## Functional equations for Mahler measures of genus-one curves

(joint with Mat Rogers) Matilde N. Lalín

University of Bristish Columbia and Pacific Institute for the Mathematical Sciences
mlalin@math.ubc.ca
http://www.math.ubc.ca/~mlalin
April 16th, 2007

## Mahler measure for one-variable polynomials

Pierce (1918): $P \in \mathbb{Z}[x]$ monic,

$$
\begin{gathered}
P(x)=\prod_{i}\left(x-\alpha_{i}\right) \\
\Delta_{n}=\prod_{i}\left(\alpha_{i}^{n}-1\right) \\
P(x)=x-2 \Rightarrow \Delta_{n}=2^{n}-1
\end{gathered}
$$

Lehmer (1933):

$$
\begin{gathered}
\frac{\Delta_{n+1}}{\Delta_{n}} \\
\lim _{n \rightarrow \infty} \frac{\left|\alpha^{n+1}-1\right|}{\left|\alpha^{n}-1\right|}=\left\{\begin{array}{cc}
|\alpha| & \text { if }|\alpha|>1 \\
1 & \text { if }|\alpha|<1
\end{array}\right.
\end{gathered}
$$

For

$$
\begin{gathered}
P(x)=a \prod_{i}\left(x-\alpha_{i}\right) \\
M(P)=|a| \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\} \\
m(P)=\log M(P)=\log |a|+\sum_{i} \log ^{+}\left|\alpha_{i}\right|
\end{gathered}
$$

## Kronecker's Lemma

$P \in \mathbb{Z}[x], P \neq 0$,

$$
m(P)=0 \Leftrightarrow P(x)=x^{k} \prod \Phi_{n_{i}}(x)
$$

## Lehmer's question

Lehmer (1933)

$$
m\left(x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1\right)
$$

$=\log (1.176280818 \ldots)=0.162357612 \ldots$

$$
\sqrt{\Delta_{379}}=1,794,327,140,357
$$

Does there exist $\quad C>0, \quad$ for all $\quad P(x) \in \mathbb{Z}[x]$

$$
m(P)=0 \quad \text { or } \quad m(P)>C ? ?
$$

Is the above polynomial the best possible?

- Dobrowolski (1979): $P$ monic, irreducible, noncyclotomic, of degree $d$

$$
M(P)>1+c\left(\frac{\log \log d}{\log d}\right)^{3}
$$

- Breusch (1951): P monic, irreducible, nonreciprocal,

$$
M(P)>1.324717 \ldots=\text { real root of } x^{3}-x-1
$$

(rediscovered by Smyth (1971))

- Bombieri \& Vaaler (1983): $M(P)<2$, then $P$ divides a $Q \in \mathbb{Z}[x]$ whose coefficients belong to $\{-1,0,1\}$.


## Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}}
\end{aligned}
$$

Jensen's formula:

$$
\int_{0}^{1} \log \left|\mathrm{e}^{2 \pi \mathrm{i} \theta}-\alpha\right| \mathrm{d} \theta=\log ^{+}|\alpha|
$$

recovers one-variable case.

## Properties

- $m(P) \geq 0$ if $P$ has integral coefficients.
- $m(P \cdot Q)=m(P)+m(Q)$
- $\alpha$ algebraic number, and $P_{\alpha}$ minimal polynomial over $\mathbb{Q}$,

$$
m\left(P_{\alpha}\right)=[\mathbb{Q}(\alpha): \mathbb{Q}] h(\alpha)
$$

where $h$ is the logarithmic Weil height.

## Boyd \& Lawton Theorem

$P \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
$\lim _{k_{2} \rightarrow \infty} \ldots \lim _{k_{n} \rightarrow \infty} m\left(P\left(x, x^{k_{2}}, \ldots, x^{k_{n}}\right)\right)=m\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$

Jensen's formula $\longrightarrow$ simple expression in one-variable case.

Several-variable case?

## Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

## Examples in three variables

- Condon (2003):

$$
\pi^{2} m\left(z-\left(\frac{1-x}{1+x}\right)(1+y)\right)=\frac{28}{5} \zeta(3)
$$

- D'Andrea \& L. (2003):

$$
\pi^{2} m\left(z(1-x y)^{2}-(1-x)(1-y)\right)=\frac{4 \sqrt{5} \zeta_{\mathbb{Q}(\sqrt{5})}(3)}{\zeta(3)}
$$

- Boyd \& L. (2005):

$$
\pi^{2} m\left(x^{2}+1+(x+1) y+(x-1) z\right)=\pi \mathrm{L}\left(\chi_{-4}, 2\right)+\frac{21}{8} \zeta(3)
$$

## Examples with more than three variables

L. (2003):

$$
\begin{gathered}
\pi^{3} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)(1+y) z\right)=24 \mathrm{~L}\left(\chi_{-4}, 4\right) \\
\pi^{4} m\left(1+x+\left(\frac{1-x_{1}}{1+x_{1}}\right)\left(\frac{1-x_{2}}{1+x_{2}}\right)(1+y) z\right)=93 \zeta(5) \\
\pi^{4} m\left(1+\left(\frac{1-x_{1}}{1+x_{1}}\right) \ldots\left(\frac{1-x_{4}}{1+x_{4}}\right) z\right)=62 \zeta(5)+\frac{14}{3} \pi^{2} \zeta(3)
\end{gathered}
$$

Known fromulas for $n$.

## The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

$E_{k}$ determined by $x+\frac{1}{x}+y+\frac{1}{y}+k=0$.

Rodriguez-Villegas (1997)
$k=4 \sqrt{2}$ (CM case)

$$
m(4 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+4 \sqrt{2}\right)=\mathrm{L}^{\prime}\left(E_{4 \sqrt{2}}, 0\right)
$$

(By Bloch)
$k=3 \sqrt{2}\left(\right.$ modular curve $\left.X_{0}(24)\right)$

$$
\begin{gathered}
m(3 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+3 \sqrt{2}\right)=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right) \\
q \in \mathbb{Q}^{*}, \quad q \stackrel{?}{=} \frac{5}{2}
\end{gathered}
$$

(By Beilinson)
L. \& Rogers (2006)

For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

Kurokawa \& Ochiai (2005)
For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

$h=\frac{1}{\sqrt{2}}$ in both equations, and using $K$-theory,
Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})=4 \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right)
$$

## The elliptic regulator

$F$ field. Matsumoto Theorem:

$$
K_{2}(F)=\langle\{a, b\}, a, b \in F\rangle /\langle\text { bilinear, }\{a, 1-a\}\rangle
$$

$K_{2}(E) \otimes \mathbb{Q}$ subgroup of $K_{2}(\mathbb{Q}(E)) \otimes \mathbb{Q}$ determined by kernels of tame symbols.
$x, y \in \mathbb{Q}(E)$, assume trivial tame symbols.
The regulator map (Beilinson, Bloch):

$$
r: K_{2}(E) \otimes \mathbb{Q} \rightarrow H^{1}(E, \mathbb{R}(1))
$$

$\omega \in H^{0}\left(E, \Omega^{1}\right)$,

$$
\begin{aligned}
& <r(\{x, y\}), \omega>=\frac{1}{2 \pi \mathrm{i}} \int_{E(\mathbb{C})} \eta(x, y) \wedge \omega \\
& \eta(x, y):=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
\end{aligned}
$$

$$
\eta(x, y):=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
$$

$\eta(x, 1-x)=\mathrm{d} D(x)$,

$$
D(x)=\operatorname{Im}\left(\operatorname{Li}_{2}(x)\right)+\arg (1-x) \log |x|
$$

Bloch-Wigner dilogarithm.
Need integrality conditions.

## Computing the regulator

$$
E(\mathbb{C}) \cong \mathbb{C} / \mathbb{Z}+\tau \mathbb{Z} \cong \mathbb{C}^{*} / q^{\mathbb{Z}}
$$

$z \bmod \Lambda=\mathbb{Z}+\tau \mathbb{Z}$ is identified with $\mathrm{e}^{2 i \pi z}$.
Kronecker-Eisenstein series

$$
R_{\tau}\left(\mathrm{e}^{2 \pi \mathrm{i}(a+b \tau)}\right)=\frac{y_{\tau}^{2}}{\pi} \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{\mathrm{e}^{2 \pi \mathrm{i}(b n-a m)}}{(m \tau+n)^{2}(m \bar{\tau}+n)}
$$

$y_{\tau}$ is the imaginary part of $\tau$.
Elliptic dilogarithm

$$
D_{\tau}(z):=\sum_{n \in \mathbb{Z}} D\left(z q^{n}\right)
$$

Regulator function given by

$$
R_{\tau}=D_{\tau}-\mathrm{i} J_{\tau}
$$

$\mathbb{Z}[E(\mathbb{C})]^{-}=\mathbb{Z}[E(\mathbb{C})] / \sim \quad[-P] \sim-[P]$.
$R_{\tau}$ is an odd function,

$$
\mathbb{Z}[E(\mathbb{C})]^{-} \rightarrow \mathbb{C} .
$$

$$
(x)=\sum m_{i}\left(a_{i}\right), \quad(y)=\sum n_{j}\left(b_{j}\right) .
$$

$$
\mathbb{C}(E)^{*} \otimes \mathbb{C}(E)^{*} \rightarrow \mathbb{Z}[E(\mathbb{C})]^{-}
$$

$$
(x)^{-} *(y)=\sum m_{i} n_{j}\left(a_{i}-b_{j}\right) .
$$

## Theorem

(Bloch, Beilinson) $E / \mathbb{R}$ elliptic curve, $x, y$ non-constant functions in $\mathbb{C}(E)$, $\omega \in \Omega^{1}$

$$
\int_{E(\mathbb{C})} \eta(x, y) \wedge \omega=\Omega_{0} R_{\tau}\left((x)^{-} *(y)\right)
$$

## Regulators and Mahler measures

Deninger (1997)
L-functions $\leftarrow$ Bloch-Beilinson's conjectures
In the example,

$$
\begin{gathered}
y P_{k}(x, y)=\left(y-y_{(1)}(x)\right)\left(y-y_{(2)}(x)\right), \\
m(k)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}}\left(\log ^{+}\left|y_{(1)}(x)\right|+\log ^{+}\left|y_{(2)}(x)\right|\right) \frac{\mathrm{d} x}{x} .
\end{gathered}
$$

By Jensen's formula respect to $y$.

$$
m(k)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi} \int_{\mathbb{T}^{1}} \eta(x, y),
$$

## Proposition

$E / \mathbb{R}$ elliptic curve, $x, y$ are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^{1}$

$$
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}\left((x)^{-} *(y)\right)\right)
$$

where $\Omega_{0}$ is the real period and $\Omega=\int_{\gamma} \omega$.
Use results of Beilinson, Bloch, Deninger

## Idea of Proof

Modular elliptic surface associated to $\Gamma_{0}(4)$

$$
x+\frac{1}{x}+y+\frac{1}{y}+k=0
$$

Weierstrass form:

$$
\begin{gathered}
x=\frac{k X-2 Y}{2 X(X-1)} \quad y=\frac{k X+2 Y}{2 X(X-1)} \\
Y^{2}=X\left(X^{2}+\left(\frac{k^{2}}{4}-2\right) X+1\right)
\end{gathered}
$$

$P=\left(1, \frac{k}{2}\right)$, torsion point of order 4.

$$
(x)^{-} *(y)=4(P)-4(-P)=8(P)
$$

$$
\begin{gathered}
P \equiv-\frac{1}{4} \quad \bmod \mathbb{Z}+\tau \mathbb{Z} \quad k \in \mathbb{R} \\
\tau=\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|>4 \\
\tau=\frac{1}{2}+\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|<4
\end{gathered}
$$

Understand cycle $[|x|=1] \in H_{1}(E, \mathbb{Z})$

$$
\Omega=\tau \Omega_{0} \quad k \in \mathbb{R}
$$

$$
\begin{gathered}
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}\left((x)^{-} *(y)\right)\right) \\
m(k)=\frac{4}{\pi} \operatorname{Im}\left(\frac{\tau}{y_{\tau}} R_{\tau}(-\mathrm{i})\right), \quad k \in \mathbb{R}
\end{gathered}
$$

## Theorem

(Rodriguez-Villegas )

$$
\begin{aligned}
m(k) & =\operatorname{Re}\left(\frac{16 y_{\mu}}{\pi^{2}} \sum_{m, n}^{\prime} \frac{\chi_{-4}(m)}{(m+n 4 \mu)^{2}(m+n 4 \bar{\mu})}\right) \\
& =\operatorname{Re}\left(-\pi \mathrm{i} \mu+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} \frac{q^{n}}{n}\right)
\end{aligned}
$$

where $j\left(E_{k}\right)=j\left(-\frac{1}{4 \mu}\right)$

$$
q=\mathrm{e}^{2 \pi \mathrm{i} \mu}=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

and $y_{\mu}$ is the imaginary part of $\mu$.

## Functional equations

- Functional equations of the regulator

$$
\begin{gathered}
J_{4 \mu}\left(\mathrm{e}^{2 \pi \mathrm{i} \mu}\right)=2 J_{2 \mu}\left(\mathrm{e}^{\pi \mathrm{i} \mu}\right)+2 J_{2(\mu+1)}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i}(\mu+1)}{2}}\right) \\
\frac{1}{y_{4 \mu}} J_{4 \mu}\left(\mathrm{e}^{2 \pi \mathrm{i} \mu}\right)=\frac{1}{y_{2 \mu}} J_{2 \mu}\left(\mathrm{e}^{\pi \mathrm{i} \mu}\right)+\frac{1}{y_{2 \mu}} J_{2 \mu}\left(-\mathrm{e}^{\pi \mathrm{i} \mu}\right)
\end{gathered}
$$

- Hecke operators approach

$$
\begin{aligned}
m(k) & =\operatorname{Re}\left(-\pi \mathrm{i} \mu+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} \frac{q^{n}}{n}\right) \\
= & \operatorname{Re}\left(-\pi \mathrm{i} \mu-\pi \mathrm{i} \int_{\mathrm{i} \infty}^{\mu}(e(z)-1) \mathrm{d} z\right) \\
& e(\mu)=1-4 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} q^{n}
\end{aligned}
$$

$$
q=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

Second degree modular equation, $|h|<1, h \in \mathbb{R}$,

$$
q^{2}\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(h^{4}\right) .
$$

$h \rightarrow \mathrm{i} h$

$$
-q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right) .
$$

Then the equation with $J$ becomes

$$
\begin{gathered}
m\left(q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)\right)+m\left(q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right)\right)=m\left(q\left(h^{4}\right)\right) . \\
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
\end{gathered}
$$

## Direct approach

Also some equations can be proved directly using isogenies:

$$
\begin{gathered}
\phi_{1}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{4 h^{2}}, \quad \phi_{2}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{\frac{4}{h^{2}}} . \\
\phi_{1}:(X, Y) \rightarrow\left(\frac{X\left(h^{2} X+1\right)}{X+h^{2}},-\frac{h^{3} Y\left(X^{2}+2 h^{2} X+1\right)}{\left(X+h^{2}\right)^{2}}\right) \\
m\left(4 h^{2}\right)=r_{1}\left(\left\{x_{1}, y_{1}\right\}\right)=\frac{1}{2 \pi} \int_{\left|X_{1}\right|=1} \eta\left(x_{1}, y_{1}\right) \\
=\frac{1}{4 \pi} \int_{|X|=1} \eta\left(x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right)=\frac{1}{2} r\left(\left\{x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right\}\right)
\end{gathered}
$$

## The identity with $h=\frac{1}{\sqrt{2}}$

$$
\begin{gathered}
m(2)+m(8)=2 m(3 \sqrt{2}) \\
m(3 \sqrt{2})+m(\mathrm{i} \sqrt{2})=m(8)
\end{gathered}
$$

$f=\frac{\sqrt{2} Y-X}{2}$ in $\mathbb{C}\left(E_{3 \sqrt{2}}\right)$.

$$
(f)^{-} *(1-f)=6(P)-10(P+Q) \Rightarrow 6(P) \sim 10(P+Q)
$$

$Q=\left(-\frac{1}{h^{2}}, 0\right)$ has order 2 .

$$
\begin{gathered}
\phi: E_{3 \sqrt{2}} \rightarrow E_{\mathrm{i} \sqrt{2}} \quad(X, Y) \rightarrow(-X, \mathrm{i} Y) \\
r_{\mathrm{i} \sqrt{2}}(\{x, y\})=r_{3 \sqrt{2}}(\{x \circ \phi, y \circ \phi\})
\end{gathered}
$$

But

$$
\begin{gathered}
(x \circ \phi)^{-} *(y \circ \phi)=8(P+Q) \\
(x)^{-} *(y)=8(P) \\
6 r_{3 \sqrt{2}}(\{x, y\})=10 r_{\mathrm{i} \sqrt{2}}(\{x, y\}) \\
3 m(3 \sqrt{2})=5 m(\mathrm{i} \sqrt{2})
\end{gathered}
$$

and

Consequently,

$$
\begin{aligned}
& m(8)=\frac{8}{5} m(3 \sqrt{2}) \\
& m(2)=\frac{2}{5} m(3 \sqrt{2})
\end{aligned}
$$

## Other families

- Hesse family

$$
h\left(a^{3}\right)=m\left(x^{3}+y^{3}+1-\frac{3 x y}{a}\right)
$$

(studied by Rodriguez-Villegas 1997)

$$
h\left(u^{3}\right)=\sum_{j=0}^{2} h\left(1-\left(\frac{1-\xi_{3}^{j} u}{1+2 \xi_{3}^{j} u}\right)^{3}\right) \quad|u| \text { small }
$$

- More complicated equations for examples studied by Stienstra 2005:

$$
m\left((x+1)(y+1)(x+y)-\frac{x y}{t}\right)
$$

and Bertin 2004, Zagier < 2005, and Stienstra 2005:

$$
m\left((x+y+1)(x+1)(y+1)-\frac{x y}{t}\right)
$$

