} F(x, t)=\sum_{m=1}^{\infty} B_{m-1}(x) \frac{t^{m}}{(m-1)!}=t F(x, t)
$$

Now we solve using separation of variables, $F(x, t)=T(t) \mathrm{e}^{x t}$, then

$$
\int_{0}^{1} F(x, t) \mathrm{d} x=\int_{0}^{1} T(t) \mathrm{e}^{x t} \mathrm{~d} x=T(t) \frac{\mathrm{e}^{t}-1}{t}
$$

but

$$
\int_{0}^{1} F(x, t) \mathrm{d} x=\sum_{m=0}^{\infty} \frac{t^{m}}{m!} \int_{0}^{1} B_{m}(x) \mathrm{d} x=1
$$

and this proves the statement (Castellanos, [1]).
Proposition 6 1. $B_{m}(x+1)-B_{m}(x)=\sum_{k=0}^{m}\binom{m}{k} B_{m-k}(x)=m x^{m-1}$ (Roman [5]).
2. $B_{m}(1-x)=(-1)^{m} B_{m}(x)$.
3. $B_{m}=\sum_{k=0}^{m} \frac{1}{k+1} \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} r^{m}$ (Rademacher [4]).
4. $\sum_{k=0}^{m}(-1)^{k+m}\binom{m}{k} B_{m}(k)=m$! (Ruiz [6]).
5. $B_{m}(k x)=k^{q-1} \sum_{j=0}^{k-1} B_{m}\left(x+\frac{j}{k}\right)$.

Euler MacLaurin sum formula (Rademacher, [4]).
Let $f(x)$ smooth. Since $B_{1}^{\prime}(x)=1$,

$$
\begin{gathered}
\int_{0}^{1} f(x) \mathrm{d} x=\left.B_{1}(x) f(x)\right|_{0} ^{1}-\int_{0}^{1} B_{1}(x) f^{\prime}(x) \mathrm{d} x \\
=\ldots=\left.\sum_{m=1}^{q}(-1)^{m-1} \frac{B_{m}(x)}{m!} f^{(m-1)}(x)\right|_{0} ^{1}+(-1)^{q} \int_{0}^{1} \frac{B_{q}(x)}{q!} f^{(q)}(x) \mathrm{d} x
\end{gathered}
$$

Evaluating in $x=1$,

$$
f(1)=\int_{0}^{1} f(x) \mathrm{d} x+\sum_{m=1}^{q}(-1)^{m} \frac{B_{m}}{m!}\left(f^{(m-1)}(1)-f^{(m-1)}(0)\right)+(-1)^{q-1} \int_{0}^{1} \frac{B_{q}(x)}{q!} f^{(q)}(x) \mathrm{d} x .
$$

Changing $f(x)$ by $f(n-1+x)$ and adding, we obtain the formula

$$
\sum_{n=a+1}^{b} f(n)=\int_{a}^{b} f(x) \mathrm{d} x+\sum_{m=1}^{q}(-1)^{m} \frac{B_{m}}{m!}\left(f^{(m-1)}(b)-f^{(m-1)}(a)\right)+R_{q}
$$

where

$$
R_{q}=\frac{(-1)^{q-1}}{q!} \int_{a}^{b} B_{q}(x-[x]) f^{(q)}(x) \mathrm{d} x
$$

An integral and some identities

Proposition 7 We have:

$$
\int_{0}^{\infty} \frac{x \log ^{k} x \mathrm{~d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\left(\frac{\pi}{2}\right)^{k+1} \frac{P_{k}\left(\frac{2 \log a}{\pi}\right)-P_{k}\left(\frac{2 \log b}{\pi}\right)}{a^{2}-b^{2}}
$$

where

$$
P_{k}(x)=\frac{2 \mathrm{i}^{k+1}}{k+1}\left(B_{k+1}\left(\frac{x}{\mathrm{i}}\right)-2^{k} B_{k+1}\left(\frac{x}{2 \mathrm{i}}\right)\right)+\frac{\left(2^{k+1}-2\right) \mathrm{i}^{k+1}}{k+1} B_{k+1}
$$

PROOF. (Idea) We first prove that

$$
\int_{0}^{\infty} \frac{x^{\alpha} \mathrm{d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi\left(a^{\alpha-1}-b^{\alpha-1}\right)}{2 \cos \frac{\pi \alpha}{2}\left(b^{2}-a^{2}\right)} \quad \text { for } \quad 0<\alpha<1, \quad a, b \neq 0
$$

by first computing

$$
\int_{0}^{\infty} \frac{x^{\alpha} \mathrm{d} x}{x^{2}+a^{2}}=\frac{\pi a^{\alpha-1}}{2 \cos \frac{\pi \alpha}{2}}
$$

We note that the polynomials P_{k} may be defined recursively as

$$
P_{k}(x)=\frac{x^{k+1}}{k+1}+\frac{1}{k+1} \sum_{j>1 \text { (odd) }}^{k+1}(-1)^{\frac{j+1}{2}}\binom{k+1}{j} P_{k+1-j}(x) .
$$

The idea, suggested by Rodriguez-Villegas, is to obtain the value of the integral in the statement by differentiating k times the integral of with α and then evaluating at $\alpha=1$. Let

$$
f(\alpha)=\frac{\pi\left(a^{\alpha-1}-b^{\alpha-1}\right)}{2 \cos \frac{\pi \alpha}{2}\left(b^{2}-a^{2}\right)}
$$

which is the value of the integral with α. In other words, we have

$$
f^{(k)}(1)=\int_{0}^{\infty} \frac{x \log ^{k} x \mathrm{~d} x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}
$$

By developing in power series around $\alpha=1$, we obtain

$$
f(\alpha) \cos \frac{\pi \alpha}{2}=\frac{\pi}{2\left(b^{2}-a^{2}\right)} \sum_{n=0}^{\infty} \frac{\log ^{n} a-\log ^{n} b}{n!}(\alpha-1)^{n} .
$$

By differentiating k times,

$$
\sum_{j=0}^{k}\binom{k}{j} f^{(k-j)}(\alpha)\left(\cos \frac{\pi \alpha}{2}\right)^{(j)}=\frac{\pi}{2\left(b^{2}-a^{2}\right)} \sum_{n=0}^{\infty} \frac{\log ^{n+k} a-\log ^{n+k} b}{n!}(\alpha-1)^{n}
$$

We evaluate in $\alpha=1$,

$$
\sum_{j=0 \text { (odd) }}^{k}(-1)^{\frac{j+1}{2}}\binom{k}{j} f^{(k-j)}(1)\left(\frac{\pi}{2}\right)^{j}=\frac{\pi\left(\log ^{k} a-\log ^{k} b\right)}{2\left(b^{2}-a^{2}\right)}
$$

As a consequence, we obtain

$$
f^{(k)}(1)=\frac{1}{k+1} \sum_{j>1 \text { (odd) }}^{k+1}(-1)^{\frac{j+1}{2}}\binom{k+1}{j} f^{(k+1-j)}(1)\left(\frac{\pi}{2}\right)^{j-1}+\frac{\log ^{k+1} a-\log ^{k+1} b}{(k+1)\left(a^{2}-b^{2}\right)} .
$$

When $k=0$,

$$
f^{(0)}(1)=f(1)=\frac{\log a-\log b}{a^{2}-b^{2}}=\frac{\pi}{2} \frac{P_{0}\left(\frac{2 \log a}{\pi}\right)-P_{0}\left(\frac{2 \log b}{\pi}\right)}{a^{2}-b^{2}} .
$$

The general result follows by induction on k and the definition of P_{k}.
Theorem 8 We have the following identities:

- For $1 \leq l \leq n$:

$$
\begin{gathered}
s_{n-l}\left(1^{2}, \ldots,(2 n-1)^{2}\right) \\
=n \sum_{s=0}^{n-l} s_{n-l-s}\left(2^{2}, \ldots,(2 n-2)^{2}\right) \frac{1}{l+s} B_{2 s}\binom{2(l+s)}{2 s}\left(2^{2 s}-2\right)(-1)^{s+1} .
\end{gathered}
$$

- For $1 \leq n$:

$$
\left(\frac{(2 n)!}{2^{n} n!}\right)^{2}=2 n \sum_{s=1}^{n} s_{n-s}\left(2^{2}, \ldots,(2 n-2)^{2}\right) \frac{1}{s} B_{2 s}\left(2^{2 s}-1\right)(-1)^{s+1} .
$$

- For $0 \leq l \leq n$:

$$
\begin{gathered}
(2 l+1) s_{n-l}\left(2^{2}, \ldots,(2 n)^{2}\right) \\
=(2 n+1) \sum_{s=0}^{n-l} s_{n-l-s}\left(1^{2}, \ldots,(2 n-1)^{2}\right) B_{2 s}\binom{2(l+s)}{2 s}\left(2^{2 s}-2\right)(-1)^{s+1}
\end{gathered}
$$

- For $1 \leq n$:

$$
\sum_{s=1}^{n} s_{n-s}\left(2^{2}, \ldots,(2 n-2)^{2}\right)(-1)^{s+1} \frac{2^{2 s}\left(2^{2 s}-1\right)}{s} B_{2 s}=2(2 n-1)!
$$

where

$$
s_{l}\left(a_{1}, \ldots, a_{k}\right)= \begin{cases}1 & \text { if } l=0 \\ \sum_{i_{1}<\ldots<i_{l}} a_{i_{1}} \ldots a_{i_{l}} & \text { if } 0<l \leq k \\ 0 & \text { if } k<l\end{cases}
$$

are the elementary symmetric polynomials, i.e.,

$$
\prod_{i=1}^{k}\left(x+a_{i}\right)=\sum_{l=0}^{k} s_{l}\left(a_{1}, \ldots, a_{k}\right) x^{k-l}
$$

Some big classic results
Theorem 9 (Euler)

$$
2 \zeta(2 m)=(-1)^{m+1} \frac{(2 \pi)^{2 m}}{(2 m)!} B_{2 m}
$$

PROOF. We will need

$$
\cot x=\frac{1}{x}-2 \sum_{n=1}^{\infty} \frac{x}{n^{2} \pi^{2}-x^{2}}
$$

This identity may be deduced by applying the logarithmic derivative to

$$
\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

Then

$$
x \cot x=1-2 \sum_{n=1}^{\infty} \frac{x^{2}}{n^{2} \pi^{2}} \sum_{k=0}^{\infty}\left(\frac{x}{n \pi}\right)^{2 k}=1-2 \sum_{m=1}^{\infty} \zeta(2 m) \frac{x^{2 m}}{\pi^{2 m}}
$$

On the other hand,

$$
x \cot x=x \frac{\cos x}{\sin x}=x \frac{\mathrm{i}\left(\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}\right)}{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}}=\mathrm{i} x+\frac{2 i x}{\mathrm{e}^{2 \mathrm{i} x}-1}=1+\sum_{n=2}^{\infty} B_{n} \frac{(2 \mathrm{i} x)^{n}}{n!}
$$

and compare coefficients of $x^{2 m}$.
For instance, $\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}$, etc.
Corollary 10 1. $(-1)^{m+1} B_{2 m}>0$.
2. $\left|\frac{B_{2 m}}{2 m}\right| \rightarrow \infty$ or $B_{2 m} \sim(-1)^{m+1} \frac{2(2 m)!}{(2 \pi)^{2 m}}$ as $m \rightarrow \infty$.

PROOF. The first assertion is consequence of the fact that $\zeta(2 m)$ is positive. The second is consequence of the fact that $\zeta(2 m)>1$ implies

$$
\left|B_{2 m}\right|>\frac{2(2 m)!}{(2 \pi)^{2 m}}
$$

Theorem 11 (Claussen, von Staudt) For $m \geq 1$

$$
B_{2 m} \equiv-\sum_{(p-1) \mid 2 m, p \text { prime }} \frac{1}{p}(\bmod 1)
$$

We will need the following
Definition 12 For every rational number r and p prime write $r=p^{k} \frac{a}{b}$ where a, b are integers such that $p \nmid a b$. Then $\operatorname{ord}_{p}(r)=k$. We say that r is p-integral if $\operatorname{ord}_{p}(r) \geq 0$.

Lemma 13 Let p be a prime number and k a positive integer, then

1. $\frac{p^{k}}{k+1}$ is p-integral.
2. $\frac{p^{k}}{k+1} \equiv 0(\bmod p)$ if $k \geq 2$.
3. $\frac{p^{k-2}}{k+1}$ is p-integral if $k \geq 3$ and $p \geq 5$.

PROOF. By induction, $k+1 \leq p^{k}$. Let $k+1=p^{a} q$. Then $\frac{p^{k}}{k+1}=\frac{p^{k-a}}{q} \geq 1$ implies $k \geq a$. For the second case use that $k+1<p^{k}$ for $k \geq 2$. The third case is consequence of $k+1<p^{k-2}$ for $k \geq 3$ and $p \geq 5$.

Proposition 14 Let p be a prime and m a positive integer. Then $p B_{m}$ is p-integral. Also, if m is even $p B_{m} \equiv S_{m}(p)(\bmod p)$

PROOF. For the first statement we will use induction. It is clear for $m=1$. Now note that for $m \geq k$ we have

$$
\binom{m+1}{k}=\frac{m+1}{m-k+1}\binom{m}{k}
$$

Then Theorem 3 becomes

$$
\begin{equation*}
S_{m}(n)=\sum_{k=0}^{m}\binom{m}{k} B_{k} \frac{n^{m+1-k}}{m+1-k}=\sum_{k=0}^{m}\binom{m}{k} B_{m-k} \frac{n^{k+1}}{k+1} \tag{1}
\end{equation*}
$$

Now set $n=p$ and since $S_{m}(p)$ is integer, it suffices to prove that

$$
\binom{m}{k} p B_{m-k} \frac{p^{k}}{k+1}
$$

is p-integral for $k=1, \ldots, m$, but that is true by induction and Lemma 13 .

For the congruence it suffices to see that

$$
\operatorname{ord}_{p}\left(\binom{m}{k}\left(p B_{m-k} \frac{p^{k}}{k+1}\right)\right) \geq 1
$$

for $k \geq 1$. By Lemma 13 this is true for $k \geq 2$. The case with $k=1$ corresponds to $\frac{m}{2}\left(p B_{m-1}\right) p$ and it is true because m is even and the only nontrivial case is with $m=2$.

Lemma 15 Let p be a prime. If $p-1 \wedge m$, then $S_{m}(p) \equiv 0(\bmod p)$. If $p-1 \mid m$ then $S_{m}(p) \equiv-1(\bmod p)$

PROOF. First suppose that $p-1 \not \backslash m$. Let g be a primitive root modulo p. Then

$$
S_{m}(p)=1^{m}+\ldots+(p-1)^{m} \equiv 1^{m}+g^{m}+\ldots+g^{(p-2) m}(\bmod p)
$$

and

$$
\left(g^{m}-1\right) S_{m}(p) \equiv g^{m(p-1)}-1 \equiv 0(\bmod p)
$$

the result follows. Now suppose that $p-1 \mid m$, then

$$
S_{m}(p) \equiv 1+1+\ldots+1 \equiv p-1(\bmod p)
$$

PROOF. (Theorem 11) Assume m is even. By Proposition $14, p B_{m}$ is p-integral and $\equiv S_{m}(p)(\bmod p)$. By Lemma $15, B_{m}$ is a p-integer if $p-1 \nmid m$ and $p B_{m} \equiv-1(\bmod p)$ if $p-1 \mid m$. Then

$$
B_{m}+\sum_{p-1 \mid m} \frac{1}{p}
$$

is a p-integer for all primes p, then it must be integral.

More Congruences

Corollary 16 If $p-1 \nmid 2 m$, then $B_{2 m}$ is p-integral. If $p-1 \mid 2 m$ then $p B_{2 m}+1$ is p-integral and

$$
\operatorname{ord}_{p}\left(p B_{2 m}+1\right)=\operatorname{ord}_{p}\left(p\left(B_{2 m}+\frac{1}{p}\right)\right) \geq 1
$$

so $p B_{2 m} \equiv-1(\bmod p)$. Also 6 always divides the denominator of $B_{2 m}$.
From now on write $B_{m}=\frac{U_{m}}{V_{m}}$ as a fraction in lowest terms with $V_{m}>0$.
Proposition 17 For m even and >1,

$$
V_{m} S_{m}(n) \equiv U_{m} n\left(\bmod n^{2}\right)
$$

PROOF. We will use equation (1), for $k \geq 1$ write

$$
\binom{m}{k}\left(B_{m-k} \frac{n^{k-1}}{k+1}\right) n^{2}=A_{k}^{m} n^{2}
$$

If we show that for $p \mid n, p \neq 2,3$, then $\operatorname{ord}_{p}\left(A_{k}^{m}\right) \geq 0$ and if $p \mid n, p=2$ or $3, \operatorname{ord}_{p}\left(A_{k}^{m}\right) \geq-1$, then $\left(A_{k}^{m}, n\right)$ must divide 6 and the same is true for the greater common divisor between the sum of A_{k}^{m} and n. Then we may write

$$
S_{m}(n)=B_{m} n+\frac{A n^{2}}{l B}
$$

with $(B, n)=1$ and $l \mid 6$. Multiplying by $B V_{m}$ and using the fact that $6 \mid V_{m}$ (by Corollary 16) the result is proved.

Use Corollary 16 to see that $\operatorname{ord}_{p}\left(B_{m-k}\right) \geq-1$. Assume $p \mid n$ and $p \neq 2,3$. The cases $k=1,2$ are simple. If $k \geq 3$,

$$
\operatorname{ord}_{p}\left(B_{m-k} \frac{n^{k-1}}{k+1}\right) \geq-1+(k-1) \operatorname{ord}_{p} n-\operatorname{ord}_{p}(k+1) \geq k-2-\operatorname{ord}_{p}(k+1) \geq 0
$$

by Lemma 15 .
Now let $p=2$. If $k=1$, then $B_{m-1}=0$ for $m>2$ and $A_{1}^{2}=2 B_{1} \frac{1}{2}=-\frac{1}{2}$. For $k>1$ note that $B_{m-k}=0$ unless k is even or $k=m-1 . k$ even implies $\operatorname{ord}_{2}(k+1)=0$ and $k=m-1, A_{m-1}^{m}=-\frac{1}{2} n^{m-2}$ which has order greater or equal to -1 .

When $p=3, \operatorname{ord}_{3}\left(A_{2}^{m}\right) \geq-1$ and $\operatorname{ord}_{3}\left(A_{3}^{m}\right) \geq 1$. For $k \geq 4$, one shows that $\operatorname{ord}_{3}\left(\frac{3^{k-2}}{k+1}\right) \geq 0$.

Corollary 18 Let m be even and p prime with $p-1 \nmid m$. Then

$$
S_{m}(p) \equiv B_{m} p\left(\bmod p^{2}\right)
$$

PROOF. By Theorem 11, $p \nmid V_{m}$. Now put $n=p$ in the above Proposition and divide by V_{m} which is permissible since $p \nmid V_{m}$.

Proposition 19 (Voronoi's congruence) Let m even and >1. Suppose that a and n are positive coprime integers. Then

$$
\left(a^{m}-1\right) U_{m} \equiv m a^{m-1} V_{m} \sum_{j=1}^{n-1} j^{m-1}\left[\frac{j a}{n}\right](\bmod n) .
$$

PROOF. Write $j a=q_{j} n+r_{j}$ with $0 \leq r_{j}<n$. Then

$$
j^{m} a^{m} \equiv r_{j}^{m}+m q_{j} n r_{j}^{m-1}\left(\bmod n^{2}\right)
$$

But $r_{j} \equiv j a(\bmod n)$, then

$$
j^{m} a^{m} \equiv r_{j}^{m}+m a^{m-1} q_{j} n j^{m-1}\left(\bmod n^{2}\right) .
$$

Summing for $j=1, \ldots, n-1$,

$$
S_{m}(n) a^{m} \equiv S_{m}(n)+m a^{m-1} n \sum_{j=1}^{n-1} j^{m-1}\left[\frac{j a}{n}\right]\left(\bmod n^{2}\right)
$$

Now multiply by V_{m} and use Proposition 17.

Proposition 20 If $p-1 \nmid m$, then $\frac{B_{m}}{m}$ is p-integral.
PROOF. By Theorem $11, B_{m}$ is a p-integer. Let $m=p^{t} m_{0}$ with $p \nmid m_{0}$. In Voronoi congruence put $n=p^{t}$. Then $\left(a^{m}-1\right) U_{m} \equiv 0\left(\bmod p^{t}\right)$. Now let a be a primitive root modulo p. Since $p-1 \not \backslash m$, then $p \not\left\langle a^{m}-1\right.$. Then $U_{m} \equiv 0\left(\bmod p^{t}\right)$. Then $\frac{B_{m}}{m}=\frac{U_{m}}{m V_{m}}$ is p-integer.

Theorem 21 (Kummer congruences) Suppose $m \geq 2$ is even, p prime, and $p-1$ Xm. Let $C_{m}=\frac{\left(1-p^{m-1}\right) B_{m}}{m}$. If $m^{\prime} \equiv m\left(\bmod \phi\left(p^{e}\right)\right)$, then $C_{m^{\prime}} \equiv C_{m}\left(\bmod p^{e}\right)$.
PROOF. We will see the case $e=1$. Let $t=\operatorname{ord}_{p}(m)$. By Proposition 20, $p^{t} \mid U_{m}$. In Voronoi's congruence, set $n=p^{e+t}$. Since p^{t} divides both U_{m} and m, and $\frac{m V_{m}}{p^{t}}$ is prime to p, we obtain,

$$
\frac{\left(a^{m}-1\right) B_{m}}{m} \equiv a^{m-1} \sum_{j=1}^{p^{e+t-1}} j^{m-1}\left[\frac{j a}{p^{e+t}}\right]\left(\bmod p^{e}\right)
$$

The right-hand side is unchanged if we replace m by $m^{\prime} \equiv m(\bmod p-1)$. Then

$$
\frac{\left(a^{m^{\prime}}-1\right) B_{m^{\prime}}}{m^{\prime}} \equiv \frac{\left(a^{m}-1\right) B_{m}}{m}(\bmod p) .
$$

Choose a to be a primitive root modulo p. Since $p-1 \not \backslash m$ we have $a^{m^{\prime}}-1 \equiv a^{m}-1 \not \equiv$ $0(\bmod p)$. Then

$$
\frac{B_{m^{\prime}}}{m^{\prime}} \equiv \frac{B_{m}}{m}(\bmod p) .
$$

Definition 22 An odd prime number p is said to be regular if p does not divide the numerator of any of the numbers $B_{2}, B_{4}, \ldots, B_{p-3}$. The prime 3 is regular. Equivalently, p is regular if it does not divide the class number of $\mathbb{Q}\left(\xi_{p}\right)$

The first irregular primes are 37 and 59.
Theorem 23 (Kummer) Let p be a regular prime. Then $x^{p}+y^{p}=z^{p}$ has no solution in positive integers.

Theorem 24 (Jensen) The set of irregular primes is infinite.
PROOF. Let $\left\{p_{1}, \ldots, p_{s}\right\}$ be the set of irregular primes. Let $k \geq 2$ be even and $n=$ $k\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)$. Choose k large such that $\left|\frac{B_{n}}{n}\right|>1$ and p prime such that $\operatorname{ord}_{p}\left(\frac{B_{n}}{n}\right)>0$. Then $p-1 \nmid n$ and so $p \neq p_{i}$. We will prove that p is also irregular.

Let $n \equiv m(\bmod p-1)$ where $0<m<p-1$. Then m is even and $2 \leq m \leq p-3$. By the Kummer congruence,

$$
\frac{B_{n}}{n} \equiv \frac{B_{m}}{m}(\bmod p) .
$$

Since $\operatorname{ord}_{p}\left(\frac{B_{n}}{n}\right)>0$ and $\operatorname{ord}_{p}\left(\frac{B_{n}}{n}-\frac{B_{m}}{m}\right)>0$, then

$$
\operatorname{ord}_{p}\left(\frac{B_{m}}{m}\right)=\operatorname{ord}_{p} B_{m}>0
$$

and p is irregular.

References

[1] D. Castellanos, The Ubiquitous Pi. Part I.Math. Mag. 61, 67-98, 1988.
[2] K. Ireland, M. Rosen, A classical introduction to modern number theory. Second edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990. xiv+389 pp.
[3] M. N. Lalín, Mahler measure of some n-variable polynomial families, (preprint, September 2004, to appear in J. Number Theory)
[4] H. Rademacher, Topics in Analytic Number Theory, Die Grundlehren der Mathematischen, Wissenschaften. New York: Springer-Verlag, 1973.
[5] S. Roman, The Bernoulli Polynomials. 4.2.2 The Umbral Calculus. New York: Academic Press, pp. 93-100, 1984.
[6] Eric Weisstein's World of Mathematics, http://mathworld.wolfram.com/BernoulliNumber.html

