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-
Mahler measure of one-variable polynomials

Pierce (1918) P € Z[x] monic,

P(x) =[] (x — o)

A, = H(a7 —1)

Px)=x—-2=A,=2"-1
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Lehmer (1933)

>

n+1

A Jar = 1]

la™ — 1] la if o] > 1
1 iflal <1
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Lehmer (1933)
An-i—l

Ap

A Jar = 1]

o™t —1] [ ]a| if|a] >1
L1 iflel <1

For
P(x)=a H(x — )
M(P) = |a| Hmax{l, ||}

m(P) = log M(P) = log|a| + » _log™ |av|

1
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E—
Kronecker's Lemma

PeZlx], P#0,

m(P) =0 P(x) =x" ] ¢i(x)
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|
Lehmer's Question

m(x?0 +x% —x" = x5 —x® —x* —x3 4 x+1)
= 0.162357612...
Lehmer(1933) Does there exist C > 0 such that P(x) € Z[x]

m(P)=0 or m(P)> C??

V/Ds7e = 1,794,327, 140, 357
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-
Mahler measure of multivariable polynomials

P c C[x, ..., xF], the (logarithmic) Mahler measure is :

1 1
m(P) = /0 /0 log |P(eZ™1 . e2™0)|dp; ... d6,
1

dxq dx,
= | log |P(xa, - xa)| 2
G 0B PG ) S

2
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-
Mahler measure of multivariable polynomials

P c C[x, ..., xF], the (logarithmic) Mahler measure is :

1 1
m(P) = /0 /O log |P(eZ™1 . e2™0)|dp; ... d6,
1

dxq dx,
= | log |P(xa, - xa)| 2
G 0B PG ) S

Jensen’s formula:

1
/ log |29 — a|df = log™ |a]
0

recovers one-variable case.

2
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|
Properties

e m(P) > 0 if P has integral coefficients.

e m(P-Q)=m(P)+ m(Q)

@ « algebraic number, and P, minimal polynomial over Q,
m(Po) = [Q(e) : Q] h()

where h is the logarithmic Weil height.
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-
Boyd & Lawton Theorem

P e Clxi,...,xn]

lim ... lim m(P(x,x* ... x*)) = m(P(x1,x2,...,xn))

kp—o0 kn—00
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Jensen’s formula — simple expression in one-variable case.

Several-variable case?

2
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|
Examples in several variables

Smyth (1981)

3v3
m(l + X +y) = ?L(X_& 2) = LI(X_3, —1)
° 7
00 () 1 n=1mod3
L(x_3,s) = Z X_,?s x-3(n) =< —1 n=—-1mod3
n=1 0 n=0mod3
((s) = Z P
n=1
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More examples in several variables

e Condon (2003)

wm (- (155) a+n) = 560

e D'Andrea & L. (2007)

™m (Rese(x + yt + 2,z + wt + t2))

=m’m(z(1 - xy)? = (1-x)(1—y)) = 4v/5L(xs, 3)
e Boyd & L. (2005)

mm(x®> + 1+ (x + 1)y + (x — 1)z) = 7L(x-4,2) + a§(3)
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o L. (2006)

1—
wm <1 + x4+ (1 +2> (1 -I—y)z) = 24L(x—4,4)

wtm (1 +x+ (i ;2) G ;Z) (1+Y)Z) =93¢(5)

@ Known formulas for

1—x 1—x
n+2 1 1 n 1
7 m( +X+(1—|-X1)'”(1—|-x,,)( -I-y)z)
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Why do we get nice numbers?

Sor,

'-‘
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-
Polylogarithms

The kth polylogarithm is
[e.9] Xn
Li = — C 1
1k(X) Z nk x e, |X‘ <

n=1

It has an analytic continuation to C\ [1, c0).

Matilde N. Lalin (U of A) Mahler measure and regulators March 20, 2008 14 /37



-
Polylogarithms

The kth polylogarithm is

X  on
Lig(x) == Z % xeC, |x/<1
n=1

It has an analytic continuation to C\ [1, c0).
Zagier:
k—

L (x) = Rex Z |°g|X|)JL1k (%)

B; is jth Bernoulli number
Rex = Re or Im if k is odd or even.
One-valued, real analytic in P1(C) \ {0,1, 0o}, continuous in P1(C).
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L satisfies lots of functional equations

£ () =D LR = ()

x
Bloch-Wigner dilogarithm (k = 2)

D(x) := Im(Lip(x)) + arg(1 — x) log ||

Five-term relation

D(x)+D(1—xy)+D(y)+D<1_};>—i—D(l_X):O

1—x 1—xy

Ly
B ‘
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Philosophy of Beilinson’s conjectures

Global information from local information through L-functions

@ Arithmetic-geometric object X (for instance, X = O, F a number
field)

o L-function (Lr = (F)
o Finitely-generated abelian group K (K = O%)
o Regulator map reg : K — R (reg = log| - |)

(Krank1)  L(0) ~o- reg(c)

(Dirichlet class number formula, for F real quadratic,
Cr(0) ~q- loglel, € € OF)
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-
An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : P(x,y) € Cl[x, y]

m(P) = m(P) ~ 5= [ n(x.y)

5

n(x,y) = log|x|dargy — log |y|d arg x
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-
An algebraic integration for Mahler measure

Deninger (1997): General framework

Rodriguez-Villegas (1997) : P(x,y) € Cl[x, y]

m(P) = m(P) ~ 5= [ n(x.y)

5

n(x,y) = log|x|dargy — log |y|d arg x

n(x,1 —x) = dD(x) dn(x,y) = Im (d7x A d7y>
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E—
The three-variable case

P(X,y,Z):(l—X)—(l—y)Z X:{P(X,y,Z)ZO}
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E—
The three-variable case

P(X,y,Z):(].—X)—(l—y)Z X:{P(X,y,Z)ZO}

1—x
1-y

dxdy dz

Xy z

zZ —

1
m(P):m(l—y)—i-W/wbg
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E—
The three-variable case

P(X,y,Z):(].—X)—(l—y)Z X:{P(X,y,Z)ZO}

1 1—x|dxdydz
P)=m1l-y)+——— | log|z— Xdyez
m(P) = m( y)+(27ri)3/1~3 8|2 l-y| x y z
1 / ot |17 x| dxdy
—(27i)2 Jpe & 1—y| x y

——L/Io |zd—Xd—y
T Ry

F=Xn{lx|=lyl=11]z| > 1}
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E—
The three-variable case

P(X,y,Z):(].—X)—(l—y)Z X:{P(X,y,Z)ZO}

1 1—x|dxdydz
P)=m1l-y)+——— | log|z— Xdyez
m(P) = m( y)+(27ri)3/1~3 &% l-y| x y z
1 / ot |17 x| dxdy
—(27i)2 Jpe & 1—y| x y

——L/Io |zd—Xd—y
T Ry

F=Xn{lx|=lyl=11]z| > 1}

1
= _W/rn(xayaz)
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1
n(x,y,z) = log|x| (gdlog ly| Adlog|z| —dargy A dargz)
1
+ log |y (§d log |z| Adlog|x| —dargz A dargx)
1
+ log |z| (gd log |x| Adlog|y| —dargx A dargy)

d d d
dn(x,y,z) = Re (—X AL _z)
x y z
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77(X7 1 - X7y) = dw(x,y)
where
w(x,y) = =D(x)dargy

1
+§ log |y|(log |1 — x|d log |x| — log |x|d log |1 — x|)
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77(X71 _X7y) = de(X,y)

where
w(x,y) = =D(x)dargy
1
+§ log |y|(log |1 — x|d log |x| — log |x|d log |1 — x|)
S 1—x
-1,
n(x,y,z) = —n(x,1—=x,y) —n(y,1 -y, x)

m(P) = ooy [le1-xy) 41y = s [ wlxy)+etr)
()2 Jp 1T TTI E0 = p o YT
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w(x, x) = dL3(x)
F=Xn{lxl=lyl=1lz[ > 1}
Maillot: if P € R[x, y, z],

Or =7 ={P(x,y,2) = P(x "y~ z7") = 0} N {|x| = ly| = 1}
w defined in
C={P(x.y.2) = P(x",y ", z7") = 0}

Want to apply Stokes’ Theorem again.
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Matilde N. Lalin

(U of A)

(1—x)(1- x_l)
(1-y)Q-y1)

Mahler measure and regulators

=1

C={x=ytu{xy =1}

Ly
H

®

DAy
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(1) = (L= 9)2) = 45 [ wlxy) +r:%)

w(x, x) = dL3(x)

- #8@3(1) — L3(-1)) = %4(3)
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The three-variable case

Theorem
L. (2005)
P(x,y,z) € Q[x,y, z] irreducible, nonreciprocal,

X={P(x,y,z) =0},  C={Res;(P(x,y,2),P(x ",y 1,z ) =0}

3
X/\y/\ZZZriXi/\(l_Xi)/\Yi in /\(C(X)*)®Q7

{Xibo @y = Z rijixijl2@xi;j in (B2C(C)) @ C(C)")g
J
Then _
am*(m(P*) — m(P)) = L3(¢) €€ B3(Q)g

v
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F field. Bloch group:

Ba(F) := Z[PE]/ ({0}, {oo}, Ra(x, ¥))

Raleoy) = (b2 + (ha 4 {1 =92+ { 1= }j{ = }2

1—xy 1—xy

is the five-term relation for D.
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F field. Bloch group:

Ba(F) := Z[PE]/ ({0}, {oo}, Ra(x, ¥))

Raleoy) = (b2 + (ha 4 {1 =92+ { 1= }j{ = }2

1—xy 1—xy

is the five-term relation for D.

Bs(F) := Z[P}]/ “functional equations of L3(x)"
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The three-variable case

Theorem
L. (2005)
P(x,y,z) € Q|[x, y, z] irreducible, nonreciprocal,

X={P(x,y,z) =0},  C={Res;(P(x,y,2),P(x ",y ",z "))

{x,y,z} =0 in KJ(C(X))2Q
{xit2®y;i trivialin  gr] Ka(C(C)) @ Q(?)

Then _
am*(m(P*) — m(P)) = L3(¢) ¢ € B3(Q)g

=0}

v
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e Explains all the known cases involving ¢(3) (by Borel's Theorem).
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e Explains all the known cases involving ¢(3) (by Borel's Theorem).

@ It is constructive (no need of “happy idea” integrals).
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e Explains all the known cases involving ¢(3) (by Borel's Theorem).
@ It is constructive (no need of “happy idea” integrals).

@ Integration sets hard to describe.
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Explains all the known cases involving ((3) (by Borel's Theorem).
It is constructive (no need of “happy idea” integrals).
Integration sets hard to describe.

Conjecture for n-variables using Goncharov's regulator currents.
Provides motivation for Goncharov's construction.
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-
The measures of a family of genus-one curves

1 1
m(k) ::m(x—i—;—i—y—i—}—/—i—k)
Boyd (1998) (E0)
? ks

keN#£0,4
Sk

m (k)

Ey determined byx+)—1<+y+}l,+k:0.
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Rogers & L (2007)
For |h| <1, h#0,

oo D) eoe ) (3)
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Rogers & L (2007)
For |h| <1, h#0,

oo D) eoe ) (3)

Kurokawa & Ochiai (2005)

For h € R*,
m(4h*) + m (hi) =2m (2 (h+ %)) .
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h= % in both equations, and some K-theory,

Corollary

m(8) = 4m(2) — gm (3v2)
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h= % in both equations, and some K-theory,

Corollary

m(8) = 4m(2) — gm (3v2)

Rodriguez-Villegas (1997)

k = 3v/2 (modular curve Xo(24))
m(3\/§>:m X+l+y+l+3\/§ :qLI(E 0)
. y 3v2

2 5
€ Q*, = —
qeQ, g > 4

wor,,
!ssg!f
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For |k| > 4, x + % +y+ }l/ + k does not intersect T2.

m(k) =~ [ ntx.y)

where
v =Xn{x =1}

n(x,y) = log|x|diargy — log |y|diarg x
We are evaluating the regulator in {x,y} € Kz2(E)qg.
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Computing the regulator

E(C)~C/Z +1Z = C*/q"

zmod A = Z + 77 is identified with e
Bloch regulator function

R. <e27ri(a+b7')) _ Y_E z/:
m

m,n€Z

e27ri(bn—am)

(mT + n)2(mT + n)

vr is the imaginary part of 7.
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Theorem

after results of Beilinson, Bloch, idea of Deninger

E/R elliptic curve, x,y are non-constant functions in C(E) with trivial
tame symbols, w € Q!

- [ten=tm (%R ()0 0)

where g is the real period and €2 = f7 w.
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In our case,

ZIE(C)]” 3 (x)o(y) =8(P), P 4-torsion.

Isogenies ~~ Functional eq for the regulator.

Functional eq for the regulator ~~ Functional eq for the Mahler measure

awvor,

g ‘,
Wy

Matilde N. Lalin (U of A) Mahler measure and regulators March 20, 2008 34 /37



-
Big picture

= (K3(Q) D)K3(97) — Ka(X,97) — Ka(X) — ...
dy = XNT?
e 7(x,y) is exact, then {x,y} € K3(9v). We have 0v # 0 and we use
Stokes's Theorem.

~D 1+x+y

e Jv =10, then {x,y} € K»(C). We have 7(x, y) is not exact.
~» L-function, 1+ x+ % +y + )l/
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-
Big picture in three variables

c— Ky (OT) — K3(X,0IN) — K3(X) — ...
or=xnt?

<= (K5(Q) D)Ks(0y) — Ka(C,07) — Ky(C) — ...
oy =CNT?
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Regulator

Beilinson’s conjectures

# Oy,

AN
A a
Mahler measure -«—>»

7

Hyperbolic manifolds

s
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