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1. Mahler Measure and Lehmer’s question

Looking for large primes, Pierce [16] proposed the following idea in 1918.
Consider P ∈ Z[x] monic, and write

P (x) =
∏

i

(x − αi).

Then, let us look at

∆n =
∏

i

(αn
i − 1).

The αi are integers over Z. By applying Galois theory, it is easy to see that ∆n ∈ Z. Note
that if P (x) = x − 2, we get the sequence ∆n = 2n − 1. Thus, we recover the example of
Mersenne numbers. The idea is to look for primes among the factors of ∆n. The prime
divisors of such integers must satisfy some congruence conditions that are quite restrictive,
hence they are easier to factorize than a randomly given number. Moreover, one can show
that ∆m|∆n if m|n. Then we may look at the numbers

∆p

∆1
p prime.

In order to minimize the number of trial divisions, the sequence ∆n should grow slowly.
Lehmer [15] studied ∆n+1

∆n
, observed that

lim
n→∞

|αn+1 − 1|
|αn − 1| =

{

|α| if |α| > 1
1 if |α| < 1

and suggested the following definition.

Definition 1 Given P ∈ C[x], such that

P (x) = a
∏

i

(x − αi),

define the Mahler measure 2 of P as

M(P ) = |a|
∏

i

max{1, |αi|}. (1)

The logarithmic Mahler measure is defined as3

m(P ) = log M(P ) = log |a| +
∑

i

log+ |αi|. (2)

1mlalin@math.utexas.edu – http://www.ma.utexas.edu/users/mlalin
2The name Mahler came later after the person who successfully extended this definition to the several-

variable case.
3log+

x = log max{1, x} for x ∈ R≥0
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When does M(P ) = 1 for P ∈ Z[x]? We have

Lemma 2 (Kronecker) Let P =
∏

i(x − αi) ∈ Z[x], if |αi| ≤ 1, then the αi are zero or
roots of the unity.

By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then M(P ) = 1 if and only if P is the
product of powers of x and cyclotomic polynomials. This statement characterizes integral
polynomials whose Mahler measure is 1.

Lehmer found the example

m(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = log(1.176280818 . . .) = 0.162357612 . . .

and asked the following (Lehmer’s question, 1933):
Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) > 1, then

M(P ) ≥ C?
Lehmer’s question remains open nowadays. His 10-degree polynomial remains the best

possible result.
The use of this polynomial has led to the discovery of the prime number 1, 794, 327, 140, 357

but bigger primes were discovered with the use of other polynomials.

2. Mahler Measure in several variables

Definition 3 For P ∈ C[x1, . . . , xn], the (logarithmic) Mahler measure is defined by

m(P ) :=

∫ 1

0
. . .

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)| dθ1 . . . dθn (3)

=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)| dx1

x1
. . .

dxn

xn
. (4)

It is possible to prove that this integral is not singular and that m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α| dθ = log+ |α|. (5)

We recover the formula for the one-variable case.

3. Some properties

Proposition 4 For P, Q ∈ C[x1, . . . , xn]

m(P · Q) = m(P ) + m(Q). (6)

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Mahler measure is related to heights. Indeed, if α is an algebraic number, and Pα is its

minimal polynomial over Q, then

m(Pα) = [Q(α) : Q] h(α),

where h is the logarithmic Weil height. This identity also extends to several-variable
polynomials and heights in hypersurfaces.

Let us also mention the following result:
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Theorem 5 (Boyd–Lawton) For P ∈ C[x1, . . . , xn]

lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn)). (7)

In particular Lehmer’s problem in several variables reduces to the one-variable case.

4. Examples

For one-variable polynomials, the Mahler measure has to do with the roots of the
polynomial. However, it is very hard to compute explicit formulas for examples in several
variables. The first and simplest ones were computed by Smyth:

• Smyth [18]

m(x + y + 1) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1), (8)

where

L(χ−3, s) =
∞

∑

n=1

χ−3(n)

ns
and χ−3(n) =







1 if n ≡ 1 mod 3
−1 if n ≡ −1 mod 3

0 if n ≡ 0 mod 3

• Smyth [1]

m(x + y + z + 1) =
7

2π2
ζ(3). (9)

• Boyd– Rodriguez-Villegas [17]

m

(

x +
1

x
+ y +

1

y
− k

)

?
=

L′(Ek, 0)

Bk
k ∈ N

m

(

x +
1

x
+ y +

1

y
− 4

)

= 2L′(χ−4,−1)

m

(

x +
1

x
+ y +

1

y
− 4

√
2

)

= L′(A, 0)

Where Bk is a rational number, and Ek is the elliptic curve with corresponds to the
zero set of the polynomial. When k = 4 the curve has genus zero. When k = 4

√
2

the elliptic curve is
A : y2 = x3 − 44x + 112,

which has complex multiplication.

5. More examples in several variables

Theorem 6 For n ≥ 1 we have:

π2nm

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n

1 + x2n

)

z

)
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=
n

∑

h=1

sn−h(22, . . . , (2n − 2)2)

(2n − 1)!
π2n−2h(2h)!

22h+1 − 1

2
ζ(2h + 1). (10)

For n ≥ 0:

π2n+1m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n+1

1 + x2n+1

)

z

)

=
n

∑

h=0

sn−h(12, . . . , (2n − 1)2)

(2n)!
22h+1π2n−2h(2h + 1)!L(χ−4, 2h + 2). (11)

For n ≥ 1:

π2n+2m

(

1 + x +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n

1 + x2n

)

(1 + y)z

)

=
n

∑

h=1

sn−h(22, . . . , (2n − 2)2)

(2n − 1)!
22h+2π2n−2h

·(2h − 1)!
h−1
∑

k=0

(

2h − 2k + 2

2

)

22h−2k+3 − 1

22h

(−1)kB2k(2π)2k

2(2k)!
ζ(2h − 2k + 3). (12)

For n ≥ 0:

π2n+3m

(

1 + x +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n+1

1 + x2n+1

)

(1 + y)z

)

=
n

∑

h=0

sn−h(12, . . . , (2n − 1)2)

(2n)!
22h+3π2n−2h

(

i(2h)!L3,2h+1(i, i) + (2h + 1)!π2L(χ−4, 2h + 2)
)

.

(13)
There is a similar result for the family

πnm

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

x +

(

1 −
(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

))

y

)

= combination of ζ(odd).

Where Lr,s(α, α) are certain linear combinations of polylogarithms and

sl(a1, . . . , ak) =







1 if l = 0
∑

i1<...<il
ai1 . . . ail if 0 < l ≤ k

0 if k < l

(14)

are the elementary symmetric polynomials, i. e.,

k
∏

i=1

(x + ai) =
k

∑

l=0

sl(a1, . . . , ak)x
k−l. (15)

For example,

π3m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

) (

1 − x3

1 + x3

)

z

)

= 24L(χ−4, 4) + π2L(χ−4, 2) (16)

π4m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x4

1 + x4

)

z

)

= 62ζ(5) +
14

3
π2ζ(3) (17)

π4m

(

1 + x +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

(1 + y)z

)

= 93ζ(5) (18)

(19)
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6. Beilinson’s conjectures

One of the main problems in Number Theory is finding rational (or integral) solutions
of polynomial equations with rational coefficients (global solutions). Any global solution
can be seen as a local solution by reducing modulo a prime number p. Hence, if a equation
does not have local solutions, then we know that it does not have global solutions. The
converse problem would be: Does having solutions modulo p for every prime p guarantee
that the equation has global solutions? This question is known as the local-global principle
and its answer is negative in general.

There are several theorems and conjectures which predict that one may obtain global
information from local information and that that relation is made through values of L-
functions. These statements include the Dirichlet class number formula, the Birch–Swinnerton-
Dyer conjecture, and more generally, Bloch’s and Beilinson’s conjectures.

Typically, there are four elements involved in this setting: an arithmetic-geometric
object X (typically, an algebraic variety), its L-function (which codify local information),
a finitely generated abelian group K, and a regulator map K → R. When K has rank 1,
Beilinson’s conjectures predict that the L′

X(0) is, up to a rational number, equal to a value
of the regulator.

For instance, for a number field F , Dirichlet class number formula states that

lim
s→1

(s − 1)ζF (s) =
2r1(2π)r2hF regF

ωF

√

|DF |
.

Here, X = OF (the ring of integers), LX = ζF , and the group is O∗

F . Hence, when F is a
real quadratic field, Dirichlet class number formula may be written as ζ ′F (0) is equal to, up
to a rational number, log |ε|, for some ε ∈ O∗

F .

7. An algebraic integration for Mahler measure

The appearance of the L-functions in Mahler measures formulas is a common phe-
nomenon. Deninger [7] interpreted the Mahler measure as a Deligne period of a mixed
motive. More specifically, in two variables, and under certain conditions, he proved that

m(P ) = reg(ξi),

where reg is the determinant of the regulator matrix, which we are evaluating in some class
in an appropriate group in K-theory.

Rodriguez-Villegas [17] made explicit the relationship between Mahler measure and
regulators by computing the regulator for the two-variable case, and using this machinery
to explain the formulas for two variables.

For example, let us start with Smyth’s example, P (x, y) = y + x − 1. Then its Mahler
measure is

m(P ) =
1

(2πi)2

∫

T2

log |y + x − 1| dx

x

dy

y
.

By Jensen’s equality,

m(P ) =
1

2πi

∫

T1

log+ |1 − x| dx

x
=

1

2πi

∫

γ

log |y| dx

x
= − 1

2π

∫

γ

η(x, y)

where γ = {P (x, y) = 0} ∩ {|x| = 1, |y| ≥ 1} and

η(x, y) = log |x| d arg y − log |y| d arg x.
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This is a closed differential form defined in C = {P (x, y) = 0} minus the sets of zeros and
poles of x and y. It satisfies the following properties:

• η(x, y) = −η(y, x)

• η(x1x2, y) = η(x1, y) + η(x2, y)

We would like to apply Stokes Theorem. The question is, when is η(x, y) exact? Fortu-
nately, there is

Theorem 7

η(x, 1 − x) = dD(x).

Where D(x) is the Bloch–Wigner dilogarithm,

D(x) := Im(Li2(x)) + arg(1 − x) log |x|.

Here

Li2(x) :=
∞

∑

n=1

xn

n2
|x| < 1.

If we use Stokes Theorem, we get

m(P ) = − 1

2π
D(∂γ).

Now we parametrize

γ : x = e2πiθ y(γ(θ)) = 1 − e2πiθ, θ ∈ [1/6 ; 5/6] ∂γ = [ξ̄6] − [ξ6]

γy (  )

y = 1 − x| x | = 1

ξ6

Then we obtain

2πm(x + y + 1) = D(ξ6) − D(ξ̄6) = 2D(ξ6) =
3
√

3

2
L(χ−3, 2).

In general, given P (x, y) ∈ C[x, y]

m(P ) = m(P ∗) − 1

2π

∫

γ

η(x, y).

For η(x, y) to be exact we need {x, y} = 0 in K2(C(C)) ⊗ Q, or equivalently,

x ∧ y =
∑

j

rj zj ∧ (1 − zj) in

2
∧

(C(C)∗) ⊗ Q.
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Then we get
∫

γ

η(x, y) =
∑

rjD(zj)|∂γ .

We could summarize the whole situation as follows:

. . . → (K3(Q̄) ⊃)K3(∂γ) → K2(C, ∂γ) → K2(C) → . . .

∂γ = C ∩ T2

• η(x, y) is exact, then {x, y} ∈ K3(∂γ). We have ∂γ 6= 0 and we use Stokes Theorem.
We obtain an element in K3(∂γ) ⊂ K3(Q̄). This leads to dilogarithms and then to
zeta functions of number fields by Theorems of Borel, Zagier, and others.

• ∂γ = ∅, then {x, y} ∈ K2(C). We have η(x, y) is not exact. We get L-series of a
curve and examples of Beilinson’s conjectures.

In general we may get combinations of both situations.

For the three variable case, let us start with Smyth example, P (x, y, z) = (1−x)+ (1−
y)z. Then,

m(P ) = m(1 − y) +
1

(2πi)3

∫

T3

log

∣

∣

∣

∣

z − 1 − x

1 − y

∣

∣

∣

∣

dx

x

dy

y

dz

z

=
1

(2πi)2

∫

T2

log+

∣

∣

∣

∣

1 − x

1 − y

∣

∣

∣

∣

dx

x

dy

y
= − 1

(2π)2

∫

Γ
log |z| dx

x

dy

y

= − 1

(2π)2

∫

Γ
η(x, y, z)

where Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}, and

η(x, y, z) = log |x|
(

1

3
d log |y| d log |z| − d arg y d arg z

)

+ log |y|
(

1

3
d log |z| d log |x| − d arg z d arg x

)

+log |z|
(

1

3
d log |x| d log |y| − d arg x d arg y

)

.

This is a closed differential form defined in S = {P (x, y, z) = 0} minus the set of zeros and
poles of x, y and z. Now note that

η(x, 1 − x, y) = dw(x, y) (20)

where

ω(x, y) = −D(x) d arg y +
1

3
log |y|(log |1 − x| d log |x| − log |x| d log |1 − x|).

In our case,
η(x, y, z) = −η(x, 1 − x, y) − η(y, 1 − y, x).

The computation of γ = ∂Γ can be made in an efficient way (for polynomials with real
coefficients) by applying certain ideas of Maillot. If P ∈ Q[x, y, z], we can think of

∂Γ = γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = 1}.
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Now ω is defined in C = {P (x, y, z) = P (x−1, y−1, z−1) = 0}.
So,

(1 − x)(1 − x−1)

(1 − y)(1 − y−1)
= 1

leads to C = {x = y} ∪ {xy = 1} and

m((1 − x) + (1 − y)z) =
1

4π2

∫

γ

ω(x, y) + ω(y, x).

The exactness of ω(x, y) is guaranteed by the condition

ω(x, x) = dP3(x) (21)

where P3(x) is Zagier’s modified version of the trilogarithm:

P3(x) := Re

(

Li3(x) − log |x|Li2(x) +
1

3
log2 |x|Li1(x)

)

.

This leads to

m((1 − x) + (1 − y)z) =
1

4π2
8(P3(1) − P3(−1)) =

7

2π2
ζ(3).

In general, let P (x, y, z) ∈ C[x, y, z], then we can write

m(P ) = m(P ∗) − 1

(2π)2

∫

Γ
η(x, y, z) (22)

where P ∗ is a two-variable polynomial which is the principal coefficient of P ∈ C[x, y][z].
In order to use equation (20), we need that {x, y, z} = 0 as an element of the Milnor

K-theory group KM
3 (C(S)) or

x ∧ y ∧ z =
∑

ri xi ∧ (1 − xi) ∧ yi in
3

∧

(C(S)∗) ⊗ Q.

We obtain
∫

Γ
η(x, y, z) =

∑

ri

∫

∂Γ
ω(xi, yi).

The problem is that ω(x, y) is only multiplicative in the second variable. For the first
variable, its behavior is ruled by the five term relation:

R2(x, y) = [x] + [y] + [1 − xy] +

[

1 − x

1 − xy

]

+

[

1 − y

1 − xy

]

= 0

in Z

[

P1
C(C)

]

.

In general, for a field F , define

B2(F ) := Z[P1
F ]/{[0], [∞], R2(x, y)}.

In order to achieve that ω(x, y) is exact, we need the condition

[x]2 ⊗ y =
∑

ri [xi]2 ⊗ xi
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in B2(Q(C))⊗Q(C)∗. By a conjecture of Goncharov [8], this translates into an element in

K
[1]
4 (Q(C)) which has to be zero.

If the condition is satisfied, we get

∫

γ

ω(x, y) =
∑

ri P3(xi)|∂γ .

We could summarize this picture as follows. We first integrate in this picture

. . . → K4(∂Γ) → K3(S, ∂Γ) → K3(S) → . . .

∂Γ = S ∩ T3

As before, we have two situations. All the examples we have talked about fit into the
situation when η(x, y, z) is exact and ∂Γ 6= ∅. Then we finish with an element in K4(∂Γ).

Then we go to

. . . → (K5(Q̄) ⊃)K5(∂γ) → K4(C, ∂γ) → K4(C) → . . .

∂γ = C ∩ T2

Again we have two possibilities, but in our context, ω(x, y) is exact and we finish with an
element in K5(∂γ) ⊂ K5(Q̄) leading to trilogarithms and zeta functions, due to Zagier’s
conjecture and Borel’s theorem.

The next picture shows how Mahler measure interacts with several elements (some
have been discussed here and some have not). We can see the key role of Mahler measure
in the relation among special values of L-functions and regulators (which are related via
Beilinson’s conjectures), heights, and hyperbolic manifolds (that are related by Beilinson’s
conjectures as well). It is our general goal to bring more light to the nature of these
relationships.

Regulator

Heights

L−functions

Mahler measureHyperbolic manifolds

Beilinson’s conjectures
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