Mahler measure and regulators

Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

March 20, 2008

Mahler measure of one-variable polynomials

Pierce (1918) $P \in \mathbb{Z}[x]$ monic,

$$P(x) = \prod_{i} (x - \alpha_{i})$$

$$\Delta_{n} = \prod_{i} (\alpha_{i}^{n} - 1)$$

$$P(x) = x - 2 \Rightarrow \Delta_{n} = 2^{n} - 1$$

Lehmer (1933)

$$\frac{\Delta_{n+1}}{\Delta_n}$$

$$\lim_{n\to\infty}\frac{|\alpha^{n+1}-1|}{|\alpha^n-1|}=\left\{\begin{array}{ll}|\alpha| & \text{if } |\alpha|>1\\ 1 & \text{if } |\alpha|<1\end{array}\right.$$

For

$$P(x) = a \prod_{i} (x - \alpha_i)$$
 $I(P) = |a| \prod_{i} \max\{1, |\alpha_i|\}$

$$m(P) = \log M(P) = \log |a| + \sum_{i} \log^{+} |\alpha_{i}|$$

Lehmer (1933)

$$\frac{\Delta_{n+1}}{\Delta_n}$$

$$\lim_{n\to\infty}\frac{|\alpha^{n+1}-1|}{|\alpha^n-1|}=\left\{\begin{array}{ll}|\alpha|&\text{if }|\alpha|>1\\1&\text{if }|\alpha|<1\end{array}\right.$$

For

$$P(x) = a \prod_{i} (x - \alpha_i)$$

$$\mathit{M}(P) = |a| \prod_{i} \max\{1, |lpha_i|\}$$

$$m(P) = \log M(P) = \log |a| + \sum_{i} \log^{+} |\alpha_{i}|$$

Kronecker's Lemma

$$P \in \mathbb{Z}[x], P \neq 0,$$

$$m(P) = 0 \Leftrightarrow P(x) = x^n \prod \phi_i(x)$$

Lehmer's Question

$$m(x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1)$$

$$= 0.162357612...$$

Lehmer(1933) Does there exist C>0 such that $P(x)\in\mathbb{Z}[x]$

$$m(P) = 0$$
 or $m(P) > C??$

$$\sqrt{\Delta_{379}} = 1,794,327,140,357$$

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) *Mahler measure* is :

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

Jensen's formula:

$$\int_0^1 \log|e^{2\pi i\theta} - \alpha| d\theta = \log^+|\alpha|$$

recovers one-variable case

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) *Mahler measure* is :

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

Jensen's formula:

$$\int_0^1 \log |e^{2\pi i\theta} - \alpha| d\theta = \log^+ |\alpha|$$

recovers one-variable case.

Properties

- $m(P) \ge 0$ if P has integral coefficients.
- $m(P \cdot Q) = m(P) + m(Q)$
- ullet α algebraic number, and P_{α} minimal polynomial over \mathbb{Q} ,

$$m(P_{\alpha}) = [\mathbb{Q}(\alpha) : \mathbb{Q}] h(\alpha)$$

where h is the logarithmic Weil height.

Boyd & Lawton Theorem

$$P \in \mathbb{C}[x_1, \dots, x_n]$$

$$\lim_{k_2 \to \infty} \dots \lim_{k_n \to \infty} m(P(x, x^{k_2}, \dots, x^{k_n})) = m(P(x_1, x_2, \dots, x_n))$$

Jensen's formula \longrightarrow simple expression in one-variable case.

Several-variable case?

Examples in several variables

Smyth (1981)

$$m(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2) = L'(\chi_{-3},-1)$$

$$m(1+x+y+z) = \frac{7}{2\pi^2}\zeta(3)$$

$$L(\chi_{-3}, s) = \sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^s} \qquad \chi_{-3}(n) = \begin{cases} 1 & n \equiv 1 \mod 3 \\ -1 & n \equiv -1 \mod 3 \\ 0 & n \equiv 0 \mod 3 \end{cases}$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

More examples in several variables

• Condon (2003)

$$\pi^2 m \left(z - \left(\frac{1-x}{1+x} \right) (1+y) \right) = \frac{28}{5} \zeta(3)$$

D'Andrea & L. (2007)

$$\pi^{2} m \left(\operatorname{Res}_{t}(x + yt + t^{2}, z + wt + t^{2}) \right)$$

$$= \pi^{2} m \left(z(1 - xy)^{2} - (1 - x)(1 - y) \right) = 4\sqrt{5} \operatorname{L}(\chi_{5}, 3)$$

Boyd & L. (2005)

$$\pi^2 m(x^2 + 1 + (x+1)y + (x-1)z) = \pi L(\chi_{-4}, 2) + \frac{21}{8}\zeta(3)$$

• L. (2006)

$$\pi^3 m \left(1 + x + \left(\frac{1 - x_1}{1 + x_1} \right) (1 + y) z \right) = 24 L(\chi_{-4}, 4)$$

 $\pi^4 m \left(1 + x + \left(\frac{1 - x_1}{1 + x_1} \right) \left(\frac{1 - x_2}{1 + x_2} \right) (1 + y) z \right) = 93 \zeta(5)$

Known formulas for

$$\pi^{n+2}m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)\ldots\left(\frac{1-x_n}{1+x_n}\right)(1+y)z\right)$$

Why do we get nice numbers?

Polylogarithms

The kth polylogarithm is

$$\operatorname{Li}_k(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^k} \qquad x \in \mathbb{C}, \quad |x| < 1$$

It has an analytic continuation to $\mathbb{C} \setminus [1, \infty)$.

Zagier:

$$\mathcal{L}_k(x) := \operatorname{Re}_k \left(\sum_{j=0}^{k-1} \frac{2^j B_j}{j!} (\log |x|)^j \operatorname{Li}_{k-j}(x) \right)$$

 B_i is jth Bernoulli number

 $Re_k = Re$ or Im if k is odd or even.

One-valued, real analytic in $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$, continuous in $\mathbb{P}^1(\mathbb{C})$.

Polylogarithms

The kth polylogarithm is

$$\operatorname{Li}_k(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^k} \qquad x \in \mathbb{C}, \quad |x| < 1$$

It has an analytic continuation to $\mathbb{C} \setminus [1, \infty)$.

Zagier:

$$\mathcal{L}_k(x) := \operatorname{Re}_k \left(\sum_{j=0}^{k-1} \frac{2^j B_j}{j!} (\log |x|)^j \operatorname{Li}_{k-j}(x) \right)$$

 B_i is jth Bernoulli number

 $Re_k = Re \text{ or } Im \text{ if } k \text{ is odd or even.}$

One-valued, real analytic in $\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\}$, continuous in $\mathbb{P}^1(\mathbb{C})$.

 \mathcal{L}_k satisfies lots of functional equations

$$\mathcal{L}_k\left(\frac{1}{x}\right) = (-1)^{k-1}\mathcal{L}_k(x)$$
 $\mathcal{L}_k(\bar{x}) = (-1)^{k-1}\mathcal{L}_k(x)$

Bloch–Wigner dilogarithm (k = 2)

$$D(x) := \operatorname{Im}(\operatorname{Li}_2(x)) + \operatorname{arg}(1-x)\log|x|$$

Five-term relation

$$D(x) + D(1 - xy) + D(y) + D\left(\frac{1 - y}{1 - xy}\right) + D\left(\frac{1 - x}{1 - xy}\right) = 0$$

Philosophy of Beilinson's conjectures

Global information from local information through L-functions

- Arithmetic-geometric object X (for instance, $X = \mathcal{O}_F$, F a number field)
- L-function ($L_F = \zeta_F$)
- ullet Finitely-generated abelian group K $(K=\mathcal{O}_F^*)$
- Regulator map reg : $K \to \mathbb{R} \ (\text{reg} = \log |\cdot|)$

$$(K \operatorname{\mathsf{rank}} 1) \qquad \mathrm{L}_X'(0) \sim_{\mathbb{Q}^*} \operatorname{\mathsf{reg}}(\xi)$$

(Dirichlet class number formula, for F real quadratic, $\zeta_F'(0) \sim_{\mathbb{Q}^*} \log |\epsilon|, \ \epsilon \in \mathcal{O}_F^*$)

An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : $P(x,y) \in \mathbb{C}[x,y]$

$$m(P) = m(P^*) - \frac{1}{2\pi} \int_{\gamma} \eta(x, y)$$

 $\eta(x, y) = \log |x| d \arg y - \log |y| d \arg x$

$$\eta(x, 1-x) = dD(x)$$
 $d\eta(x, y) = \operatorname{Im}\left(\frac{dx}{x} \wedge \frac{dy}{y}\right)$

An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : $P(x,y) \in \mathbb{C}[x,y]$

$$m(P) = m(P^*) - \frac{1}{2\pi} \int_{\gamma} \eta(x, y)$$

$$\eta(x, y) = \log |x| d \arg y - \log |y| d \arg x$$

$$\eta(x, 1-x) = dD(x)$$
 $d\eta(x, y) = \operatorname{Im}\left(\frac{dx}{x} \wedge \frac{dy}{y}\right)$

$$P(x, y, z) = (1 - x) - (1 - y)z$$
 $X = \{P(x, y, z) = 0\}$

$$m(P) = m(1 - y) + \frac{1}{(2\pi i)^3} \int_{\mathbb{T}^3} \log \left| z - \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y} \frac{\mathrm{d}z}{z}$$
$$= \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log^+ \left| \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$
$$= -\frac{1}{(2\pi)^2} \int_{\Gamma} \log|z| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$

$$\Gamma = X \cap \{|x| = |y| = 1, |z| \ge 1\}$$

$$P(x, y, z) = (1 - x) - (1 - y)z$$
 $X = \{P(x, y, z) = 0\}$

$$m(P) = m(1 - y) + \frac{1}{(2\pi i)^3} \int_{\mathbb{T}^3} \log \left| z - \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y} \frac{\mathrm{d}z}{z}$$
$$= \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log^+ \left| \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$
$$= -\frac{1}{(2\pi)^2} \int_{\Gamma} \log |z| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$

$$\Gamma = X \cap \{|x| = |y| = 1, |z| \ge 1\}$$

$$P(x, y, z) = (1 - x) - (1 - y)z$$
 $X = \{P(x, y, z) = 0\}$

$$m(P) = m(1 - y) + \frac{1}{(2\pi i)^3} \int_{\mathbb{T}^3} \log \left| z - \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y} \frac{\mathrm{d}z}{z}$$
$$= \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log^+ \left| \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$
$$= -\frac{1}{(2\pi)^2} \int_{\Gamma} \log|z| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$

$$\Gamma = X \cap \{|x|=|y|=1, |z|\geq 1\}$$

$$P(x, y, z) = (1 - x) - (1 - y)z$$
 $X = \{P(x, y, z) = 0\}$

$$m(P) = m(1 - y) + \frac{1}{(2\pi i)^3} \int_{\mathbb{T}^3} \log \left| z - \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y} \frac{\mathrm{d}z}{z}$$
$$= \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log^+ \left| \frac{1 - x}{1 - y} \right| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$
$$= -\frac{1}{(2\pi)^2} \int_{\Gamma} \log|z| \frac{\mathrm{d}x}{x} \frac{\mathrm{d}y}{y}$$

$$\Gamma = X \cap \{|x|=|y|=1, |z|\geq 1\}$$

$$\eta(x, y, z) = \log|x| \left(\frac{1}{3}d\log|y| \wedge d\log|z| - d\arg y \wedge d\arg z\right)$$

$$+ \log|y| \left(\frac{1}{3}d\log|z| \wedge d\log|x| - d\arg z \wedge d\arg x\right)$$

$$+ \log|z| \left(\frac{1}{3}d\log|x| \wedge d\log|y| - d\arg x \wedge d\arg y\right)$$

$$d\eta(x, y, z) = \operatorname{Re}\left(\frac{dx}{x} \wedge \frac{dy}{y} \wedge \frac{dz}{z}\right)$$

$$\eta(x,1-x,y)=\mathrm{d}\,\omega(x,y)$$

where

$$\omega(x,y) = -D(x)d\arg y$$

$$+\frac{1}{3}\log|y|(\log|1-x|d\log|x|-\log|x|d\log|1-x|)$$

$$z = \frac{1 - x}{1 - y}$$

$$\eta(x, y, z) = -\eta(x, 1 - x, y) - \eta(y, 1 - y, x)$$

$$m(P) = \frac{1}{(2\pi)^2} \int_{\Gamma} \eta(x, 1-x, y) + \eta(y, 1-y, x) = \frac{1}{(2\pi)^2} \int_{\partial \Gamma} \omega(x, y) + \omega(y, x)$$

$$\eta(x, 1 - x, y) = d\omega(x, y)$$

where

$$\omega(x,y) = -D(x)\operatorname{d}\operatorname{arg} y$$

$$+\frac{1}{3}\log|y|(\log|1-x|\operatorname{d}\log|x|-\log|x|\operatorname{d}\log|1-x|)$$

$$z = \frac{1-x}{1-y}$$

$$\eta(x,y,z) = -\eta(x,1-x,y) - \eta(y,1-y,x)$$

$$m(P) = \frac{1}{(2\pi)^2} \int_{\Gamma} \eta(x, 1-x, y) + \eta(y, 1-y, x) = \frac{1}{(2\pi)^2} \int_{\partial \Gamma} \omega(x, y) + \omega(y, x)$$

$$\omega(x,x)=\mathrm{d}\mathcal{L}_3(x)$$

$$\Gamma = X \cap \{|x| = |y| = 1, |z| \ge 1\}$$

Maillot: if $P \in \mathbb{R}[x, y, z]$,

$$\partial\Gamma = \gamma = \{P(x, y, z) = P(x^{-1}, y^{-1}, z^{-1}) = 0\} \cap \{|x| = |y| = 1\}$$

 ω defined in

$$C = \{P(x, y, z) = P(x^{-1}, y^{-1}, z^{-1}) = 0\}$$

Want to apply Stokes' Theorem again.

$$\frac{(1-x)(1-x^{-1})}{(1-y)(1-y^{-1})} = 1$$

$$C = \{x = y\} \cup \{xy = 1\}$$

$$m((1-x) - (1-y)z) = \frac{1}{4\pi^2} \int_{\gamma} \omega(x,y) + \omega(y,x)$$
$$\omega(x,x) = d\mathcal{L}_3(x)$$
$$= \frac{1}{4\pi^2} 8(\mathcal{L}_3(1) - \mathcal{L}_3(-1)) = \frac{7}{2\pi^2} \zeta(3)$$

Theorem

L. (2005)

 $P(x,y,z) \in \mathbb{Q}[x,y,z]$ irreducible, nonreciprocal,

$$X = \{P(x,y,z) = 0\}, \qquad C = \{\mathrm{Res}_z(P(x,y,z),P(x^{-1},y^{-1},z^{-1})) = 0\}$$

$$x \wedge y \wedge z = \sum_{i} r_{i} x_{i} \wedge (1 - x_{i}) \wedge y_{i}$$
 in $\bigwedge^{3} (\mathbb{C}(X)^{*}) \otimes \mathbb{Q}$,

$$\{x_i\}_2\otimes y_i=\sum_i r_{i,j}\{x_{i,j}\}_2\otimes x_{i,j} \qquad \text{in} \qquad (\mathcal{B}_2(\mathbb{C}(C))\otimes\mathbb{C}(C)^*)_\mathbb{Q}$$

Then

$$4\pi^2(m(P^*)-m(P))=\mathcal{L}_3(\xi)\qquad \xi\in\mathcal{B}_3(\bar{\mathbb{Q}})_{\mathbb{Q}}$$

F field. Bloch group:

$$\mathcal{B}_2(F) := \mathbb{Z}[\mathbb{P}_F^1] / \langle \{0\}, \{\infty\}, R_2(x, y) \rangle$$

$$R_2(x,y) = \{x\}_2 + \{y\}_2 + \{1 - xy\}_2 + \left\{\frac{1 - x}{1 - xy}\right\}_2 + \left\{\frac{1 - y}{1 - xy}\right\}_2$$

is the five-term relation for D.

$$\mathcal{B}_3(F) := \mathbb{Z}[\mathbb{P}_F^1]$$
 "functional equations of $\mathcal{L}_3(x)$ "

F field. Bloch group:

$$\mathcal{B}_2(F) := \mathbb{Z}[\mathbb{P}_F^1] / \langle \{0\}, \{\infty\}, R_2(x, y) \rangle$$

$$R_2(x,y) = \{x\}_2 + \{y\}_2 + \{1 - xy\}_2 + \left\{\frac{1 - x}{1 - xy}\right\}_2 + \left\{\frac{1 - y}{1 - xy}\right\}_2$$

is the five-term relation for D.

$$\mathcal{B}_3(F) := \mathbb{Z}[\mathbb{P}_F^1]$$
 "functional equations of $\mathcal{L}_3(x)$ "

Theorem

L. (2005)

 $P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$X = \{P(x,y,z) = 0\}, \qquad C = \{\mathrm{Res}_z(P(x,y,z),P(x^{-1},y^{-1},z^{-1})) = 0\}$$

$$\{x,y,z\}=0$$
 in $K_3^M(\mathbb{C}(X))\otimes \mathbb{Q}$

$$\{x_i\}_2 \otimes y_i$$
 trivial in $gr_3^{\gamma}K_4(\mathbb{C}(C)) \otimes \mathbb{Q}(?)$

Then

$$4\pi^2(m(P^*)-m(P))=\mathcal{L}_3(\xi)\qquad \xi\in\mathcal{B}_3(\bar{\mathbb{Q}})_{\mathbb{Q}}$$

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

The measures of a family of genus-one curves

$$m(k) := m\left(x + \frac{1}{x} + y + \frac{1}{y} + k\right)$$

Boyd (1998)

$$m(k) \stackrel{?}{=} \frac{\mathrm{L}'(E_k,0)}{s_k} \quad k \in \mathbb{N} \neq 0,4$$

 E_k determined by $x + \frac{1}{x} + y + \frac{1}{y} + k = 0$.

Rogers & L (2007) For |h| < 1, $h \neq 0$,

$$m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(\frac{4}{h^2}\right).$$

Kurokawa & Ochiai (2005)

$$m(4h^2) + m\left(\frac{4}{h^2}\right) = 2m\left(2\left(h + \frac{1}{h}\right)\right).$$

Rogers & L (2007) For |h| < 1, $h \neq 0$,

$$m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(\frac{4}{h^2}\right).$$

Kurokawa & Ochiai (2005)

For $h \in \mathbb{R}^*$,

$$m(4h^2) + m\left(\frac{4}{h^2}\right) = 2m\left(2\left(h + \frac{1}{h}\right)\right).$$

 $h=\frac{1}{\sqrt{2}}$ in both equations, and some K-theory,

Corollary

$$m(8) = 4m(2) = \frac{8}{5}m\left(3\sqrt{2}\right)$$

Rodriguez-Villegas (1997)

$$k = 3\sqrt{2}$$
 (modular curve $X_0(24)$)

$$m(3\sqrt{2}) = m\left(x + \frac{1}{x} + y + \frac{1}{y} + 3\sqrt{2}\right) = qL'(E_{3\sqrt{2}}, 0)$$

$$q \in \mathbb{Q}^*, \quad q \stackrel{?}{=} \frac{5}{2}$$

 $h=\frac{1}{\sqrt{2}}$ in both equations, and some K-theory,

Corollary

$$m(8)=4m(2)=\frac{8}{5}m\left(3\sqrt{2}\right)$$

Rodriguez-Villegas (1997)

$$k = 3\sqrt{2}$$
 (modular curve $X_0(24)$)

$$m(3\sqrt{2}) = m\left(x + \frac{1}{x} + y + \frac{1}{y} + 3\sqrt{2}\right) = qL'(E_{3\sqrt{2}}, 0)$$

$$q\in\mathbb{Q}^*,\quad q\stackrel{?}{=}rac{5}{2}$$

For |k| > 4, $x + \frac{1}{x} + y + \frac{1}{y} + k$ does not intersect \mathbb{T}^2 .

$$m(k) = -\frac{1}{2\pi i} \int_{\gamma} \eta(x, y)$$

where

$$\gamma = X \cap \{|x| = 1\}$$

$$\eta(x, y) = \log |x| \operatorname{di} \arg y - \log |y| \operatorname{di} \arg x$$

We are evaluating the regulator in $\{x,y\} \in K_2(E)_{\mathbb{Q}}$.

Computing the regulator

$$E(\mathbb{C}) \cong \mathbb{C}/\mathbb{Z} + \tau \mathbb{Z} \cong \mathbb{C}^*/q^{\mathbb{Z}}$$

 $z \mod \Lambda = \mathbb{Z} + \tau \mathbb{Z}$ is identified with $e^{2i\pi z}$.

Bloch regulator function

$$R_{\tau}\left(e^{2\pi i(a+b\tau)}\right) = \frac{y_{\tau}^2}{\pi} \sum_{m,n\in\mathbb{Z}}' \frac{e^{2\pi i(bn-am)}}{(m\tau+n)^2(m\bar{\tau}+n)}$$

 y_{τ} is the imaginary part of τ .

Theorem

after results of Beilinson, Bloch, idea of Deninger

 E/\mathbb{R} elliptic curve, x,y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^1$

$$-\int_{\gamma}\eta(x,y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau}\Omega_{0}}R_{\tau}\left(\left(x\right)\diamond\left(y\right)\right)\right)$$

where Ω_0 is the real period and $\Omega = \int_{\gamma} \omega$.

In our case,

$$\mathbb{Z}[E(\mathbb{C})]^- \ni (x) \diamond (y) = 8(P), \qquad P$$
 4-torsion.

Isogenies \rightsquigarrow Functional eq for the regulator.

Functional eq for the regulator \rightsquigarrow Functional eq for the Mahler measure

Big picture

$$\cdots \to (K_3(\bar{\mathbb{Q}}) \supset) K_3(\partial \gamma) \to K_2(X, \partial \gamma) \to K_2(X) \to \cdots$$
$$\partial \gamma = X \cap \mathbb{T}^2$$

• $\eta(x,y)$ is exact, then $\{x,y\} \in K_3(\partial \gamma)$. We have $\partial \gamma \neq \emptyset$ and we use Stokes's Theorem

$$\rightsquigarrow D$$
, $1+x+y$

• $\partial \gamma = \emptyset$, then $\{x,y\} \in K_2(C)$. We have $\eta(x,y)$ is not exact. \rightsquigarrow L-function, $1 + x + \frac{1}{x} + y + \frac{1}{y}$

Big picture in three variables

$$\cdots \to K_4(\partial\Gamma) \to K_3(X,\partial\Gamma) \to K_3(X) \to \cdots$$
$$\partial\Gamma = X \cap \mathbb{T}^3$$

$$\cdots \to (K_5(\bar{\mathbb{Q}}) \supset) K_5(\partial \gamma) \to K_4(C, \partial \gamma) \to K_4(C) \to \cdots$$
$$\partial \gamma = C \cap \mathbb{T}^2$$

