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1. Mahler Measure

Definition 1 Given a polynomial P (x) = adx
d + ad−1x

d−1 + . . . + a0 = ad
∏d

n=1(x − αn)
with complex coefficients, define the Mahler measure of P as

M(P ) := |ad|
d∏

n=1

max{1, |αn|} (1)

For P ∈ C[x1, . . . , xn], the (logarithmic) Mahler measure is defined by

m(P ) :=

∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . .dθn (2)

=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn
(3)

It is possible to prove that this integral is not singular and that m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α|dθ = log+ |α|1 (4)

we have
m(P ) = log M(P ) (5)

in the one variable case. We use this equality to define M(P ) for polynomials in several
variables.

Proposition 2 For P, Q ∈ C[x1, . . . , xn]

m(P · Q) = m(P ) + m(Q) (6)

Proposition 3 Let P ∈ C[x1, . . . , xn] such that am1,...,mn is the coefficient of xm1

1 . . . xmn
n

and P has degree di in xi. Then

| am1,...,mn | ≤
(

d1

m1

)

. . .

(
dn

mn

)

M(P ) (7)

M(P ) ≤ L(P ) ≤ 2d1+...+dnM(P ) (8)

where L(P ) is the length of the polynomial, the sum of the absolute values of the coefficients.

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Let us see some examples

1log+
x = log max{1, x} for x ∈ R≥0
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Examples 4

• By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then m(P ) = 0 if and only if P is the
product of powers of x and cyclotomic polynomials.

• Lehmer:

m(x10 +x9 −x7 −x6 −x5 −x4 −x3 +x+1) = log(1.176280818 . . .) = 0.162357612 . . .

So far, no one has been able to find a polynomial with integral coefficients whose
logarithmic Mahler measure is greater than zero and smaller than the Mahler measure
of this example found by Lehmer in the 30’s.

The following questions are still open: Is there a lower bound for the Mahler mea-
sure of polynomials in one variable with integral coefficients? Does this degree 10
polynomial reach the lower bound?

• Smyth:

m(x + y + 1) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (9)

where

L(χ−3, s) =
∞∑

n=1

χ−3(n)

ns
and χ−3(n) =







1 if n ≡ 1 mod 3
−1 if n ≡ −1 mod 3

0 if n ≡ 0 mod 3

• Smyth:

m(x + y + z + 1) =
7

2π2
ζ(3) (10)

Let us also mention the following result:

Theorem 5 For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . xkn)) = m(P (x1, . . . xn)) (11)

In particular Lehmer’s problem in several variables reduces to the one variable case.

2. Dilogarithm

Definition 6 The Dilogarithm is the function defined by the power series

Li2(x) :=
∞∑

n=1

xn

n2
x ∈ C, |x| < 1 (12)

This function can be continued analytically to C \ (1,∞) via the integral

Li2(x) := −
∫ x

0
log(1 − t)

dt

t
= −

∫ 1

0

∫ t

0

ds

s − 1
x

dt

t

The dilogarithm has a jump of 2πi log |x| when it crosses the line in (1,∞). We consider
the following modified version:

2



Definition 7 The Bloch – Wigner Dilogarithm is defined by

D(x) := Im(Li2(x)) + arg(1 − x) log |x| (13)

This function turns out to be real analytic in C \ {0, 1} and continuous in C. Besides,

D(x) = −D(x̄) (⇒ D(x) = 0 for x ∈ R) (14)

It satisfies lots of functional equations, but they all turn out to be formal consequences of
the following five-term relation:

D(x) + D(1 − xy) + D(y) + D

(
1 − y

1 − xy

)

+ D

(
1 − x

1 − xy

)

= 0 (15)

In the limit cases (taking y = 0 and y = x−1), this equation gives the following useful
consequences:

D(z) = D

(

1 − 1

z

)

= D

(
1

1 − z

)

= −D

(
1

z

)

= −D

(
z

z − 1

)

= −D(1 − z) (16)

The Dilogarithm appears as the Mahler measure of certain polynomials in two variables.
Perhaps the simplest example is Maillot’s:

πm(ax + by + c) =







D
(∣
∣a
b

∣
∣ eiγ

)
+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not 4
(17)

Here 4 stands for the fact of whether |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
respectively.

3. Polylogarithms

In analogy with the dilogarithm, we have the polylogarithms

Definition 8 Multiple polylogarithms are defined as the power series

Lik1,...,km
(x1, . . . , xm) :=

∑

0<n1<n2<...<nm

xn1

1 xn2

2 . . . xnm
m

nk1

1 nk2

2 . . . nkm
m

(18)

which are convergent for |xi| < 1. The weight of a polylogarithm function is the number
w = k1 + . . . + km and its length is the number m.

Definition 9 Hyperlogarithms are defined as the iterated integrals

Ik1,...,km
(a1 : . . . : am : am+1) :=

∫ am+1

0

dt

t − a1
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k1

◦ dt

t − a2
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

k2

◦ . . . ◦ dt

t − am
◦ dt

t
◦ . . . ◦ dt

t
︸ ︷︷ ︸

km

where ki are integers, ai are complex numbers, and

∫ bl+1

0

dt

t − b1
◦ . . . ◦ dt

t − bl
=

∫

0≤t1≤...≤tl≤bl+1

dt1
t1 − b1

. . .
dtl

tl − bl
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The value of the integral above only depends on the homotopy class of the path con-
necting 0 and am+1 on C \ {a1, . . . , am}.

It is easy to see that,

Ik1,...,km
(a1 : . . . : am : am+1) = (−1)mLik1,...,km

(
a2

a1
,
a3

a2
, . . . ,

am

am−1
,
am+1

am

)

Lik1,...,km
(x1, . . . , xm) = (−1)mIk1,...,km

(
1

x1, . . . , xm
: . . . :

1

xm
: 1

)

which gives an analytic continuation to multiple polylogarithms.

4. Examples of higher weight

We have obtained examples of polynomials in several variables whose Mahler measures
depend on polylogarithms. The first column of the table shows the polynomials. Here α is
a complex number different from zero. The second column indicates the values of the first
column for the case α = 1.

πm((1 + y) + α(1 − y)x) 2L(χ−4, 2)

π2m((1 + w)(1 + y) + α(1 − w)(1 − y)x) 7ζ(3)

π3m((1 + v)(1 + w)(1 + y) + α(1 − v)(1 − w)(1 − y)x) 7πζ(3) + 4
∑

0≤j<k
(−1)j

(2j+1)2k2

π2m((1 + x) + α(y + z)) 7
2ζ(3)

π3m((1 + w)(1 + x) + α(1 − w)(y + z)) 2π2L(χ−4, 2) + 8
∑

0≤j<k
(−1)j+k+1

(2j+1)3k

π4m((1 + v)(1 + w)(1 + x) + α(1 − v)(1 − w)(y + z)) 7π2ζ(3) + 8
∑

0≤j<k
1

(2j+1)3k2

π2m((1 + w)(1 + y) + (1 − w)(x − y)) 7
2ζ(3) + π2

2 log 2

Here χ−4 is the real odd character of conductor 4, i.e.

χ−4(n) =







1 if n ≡ 1 mod 4
−1 if n ≡ −1 mod 4

0 otherwise

Let us observe that all the presented formulae share a common feature. If we assign
weight 1 to any Mahler measure and to π, then all the formulae are homogeneous, meaning
all the monomials have the same weight, and this weight is equal to the number of variables
of the corresponding polynomial.

The idea behind those computations is the following.

1. Let Pα ∈ C[x1, . . . , xn] whose coefficients depend on a parameter α ∈ C. For instance,
start with Pα(x) = 1 + αx, whose Mahler measure is log+ |α|.

2. We replace α by α1−y
1+y and obtain a polynomial P̃α ∈ C[x1, . . . , xn, y]. In the example,

P̃α(x, y) = 1 + y + α(1 − y)x.
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3. The Mahler measure of the second polynomial is a certain integral of the Mahler
measure of the first polynomial.

m(P̃α) =
1

2πi

∫

T1

m
(

Pα 1−y

1+y

) dy

y

4. If the Mahler measure depends only on the absolute value of |α|, we can make a

change of variables u =
∣
∣
∣α

1−y
1+y

∣
∣
∣ (to be precise, first write y = eiθ and then make

u = |α| tan
(

θ
2

)
).We obtain,

m(P̃α) =
2

π

∫ ∞

0
m (Pu)

|α|du

u2 + |α|2 =
i

π

∫ ∞

0
m (Pu)

(
1

u + i|α| −
1

u − i|α|

)

du

In the example,

m(1 + y + α(1 − y)x) =
i

π

∫ ∞

0
log+ u

(
1

u + i|α| −
1

u − i|α|

)

du

=
i

π

∫ 1

0

∫ 1

s

dt

t

(

1

s + i
|α|

− 1

s − i
|α|

)

ds

=
i

π

(

I2

(

− i

|α| : 1

)

− I2

(
i

|α| : 1

))

= − i

π
(Li2(i|α|) − Li2(−i|α|))

5. Newton Polytope

Definition 10 Given P ∈ C[x1, . . . , xn, x−1
1 , . . . , x−1

n ], write

P (x) =
∑

m∈ J

amxm

where J ⊂ Zn is a finite set, xm = xm1

1 . . . xmn
n and am 6= 0 for m ∈ J . We define the

Newton polytope to be
∆(P ) = convex hull (J) (19)

A face τ < ∆ is a subset of the form ∆ ∩ H where H is a hyperplane H in Rn, such
that ∆ ⊂ H+ or H−. A facet is a face of dimension one less than the dimension of ∆.

Definition 11 Let τ = ∆ ∩ H a face of the Newton polytope, then

Pτ (x) =
∑

m∈ J∩H

amxm (20)

Proposition 12

m(P ) ≥ m(Pτ ) (21)

We will need the following
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Definition 13 We say that P ∈ C[x, y, x−1, y−1] is tempered if the roots of Pτ are roots
of the unity (for τ facets of ∆) . If the Pτ have integral coefficients, this is equivalent to
ask that m(Pτ ) = 0 by Kronecker’s Lemma.

6. Regulator

Given a smooth projective curve C and x, y rational functions (x, y ∈ C(C)), define

η(x, y) = log |x|d arg(y) − log |y|d arg(x) (22)

Here

d arg x = Im

(
dx

x

)

(23)

is well defined in C in spite of the fact that arg is not. η is a 1-form in C \ S, where S is
the set of zeros and poles of x and y. It is also closed, because of

dη = Im

(
dx

x
∧ dy

y

)

= 0

Let P ∈ C[x, y]. Write

P (x, y) = ad(x)yd + . . . + a0(x)

P (x, y) = ad(x)
d∏

n=1

(y − αn(x))

Then by Jensen’s formula,

m(P ) = m(ad) +
1

2πi

d∑

n=1

∫

T1

log+ |αn(x)|dx

x
= m(ad) −

1

2π

∫

γ
η(x, y) (24)

Here γ is the union of paths in C = {P (x, y) = 0} where |x| = 1 and |y| ≥ 1. Also note
that ∂γ = {(x, y) ∈ C2 | |x| = |y| = 1, P (x, y) = 0}

We want to arrive to one of these two situations:

1. η is exact, and ∂γ 6= 0. In this case we can integrate using Stokes Theorem.

2. η is not exact and ∂γ = 0. In this case we can compute the integral by using Residue’s
Theorem.

We will associate η with an element in H1(C \ S, R) in the following way. Given
[γ] ∈ H1(C \ S, Z),

[γ] →
∫

γ
η (25)

(we identify H1(C \ S, R) with H1(C \ S, Z)′).
Given s ∈ C, it induces a valuation in C(C): for f ∈ C(C), vs(f) is the order of f at s.

We have the following,

6



Proposition 14 For s ∈ C ∮

s
η(x, y) = log |(x, y)s| (26)

where

(x, y)s = (−1)vs(x)vs(y) xvs(y)

yvs(x)

∣
∣
∣
∣
∣
s

(27)

is the tame symbol.

Corollary 15 η extends to all of C if and only if |(x, y)s| = 1 for every s. In particular,
if (x, y)s ∈ µ∞, then η extends to all of C.

We have the following,

Theorem 16 For C = P1,
η(t, 1 − t) = dD(t) (28)

Using x : C −→ P1, we can extend the above result to any C.
We can put all of these together:

Theorem 17 The function

η : Q(C)∗ × Q(C)∗ −→ H1(C, R)

satisfies the following properties

1. η(x, y) = −η(y, x)

2. η(x1x2, y) = η(x1, y) + η(x2, y)

3. η(x, 1 − x) = 0

then, it is a symbol, and can be factored through K2(Q(C)).

If we want η(x, y) to be an exact form, it has to be trivial in H1(C, R). One way
to guarantee this, is that {x, y} is trivial in K2(Q(C)) ⊗ Q. Since the tame symbols are
morphisms on K2(Q(C)), we need them to be torsion elements, so they have to be roots of
the unit. This condition is easy to verify in practise according to the following:

Theorem 18 (x, y)s ∈ µ∞ if and only if P is tempered.

In general, if

x ∧ y =
∑

j

rjzj ∧ (1 − zj)

in
∧2(Q(C)∗) ⊗ Q, then

η(x, y) = d




∑

j

rjD(zj)



 = dD




∑

j

rj [zj ]




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We have γ ⊂ C such that

∂γ =
∑

k

εk[wk] εk = ±1

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Then

2πm(P ) = D(ξ) for ξ =
∑

k

∑

j

rj [zj(wk)]

In order to interpret Smyth’s case, take P (x, y) = x + y − 1. Writing x = e2πiθ, the
path of integration becomes

γ(θ) = 1 − e2πiθ, θ ∈ [1/6 ; 5/6] ⇒ ∂γ = [ξ6] − [ξ̄6]

2πm(x + y − 1) = D(ξ6) − D(ξ̄6)

The following Theorem helps relating the Mahler measure to special values of zeta
functions.

Theorem 19 (Borel, Suslim, etc) Let F be a number field, r2 = 1, and

ξ =
∑

j

nj [aj ] aj ∈ F \ {0, 1}

If
∑

j

njaj ∧ (1 − aj) = 0 in
∧

2(F ∗) ⊗ Q

Then,

D(σ(ξ)) ∼Q∗

|∆F |3/2

π2(n−1)
ζF (2) (29)

where σ is any of the two complex embeddings.

If ξ comes from the Mahler measure, the condition is satisfied if and only if

x(wk) ∧ y(wk) = 0

7. Hyperbolic Geometry

Consider the space H3 which can be represented as C × R≥0 ∪ {∞}. In this space the
geodesics are either vertical lines or semicircles in vertical planes with endpoints in C×{0}.

An ideal tetrahedron is a tetrahedron whose vertices are all in C × {0} ∪ {∞} = P1(C).
Such a tetrahedron ∆ with vertices z0, z1, z2, z3 has a hyperbolic volume equal to

Vol(∆) = D((z0 : z1 : z2 : z3)) (30)

Where (z0 : z1 : z2 : z3) = z0−z2

z0−z3

z1−z3

z1−z2
is the cross ratio. The invariance of the formula by

the action of PSL2(C) is in agreement with the fact that this is the group of isometries
(preserving orientation) of H3.
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These ideal tetrahedra are important because any completed oriented 3-manifold with
finite volume can be decomposed in ideal tetrahedra. In such a decomposition, the param-
eters zi of the ideal tetrahedra (∞, 0, 1, zi) are constrained to the following condition:

n∑

i=1

zi ∧ (1 − zi) = 0 (31)

These decompositions provide more identities of the dilogarithm.
More generally, if P is the A-polynomial of a compact, oriented, hyperbolic 3-manifold

with one cusp, then

x ∧ y =
n∑

i=1

zi ∧ (1 − zi) ⇒ η(x, y) = dVol (32)

The A-polynomial can be deduced from the gluing equations without imposing the com-
pleting equations. The completing equations will impose the condition x = y = 1 and we
will recover formula (31).
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