
Journal of Pure and Applied Algebra 209 (2007) 393–410
www.elsevier.com/locate/jpaa

On the Mahler measure of resultants in small dimensions

Carlos D’Andreaa, Matilde N. Lalı́nb,∗
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Abstract

We prove that sparse resultants having Mahler measure equal to zero are those whose Newton polytope has dimension one.
We then compute the Mahler measure of resultants in dimension two, and examples in dimension three and four. Finally, we show
that sparse resultants are tempered polynomials. This property suggests that their Mahler measure may lead to special values of
L-functions and polylogarithms.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let A0, . . . ,An ⊂ Zn be finite sets of integral vectors, Ai := {ai j } j=1,...,ki . We denote with ResA0,...,An ∈

Z[X0, . . . , Xn] the associated mixed sparse resultant, which is an irreducible polynomial in n + 1 groups X i :=

{xi j ; 1 ≤ j ≤ ki } of ki variables each. It has the following geometric interpretation: consider the system

Fi (t1, . . . , tn) :=

ki∑
j=1

xi j tai j = 0 i = 0, . . . , n (1)

of Laurent polynomials in the variables t1, . . . , tn . Here ta stands for ta1
1 ta2

2 . . . tan
n where a = (a1, . . . , an). The

resultant ResA0,...,An vanishes on a particular specialization of the xi j in an algebraically closed field K if the
specialized system (1) has a common solution in (K \ {0})n . See [3,23] for a precise definition of ResA0,...,An and
some basic facts.

Resultants are of fundamental importance for solving systems of polynomial equations and therefore have been
extensively studied [3,4,7,9,15,23]. Recent research has focused on arithmetic aspects of this polynomial such as its
height and its Mahler measure [5,10,22].

Recall that the absolute height of g :=
∑

α cα Xα
∈ C[X0, . . . , Xn] is defined as H(g) := max{|cα|, α ∈ Nk

},
where k := k0 + · · · + kn . Its (logarithmic) height is given by

h(g) := log H(g) = log max{|cα|, α ∈ Nk
}.
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The Mahler measure of g is defined as

m(g) :=
1

(2π i)k

∫
Tk

log |g(X0, . . . , Xn)|
dX0

X0
· · ·

dXn

Xn
,

where for i = 0, . . . , n,
dX i
X i

is an abbreviation for
∏k0

j=1
dxi j
xi j

, and

Tk
= {(z1, . . . , zk) ∈ Ck

||z1| = · · · = |zk | = 1}

is the k-torus.
Some general relationships between the height and the Mahler measure are established in [8, Chapter 3] as well

as [10,21]. In [22] upper bounds for both the height and the Mahler measure of resultants are presented. However,
very little seems to be known about the problem of explicitly computing both the height and the Mahler measure of
resultants. In the case of heights, a first attempt was done in [5], where the heights of resultants in low degree and one
variable are calculated.

Jensen’s formula gives a simple expression for the Mahler measure of a univariate polynomial as a function on its
roots. However, it is in general a very hard problem to give an explicit closed formula for the Mahler measure of a
multivariate polynomial. The simplest examples are

Theorem 1.1. • ([19, Example 5])

m(1 + x + y) =
3
√

3
4π

L(χ−3, 2) = L′(χ−3, −1), (2)

where

L(χ−3, s) :=

∞∑
h=1

χ−3(h)

hs with χ−3(h) :=

 1 if h ≡ 1 mod 3
−1 if h ≡ −1 mod 3

0 if h ≡ 0 mod 3

is the Dirichlet L-series in the odd character of conductor 3.
• Smyth also proved (see [2, Appendix 1]):

m(1 + x + y + z) =
7

2π2 ζ(3), (3)

where ζ denotes the Riemann zeta function.

In this paper we focus on the explicit computation of the Mahler measure of ResA0,...,An in the case where the
dimension of N (ResA0,...,An ) (the Newton polytope of ResA0,...,An ) is small. We assume that the family of supports
A0, . . . ,An is essential (see [23, Sec.1]), so ResA0,...,An is a polynomial of positive degree in the variables xi j . It is
well-known (see [8, Lemma 3.7]) that we always have m(ResA0,...,An ) ≥ 0. The reason we focus on the dimension of
the Newton polytope of the resultant and not on the number of variables and/or the size of the supports is due to some
properties of the Mahler measure with respect to homogeneousness and changes of variables. For instance, the Mahler
measure of a homogeneous polynomial is the same as the Mahler measure of the corresponding dehomogenized
polynomial. Moreover,

Lemma 1.2 ([20, Lemma 7]). Let P(y) be a p-variable polynomial, and let V be a non-singular p× p integer matrix,
then

m(P(y)) = m(P(yV )),

where yV denotes (
∏

j y
v1 j
j , . . . ,

∏
j y

vpj
j ) for y = (y1, . . . , yp) and V = {vi j }.

The whole situation may be summarized as follows: computing the Mahler measure of a polynomial whose Newton
polytope has dimension p is the same as computing the Mahler measure of a p-variable polynomial. This is important
because we may expect different kinds of formulas according to the number of variables (meaning the dimension of
the Newton polytope). For speculations concerning this matter, see [11].
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Evidence for this situation is Theorem 1 in Section 2 which states that ResA0,...,An has Mahler measure equal to
zero if and only if its Newton polytope has dimension one, i.e. it is a segment.

This result shows that Mahler measures and heights behave differently in resultants. For instance, if we set
n = 1, A0 = {0, 1}, A1 = {0, 1, . . . , `}, then it turns out that

ResA0,A1 = ±

∑̀
j=0

(−1) j x1 j x`− j
00 x j

01,

and from here it is easy to see that h(ResA0,A1) = 0. On the other hand, setting y j = (−1) j x1 j x`− j
00 x j

01,

m(ResA0,A1) = m

(∑̀
j=0

y j

)
.

The change of variables is allowable, because the x1 j are algebraically independent, so we may apply Lemma 1.2.
Dehomogeneizing, one obtains

m(ResA0,A1) = m(1 + s1 + s2 + · · · + s`),

and this has been shown to be equal to 1
2 log(` + 1) −

γ
2 + O(

log(`+1)
`+1 ) as ` → ∞, where γ is the Euler–Mascheroni

constant (see [19], and also [18] for more estimates and generalizations).
Moreover, it is still unknown how to characterize all supports A0, . . . ,An having h(ResA0,...,An ) = 0.
In Section 2 we deal with sparse resultants having Mahler measure zero. Then we proceed to higher dimensions. In

Section 3 we focus on the case where the Newton polytope of the resultant has dimension two or three. In Theorem 2,
we compute the Mahler measure of resultants in dimension two, and in Theorem 4, we show that computing the
Mahler measure of resultants in dimension three is essentially equivalent to the computation of Mahler measures
of univariate trinomials. In Theorem 6 we compute the Mahler measure of trinomials having the same support. In
Section 4 we compute the Mahler measure of a non trivial example in dimension four.

All the computations can be expressed in terms of linear combinations of polylogarithms evaluated at algebraic
numbers. From the point of view of Mahler measure, it is natural to wonder why we would expect resultants to be a
source of interesting examples of multivariate polynomials.

In [6] Deninger established the relation between Mahler measure and regulators (see also [17,12]). More
specifically, the Mahler measure of an irreducible polynomial P ∈ Q[s1, . . . , sp] is interpreted in terms of a special
value of the regulator η(s1, . . . , sp) in X , the projective variety determined by {P = 0}. The regulator on the symbol
{s1, . . . , sp} ∈ K M

p (C(X )) ⊗ Q is initially defined in the cohomology of X \ {poles and zeros of si }. A sufficient
condition for extending it to the cohomology of X is that the tame symbols of the facets are trivial. In that case the
polynomial is called tempered [17].

If the symbol {s1, . . . , sp} is trivial, then the tame symbols of the facets are trivial and η(s1, . . . , sp) is exact, and
easily integrable by means of Stokes Theorem. This is the first step that may lead to a Mahler measure involving
special values of polylogarithms [12].

While the symbol is not necessarily trivial for a general polynomial, it is trivial for the case of sparse resultants.
This is the content of Section 5. In Theorem 8, we show that resultants have trivial symbol, and so they are tempered
polynomials. This fact suggests that the Mahler measure of resultants may be expressible in terms of combinations
of polylogarithms and that we might expect results in the style of the ones from Sections 3 and 4 to be held in more
generality.

2. Resultants with Mahler measure equal to zero

The main result of this section is the following:

Theorem 1.

m(ResA0,...,An ) = 0 ⇐⇒ dim(N (ResA0,...,An )) = 1.
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Proof. Assume first that dim(N (ResA0,...,An )) = 1. We use Proposition 4.1 in [23], which characterizes all families
of essential supports A0, . . . ,An such that the dimension of the Newton polytope is one: they must satisfy ki :=

2, i = 0, . . . , n. It turns out that ([23, Proposition 1.1]) in this case ResA0,...,An must be of the form ±(Xλ1 − Xλ2),
with λ1, λ2 ∈ Nk . It is very easy to see that polynomials of this kind have Mahler measure zero because they are a
monomial times the evaluation of T − 1 in another Laurent monomial.

For the converse, assume that m(ResA0,...,An ) = 0. Recall that the resultant is a primitive polynomial in
Z[X0, . . . , Xn]. By Kronecker’s Lemma (see for instance [8, Theorem 3.10]), ResA0,...,An must be a monomial times
a product of cyclotomic polynomials evaluated in monomials. But ResA0,...,An is irreducible in C[X0, . . . , Xn] as it
is the equation of an irreducible surface in the projective complex space (see [23, Lemma 1.1]). Having its Mahler
measure zero, the resultant must be of the form Xα

± Xβ with α, β ∈ Nk , i.e. a monomial times the polynomial T ± 1
evaluated at another Laurent monomial. Hence, dim(N (ResA0,...,An )) = 1. �

3. The Mahler measure of resultants in dimensions two and three

Now we would like to compute the Mahler measure of the systems having dim N (ResA0,...,An ) > 1. In order to do
that, we first recall the following characterization of the dimension of the Newton polytope of the resultant:

Theorem 3.1 ([23, Theorem 6.1]).

dim(N (ResA0,...,An )) = k − 2n − 1,

where, as defined in the introduction, k =
∑n

i=0 ki .

We will compute the Mahler measure of the resultants having dim(N (ResA0,...,An )) = 2. By the previous theorem,
this property only holds in the case where there exists a unique i0 such that ki0 = 3 and all other ki = 2, because the
ki must be greater than 1 (see [23, Theorem 1.1]).

Suppose w.l.o.g. that k0 = 3 and k1 = k2 = · · · = kn = 2. Consider any linear transformation in SL(n, Z) which
maps the directions in Ai to multiples ηi ei of the unit vectors for i = 1, . . . , n. After applying this transformation
which does not change neither the Mahler measure nor the structure of ResA0,...,An , the original Fi ’s defined in (1)
look as follows:

F0(t1, . . . , tn) = x01ta01 + x02ta02 + x03ta03 ,

F1(t1, . . . , tn) = x11t1
η1 − x12,

. . .

Fn(t1, . . . , tn) = xn1tn
ηn − xn2.

(4)

Let η := η1 + η2 + · · · + ηn .

Theorem 2. For systems having support as in (4),

m(ResA0,...,An ) = η L′(χ−3, −1).

Proof. It is straightforward to verify that the resultant of (4) is the following: for each j = 1, . . . , n let ξ j run over
the η j -roots of unity. Then, it turns out that ResA0,...,An equals, up to a monomial in the variables x11, x21, . . . , xn1,

n∏
j=1

∏
ξ

η j
j =1

f0

(
ξ1

(
x12

x11

) 1
η1

, ξ2

(
x22

x21

) 1
η2

, . . . , ξn

(
xn2

xn1

) 1
ηn

)
.

Let Vi :=
xi2
xi1

. By Lemma 1.2,

M j := m

 ∏
ξ

η j
j =1

f0

(
ξ1

(
x12

x11

) 1
η1

, ξ2

(
x22

x21

) 1
η2

, . . . , ξn

(
xn2

xn1

) 1
ηn

)
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= m

 ∏
ξ

η j
j =1

f0

(
ξ1 (V1)

1
η1 , ξ2 (V2)

1
η2 , . . . , ξn (Vn)

1
ηn

) .

Now, since m(P(t1, . . . , tn)) = m(P(t1 p1 , . . . , tn pn )) (by Lemma 1.2 once again), we have

M j = m

 ∏
ξ

η j
j =1

f0 (ξ1V1, ξ2V2, . . . , ξn Vn)

 .

Observe that coefficients of absolute value one can be absorbed by variables, so M j = η j m( f0(V1, V2, . . . , Vn)).
Hence

M := m(ResA0,...,An ) =

n∑
j=1

M j = ηm( f0(V1, V2, . . . , Vn)).

Now since x01, x02, and x03 are algebraically independent, we may replace x01V a01 , x02V a02 , and x03V a03 by three
independent variables W0, W1, and W2,

M = ηm(W0 + W1 + W2);

but this is just Smyth’s result (Theorem 1.1):

M = ηm(1 + x + y) = η
3
√

3
4π

L(χ−3, 2) = η L′(χ−3, −1). �

With the same proof as before, we can compute the Mahler measure of more general systems as follows. Consider
an essential system of the form

F0 = x01ta01 + x02ta02 + · · · + x0`ta0` ,

F1 = x11t1
η1 − x12,

. . .

Fn = xn1tn
ηn − xn2.

(5)

Theorem 3. With the notation established above, for systems as (5) we have

m(ResA0,...,An ) = η m(1 + s1 + s2 + · · · + s`−1).

As mentioned in the introduction, the Mahler measure of polynomials of the form 1+ s1 + s2 +· · ·+ sp was estimated
in [19] and later in [18].

Now we would like to compute the Mahler measure of resultants having Newton polytope of dimension 3.
According to Theorem 3.1, we must consider essentially the following two scenarios:

(1) k0 = 4, k1 = k2 = · · · = kn = 2. This is a system of the form (5), and hence we have that

m(ResA0,...,An ) = ηm(1 + s1 + s2 + s3) = η
7

2π2 ζ(3),

by Smyth’s result (Theorem 1.1).
(2) k0 = k1 = 3, k2 = k3 = · · · = kn = 2. This case is treated below.

Let k0 = k1 = 3 and k2 = k3 = · · · = kn = 2. Consider a linear transformation in SL(n, Z) which maps the
directions in Ai to multiples ηi ei of the unit vectors for i = 2, . . . , n.

F0 = x01ta01 + x02ta02 + x03ta03 ,

F1 = x11ta11 + x12ta12 + x13ta13 ,

F2 = x21t2
η2 − x22,

. . .

Fn = xn1tn
ηn − xn2.

(6)
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Let αi j ∈ Z be the first coordinate of the vector ai j , i = 0, 1, j = 1, 2, 3, and set as before η := η2 +η3 +· · ·+ηn .
Consider the following system of supports:

A′

0 := {α01, α02, α03}, A′

1 := {α11, α12, α13}. (7)

Observe that the cardinalities of A′

0 and A′

1 must be at least two, otherwise the family A0,A1, . . . ,An would not
be essential. We get the following.

Theorem 4. For systems like (6) we have

m(ResA0,...,An ) = ηm(ResA′

0,A
′

1
).

Proof. As in the proof of Theorem 6.2 in [23], it turns out that ResA0,...,An equals, up to a monomial factor, the
product of the ResA′

0,A
′

1
over all choices of roots of unity. We can then follow the same lines as in the proof of

Theorem 2 and conclude the claim. �

Therefore the computation of the Mahler measure of resultants in dimension three reduces to the computation of
the Mahler measure of univariate systems like (7). Unfortunately, this does not seem to be very easy. In order to state
our best result in that direction, we need to recall some facts about polylogarithms (see, for instance, [25]).

Definition 5. The qth polylogarithm is the function defined by the power series

Liq(z) :=

∞∑
j=1

z j

jq z ∈ C, |z| < 1. (8)

This function can be continued analytically to C\(1, ∞). Observe that Liq(1) = ζ(q) and Liq(−1) = (21−q
−1)ζ(q).

In order to avoid discontinuities and to extend these functions to the whole complex plane, several modifications
have been proposed. We will only need the cases q = 2, 3. For q = 2, we consider the Bloch–Wigner dilogarithm:

P2(z) = D(z) := Im(Li2(z)) + log |z| arg(1 − z). (9)

For q = 3, Zagier [25] proposes the following:

P3(z) := Re
(

Li3(z) − log |z|Li2(z) +
1
3

log2
|z|Li1(z)

)
. (10)

These functions are one-valued, real analytic in P1(C)\{0, 1, ∞}, and continuous in P1(C). Moreover, Pq satisfies
several functional equations, the simplest ones being, for q = 2,

D(z̄) = −D(z), D(z) = −D(1 − z) = −D

(
1
z

)
, (11)

D(z) =
1
2

(
D

(
z

z̄

)
+ D

(
1 −

1
z

1 −
1
z̄

)
+ D

(
1 − z̄

1 − z

))
. (12)

When z has absolute value one, D(z) has a particularly elegant expression:

−2
∫ θ

0
log |2 sin t |dt = D(e2iθ ) =

∞∑
j=1

sin(2 jθ)

j2 . (13)

More about D(z) can be found in [24]. For q = 3, we have, for instance,

P3(z̄) = P3(z), P3

(
1
z

)
= P3(z), (14)

P3(z) + P3(1 − z) + P3

(
1 −

1
z

)
= ζ(3). (15)
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We are now ready to state our result:

Theorem 6. Suppose that A′

0 = A′

1, have both cardinality three. W.l.o.g. we can suppose that A′

0 = {0, p, q}, with
p < q and gcd(p, q) = 1.

Then,

m(ResA′

0,A
′

1
) =

2

π2

(
−pP3(ϕ

q) − q P3(−ϕ p) + pP3
(
φq)

+ q P3
(
φ p))

where ϕ is the real root of xq
+ xq−p

− 1 = 0 such that 0 ≤ ϕ ≤ 1, and φ is the real root of xq
− xq−p

− 1 = 0
such that 1 ≤ φ.

Proof. All along this proof, we will write Res as short of Res{0,p,q},{0,p,q}. First, we will show that

Res(A + Bt p
+ tq , C + Et p

+ tq) = (C − A)q
− (E A − BC)p(B − E)q−p.

Let us set f := A + Bt p
+ tq and g := C + Et p

+ tq . By using [3, Ex 7 Chapter 3] we see that

Res( f, g) = Res( f, g − f ) = Res(A + Bt p
+ tq , C − A + (E − B)t p). (16)

Let ξ be a primitive pth root of the unity, then all the roots of C − A + (E − B)t p are ξ j ( C−A
B−E )

1
p , j = 1, . . . , p. By

using the Poisson product formula for the computation of Res (see display (1.4) in Chapter 3 of [3]), we conclude that
(16) equals

(−1)qp(E − B)q
p∏

j=1

f

(
ξ j
(

C − A

B − E

) 1
p
)

= (−1)qp(E − B)q
p∏

j=1

(
A + B

C − A

B − E
+ ξq j

(
C − A

B − E

) q
p
)

.

(17)

The last product in (17) is of the form
p∏

j=1

α − βξ j
= α p

− β p

with α =
BC−AE

B−E and β = −( C−A
B−E )

q
p (this is due to the fact that gcd(p, q) = 1). So we get that (17) equals

(−1)qp(E − B)q
(

(BC − AE)p

(B − E)p − (−1)p (C − A)q

(B − E)q

)
= (−1)qp ((−1)q(BC − AE)p(B − E)q−p

− (−1)p+q(C − A)q)
= (−1)qp+p+q+1 ((C − A)q

− (AE − BC)p(B − E)q−p) .
The claim holds straightforwardly by noting that qp + q + p + 1 = (q + 1)(p + 1) is even if gcd(p, q) = 1.

Now we have to compute the Mahler measure of

(C − A)q
− (E A − BC)p(B − E)q−p.

After setting C = C1 A, E = E1 B and dividing by Ap, we see that it is enough to consider the polynomial
Aq−p(C1 − 1)q

− Bq(E1 − C1)
p(1 − E1)

q−p.
Now set Z = Aq−p B−q and divide by Bq . We need to compute

m(Z(C1 − 1)q
− (E1 − C1)

p(1 − E1)
q−p). (18)

By using Jensen’s equality with respect to the variable Z and the fact that m((C1 − 1)q) = 0, we deduce that (18)
equals

1

(2π i)2

∫
T2

log+

∣∣∣∣ (E1 − 1)q−p(E1 − C1)
p

(C1 − 1)q

∣∣∣∣ dC1

C1

dE1

E1
,

where log+
|x | = log |x | for |x | ≥ 1 and zero otherwise.
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Now write C1 = E1Y . The expression above simplifies as follows:

1

(2π i)2

∫
T2

log+

∣∣∣∣ (E1 − 1)q−p(Y − 1)p

(Y E1 − 1)q

∣∣∣∣ dY

Y

dE1

E1
.

Setting Y = e2iα, E1 = e2iβ , we have that this expression can be computed as follows:

1

π2

∫ π
2

−
π
2

∫ π
2

−
π
2

log+

∣∣∣∣ sinp α sinq−p β

sinq(α + β)

∣∣∣∣ dα dβ =
2

π2

∫ π
2

−
π
2

∫ π
2

0
log+

∣∣∣∣ sinp α sinq−p β

sinq(α + β)

∣∣∣∣ dα dβ. (19)

For −
π
2 ≤ β ≤ 0, set γ = −β. We can then simplify (19):

=
2

π2

∫ π
2

0

∫ π
2

0
log+

∣∣∣∣ sinp α sinq−p β

sinq(α + β)

∣∣∣∣ dα dβ +
2

π2

∫ π
2

0

∫ π
2

0
log+

∣∣∣∣ sinp α sinq−p γ

sinq(α − γ )

∣∣∣∣ dα dγ.

Now we perform a change of variables. For the first term, write

a =
sin α

sin(α + β)
, b =

sin β

sin(α + β)
,

then

dαdβ =
da

a

db

b
.

For the second term, set

a =
sin α

sin(α − γ )
, b =

sin γ

sin(α − γ )
,

then

dαdγ =
da

a

db

b
.

This change of variables has a geometric interpretation: we can think of a and b as the sides of a triangle whose
third side has length one. The side of length a is opposite to the angle α and the side of length b is opposite to β. This
construction is possible because of the Sine Theorem.

Fig. 1 describes how the sides vary according to the angles. The integral becomes the sum of four terms, each of
them corresponding to each case in Fig. 1.

2

π2

∫ 1

0

∫ √
1+b2

1−b
log+(a pbq−p)

da

a

db

b
+

2

π2

∫
∞

1

∫ √
1+b2

√
b2−1

log+(a pbq−p)
da

a

db

b

+
2

π2

∫
∞

1

∫ √
b2−1

b−1
log+(a pbq−p)

da

a

db

b
+

2

π2

∫
∞

0

∫ 1+b

√
1+b2

log+(a pbq−p)
da

a

db

b

=
2

π2

∫ 1

0

∫ 1+b

1−b
log+(a pbq−p)

da

a

db

b
+

2

π2

∫
∞

1

∫ 1+b

b−1
log+(a pbq−p)

da

a

db

b
.

Now write cq−p
= a and d p

= b. Then the previous expression reduces to

2p2(q − p)2

π2

∫ 1

0

∫ (1+d p)
1

q−p

(1−d p)
1

q−p
log+(cd)

dc

c

dd

d
+

2p2(q − p)2

π2

∫
∞

1

∫ (1+d p)
1

q−p

(d p−1)
1

q−p
log+(cd)

dc

c

dd

d

=
2p2(q − p)2

π2 (I1 + I2).

Let us compute I1. Since the argument has the term log+(cd), we need to restrict the domain to the case cd ≥ 1.
Now observe that since 0 ≤ d ≤ 1, then 1

dq−p ≥ 1 − d p. On the other hand, 1 + d p
≥

1
dq−p if and only if

dq
+ dq−p

− 1 ≥ 0.
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Fig. 1. (a) Case when 0 ≤ b ≤ 1 in the first integral. (b) Case when 1 ≤ b in the first integral. (c) Case when γ ≥ α in the second integral. (d)
Case when γ ≤ α in the second integral.

For future reference, let ϕ be the unique root of xq
+ xq−p

− 1 = 0 in [0, 1].

I1 =

∫ 1

ϕ

∫ (1+d p)
1

q−p

1
d

log(cd)
dc

c

dd

d
=

∫ 1

ϕ

log2(cd)

2

∣∣∣∣∣
(1+d p)

1
q−p

1
d

dd

d

=

∫ 1

ϕ

log2(d(1 + d p)
1

q−p )

2
dd

d

=

∫ 1

ϕ

(
log2 d

2d
+

log d log(1 + d p)

(q − p)d
+

log2(1 + d p)

2(q − p)2d

)
dd. (20)

The first term in the integral (20) is easy to integrate:∫ 1

ϕ

log2 d

d
dd = −

log3 ϕ

3
.

For the second term, we use the series expansion of log(1 + x):∫ 1

ϕ

log d log(1 + d p)

d
dd = −

∫ 1

ϕ

∞∑
l=1

(−1)l d pl−1

l
log ddd

= −

∞∑
l=1

(−1)l d pl

pl2 log d

∣∣∣∣∣
1

ϕ

+

∫ 1

ϕ

∞∑
l=1

(−1)l d pl−1

pl2 dd

=
log ϕ

p
Li2(−ϕ p) +

1

p2 (Li3(−1) − Li3(−ϕ p)).

We apply definition (10) to conclude that this expression equals

−
1

p2 P3(−ϕ p) +
(q − p) log3 ϕ

3
−

3

4p2 ζ(3).

Finally, we compute the third term of (20)∫ 1

ϕ

log2(1 + d p)

d
dd =

1
p

∫ ϕq−p

1
2

log2 c

c(1 − c)
dc
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(setting c =
1

1+d p )

=
1
p

∫ ϕq−p

1
2

log2 c

(
1
c

+
1

1 − c

)
dc

=
(q − p)3 log3 ϕ

3p
+

log3 2
3p

−
1
p

log2 c log(1 − c)

∣∣∣∣ϕq−p

1
2

+
1
p

∫ ϕq−p

1
2

2 log c log(1 − c)

c
dc

= −
(2q + p)(q − p)2 log3 ϕ

3p
−

2 log3 2
3p

−
2
p

∞∑
l=1

cl

l2 log c

∣∣∣∣∣
ϕq−p

1
2

+
2
p

∫ ϕq−p

1
2

∞∑
l=1

cl−1

l2 dc

= −
(2q + p)(q − p)2 log3 ϕ

3p
−

2 log3 2
3p

−
2(q − p)

p
log ϕLi2(ϕq−p)

−
2 log 2

p
Li2

(
1
2

)
+

2
p

Li3(ϕq−p) −
2
p

Li3

(
1
2

)
=

2
p

P3(ϕ
q−p) −

(q − p)2 log3 ϕ

3
−

2
p

P3

(
1
2

)
.

Then

I1 =
1

p(q − p)2 P3(ϕ
q−p) −

1

p2(q − p)
P3(−ϕ p) −

1

p(q − p)2 P3

(
1
2

)
−

3ζ(3)

4p2(q − p)
.

Let us compute I2. As before, we need to restrict our domain to the case cd ≥ 1. Since 1 ≤ d, we have
1

dq−p ≤ 1 + d p always. On the other hand, d p
− 1 ≥

1
dq−p if and only if

dq
− dq−p

− 1 ≥ 0.

For future reference, let φ be the unique root of xq
− xq−p

− 1 = 0 in [1, ∞).
Then

I2 =

∫ φ

1

∫ (1+d p)
1

q−p

1
d

log(cd)
dc

c

dd

d
+

∫
∞

φ

∫ (1+d p)
1

q−p

(d p−1)
1

q−p
log(cd)

dc

c

dd

d
= I21 + I22.

We proceed to compute I21,

I21 =

∫ φ

1

log2(d(1 + d p)
1

q−p )

2
dd

d
=

1

(q − p)2

∫ 1

φ−1

(log(1 + cp) − q log c)2

2
dc

c

(setting c =
1
d )

=
1

(q − p)2

∫ 1

φ−1

(
q2 log2 c

2c
−

q log c log(1 + cp)

c
+

log2(1 + cp)

2c

)
dc.

Using similar computations to those from I1, we obtain

I21 =
q2 log3 φ

6(q − p)2 +

q log2 φ log
(

1+φ p

φ p

)
3(q − p)2 +

log φ log2
(

1+φ p

φ p

)
6(q − p)2 +

q

p2(q − p)2 P3

(
−

1
φ p

)
+

1

p(q − p)2 P3

(
φ p

1 + φ p

)
−

1

p(q − p)2 P3

(
1
2

)
+

3qζ(3)

4p2(q − p)2 .

For the case of I22 we have:

I22 =

∫
∞

φ

log2(d(1 + d p)
1

q−p ) − log2(d(d p
− 1)

1
q−p )

2
dd

d
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=
1

(q − p)2

∫ φ−1

0

(
log2(1 + cp)

2c
−

log2(1 − cp)

2c
+

q log c log(1 − cp)

c
−

q log c log(1 + cp)

c

)
dc

(21)

(setting c =
1
d ).

Now we compute each of the terms in Eq. (21):∫ φ−1

0

log2(1 + cp)

c
dc = −

log2
(

φ p

1+φ p

)
log φ

3
−

2
p

P3

(
φ p

1 + φ p

)
+

2
p
ζ(3)∫ φ−1

0

log2(1 − cp)

c
dc =

1
p

∫ 1

φ−q

log2 f

1 − f
d f

(setting f = 1 − cp)

= −
1
p

log2 f log(1 − f )

∣∣∣1
φ−q

+
1
p

∫ 1

φ−q

2 log f log(1 − f )

f
d f

= −q2 log3 φ −
2q

p
log φLi2

(
1
φq

)
+

2
p
ζ(3) −

2
p

Li3

(
1
φq

)
= −

q2 log3 φ

3
−

2
p

P3

(
1
φq

)
+

2
p
ζ(3).∫ φ−1

0

log c log(1 − cp)

c
dc =

log φ

p
Li2

(
1

φ p

)
+

1

p2 Li3

(
1

φ p

)
=

1

p2 P3

(
1

φ p

)
−

q log3 φ

3
.∫ φ−1

0

log c log(1 + cp)

c
dc =

log φ

p
Li2

(
−

1
φ p

)
+

1

p2 Li3

(
−

1
φ p

)

=
1

p2 P3

(
−

1
φ p

)
+

log2 φ log
(

1+φ p

φ p

)
3

.

Putting all the terms together,

(q − p)2 I22 = −

log2
(

φ p

1+φ p

)
log φ

6
−

q2 log3 φ

6
−

q log2 φ log
(

1+φ p

φ p

)
3

−
1
p

P3

(
φ p

1 + φ p

)
+

1
p

P3

(
1
φq

)
+

q

p2 P3

(
1

φ p

)
−

q

p2 P3

(
−

1
φ p

)
and hence,

(q − p)2 I2 = −
1
p

P3

(
1
2

)
+

3qζ(3)

4p2 +
1
p

P3

(
1
φq

)
+

q

p2 P3

(
1

φ p

)
.

Now we can conclude:

I1 + I2 =
1

p(q − p)2 P3(ϕ
q−p) −

1

p2(q − p)
P3(−ϕ p)

−
2

p(q − p)2 P3

(
1
2

)
+

3ζ(3)

4p(q − p)2 +
1

p(q − p)2 P3
(
φq)

+
q

p2(q − p)2 P3
(
φ p) .

Let us note that 2P3

(
1
2

)
+ P3(−1) = ζ(3) because of Eq. (15), hence,

P3

(
1
2

)
=

7
8
ζ(3).
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Then

I1 + I2 =
1

p(q − p)2 P3(ϕ
q−p) −

1

p2(q − p)
P3(−ϕ p)

−
ζ(3)

p(q − p)2 +
1

p(q − p)2 P3
(
φq)

+
q

p2(q − p)2 P3
(
φ p) .

Now, we use Eq. (15) again in order to obtain P3(ϕ
q) + P3(1 − ϕq) + P3(1 − ϕ−q) = ζ(3) from where

P3(ϕ
q) + P3(ϕ

q−p) + P3(−ϕ−p) = ζ(3),

so

P3(ϕ
q−p) = ζ(3) − P3(−ϕ p) − P3(ϕ

q).

Hence, we have

I1 + I2 = −
1

p(q − p)2 P3(ϕ
q) −

q

p2(q − p)2 P3(−ϕ p) +
1

p(q − p)2 P3
(
φq)

+
q

p2(q − p)2 P3
(
φ p) ,

which proves our claim. �

4. An example in dimension 4

We would like to study one more example, which is a particular case of a 4-dimensional resultant. Let us set n = 2
and

A0 = A1 = A2 = A := {(0, 0), (1, 0), (0, 1)}.

We will use a formula due to Cassaigne and Maillot.

Theorem 4.1 ([13, Proposition 7.3.1]).

πm(a + bx + cy) =

{
D
(∣∣∣a

b

∣∣∣ eiγ
)

+ α log |a| + β log |b| + γ log |c| if 4

π log max{|a|, |b|, |c|} if not 4

(22)

where 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a triangle; and α, β, and γ are
the angles that are opposite to the sides of lengths |a|, |b| and |c| respectively.

Theorem 7.

m(ResA,A,A) =
9ζ(3)

2π2 .

Proof. In order to simplify the notation, we will use the variables a, b, c, . . . instead of the xi j ’s.

ResA,A,A = det

a b c
d e f
g h i

 .

Now, let us proceed to eliminate homogeneous variables:

m

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣
 = m

∣∣∣∣∣∣
1 1 1
d e f
g h i

∣∣∣∣∣∣
 = m

∣∣∣∣∣∣
1 1 1
1 e f
1 h i

∣∣∣∣∣∣


= m

∣∣∣∣∣∣
1 0 0
1 e − 1 f − 1
1 h − 1 i − 1

∣∣∣∣∣∣
 = m((e − 1)(i − 1) − ( f − 1)(h − 1)).
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Fig. 2. We always obtain a triangle for this case.

Let us observe that

m((x − 1)(y − 1) − (z − 1)(w − 1)) = m((x − 1)y + (1 − z)w + (z − x)). (23)

Hence we can think of the polynomial (x − 1)y + (1 − z)w + (z − x) as a linear polynomial in the variables y, w,
whose coefficients are in Z[x, z]. Because of the iterative nature of the definition of Mahler measure, we can choose to
integrate first with respect to the variables y and w, regarding x and z as parameters. If we do that, we obtain formula
(22) with the sides of the triangle equal to |x − 1|, |z − 1|, and |z − x |.

Now in order to compute the Mahler measure, we still need to integrate this formula with respect to x and z. Set
x = e2iα and z = e2iβ . This notation is consistent with the names for the angles of the triangle because of the Sine
Theorem (see Fig. 2).

We obtain that (23) is equal to

2

π3

∫ π

0

∫ β

0
D

(
sin β

sin α
ei(β−α)

)
+ α log |2 sin α| + (β − α) log |2 sin(β − α)| + (π − β) log |2 sin β|dα dβ.

First, we integrate the terms involving logarithms:∫ π

0

∫ π

α

α log |2 sin α|dβdα =

∫ π

0
α(π − α) log |2 sin α|dα

=

∫ π

0
α(π − α) log |1 − e2iα

|dα = −

∫ π

0
α(π − α)Re

∞∑
j=1

e2 j iα

j
dα.

Because of∫ π

0
(πα − α2)

cos(2 jα)

j
dα = (πα − α2)

sin(2 jα)

2 j2

∣∣∣∣π
0

−

∫ π

0
(π − 2α)

sin(2 jα)

2 j2 dα

= (π − 2α)
cos(2 jα)

4 j3

∣∣∣∣π
0

−

∫ π

0
(−2)

cos(2 jα)

4 j3 dα = −
π

2 j3 ,

we conclude that∫ π

0
α(π − α) log |2 sin α|dα =

πζ(3)

2
.

Then∫ π

0

∫ β

0
(π − β) log |2 sin β|dαdβ =

∫ π

0
β(π − β) log |2 sin β|dβ =

πζ(3)

2
,

by analogy with the case of α.
By setting γ = β − α in the third logarithmic term,∫ π

0

∫ β

0
(β − α) log |2 sin(β − α)|dαdβ =

∫ π

0

∫ π−γ

0
γ log |2 sin γ |dαdγ

=

∫ π

0
γ (π − γ ) log |2 sin γ |dγ =

πζ(3)

2
.
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On the other hand, we need to evaluate∫ π

0

∫ β

0
D

(
sin β

sin α
ei(β−α)

)
dαdβ. (24)

Using Eq. (12),

D

(
sin β

sin α
ei(β−α)

)
= D

(
1 − z

1 − x

)
=

1
2

(
D
( z

x

)
+ D(x) + D

(
1
z

))
=

1
2

(
D(e2i(β−α)) + D(e2iα) + D(e−2iβ)

)
.

Then integral (24) is the sum of three terms. We proceed to compute each of them:∫ π

0

∫ π

α

D(e2iα)dβdα =

∫ π

0
(π − α)D(e2iα)dα

=

∫ π

0
(π − α)

∞∑
j=1

sin(2 jα)

j2 dα.

But∫ π

0
(π − α)

sin(2 jα)

j2 dα = −(π − α)
cos(2 jα)

2 j3

∣∣∣∣π
0

−

∫ π

0

cos(2 jα)

2 j3 dα =
π

2 j3 .

Then∫ π

0
(π − α)D(e2iα)dα =

πζ(3)

2
.

The other terms can be computed in a similar fashion:∫ π

0

∫ β

0
D(e−2iβ)dα dβ = −

∫ π

0
β D(e2iβ)dβ =

πζ(3)

2
,∫ π

0

∫ β

0
D(e2i(β−α))dα dβ =

∫ π

0

∫ π−γ

0
D(e2iγ )dαdγ

=

∫ π

0
(π − γ )D(e2iγ )dγ =

πζ(3)

2
.

Thus, we conclude that

m((x − 1)(y − 1) − (z − 1)(w − 1)) =
2

π3

(
3
2

πζ(3)

2
+ 3

πζ(3)

2

)
=

9ζ(3)

2π2 . �

5. Resultants are tempered polynomials

In this section we will leave the elementary approach given above and turn instead to study algebraic properties of
resultants and Mahler measures in the context of Milnor K -theory. We will sketch the relation here and we refer to
[6], [17], and [12] for precise details.

For P ∈ C[s1, . . . , sp] irreducible, we write

P(s1, . . . , sp) =

∑
i≥0

ai (s1, . . . , sp−1)s
i
p.

Let

P∗(s1, . . . , sp−1) = ai0(s1, . . . , sp−1),

the main non-zero coefficient with respect to sp. Let X be the zero set {P(s1, . . . , sp) = 0}.
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By applying Jensen’s formula to the Mahler measure of P with respect to the variable sp, it is possible to write

m(P) = m(P∗) −
1

(2iπ)p−1

∫
Γ

log |sp|
ds1

s1
· · ·

dsp−1

sp−1

where Γ = {P(s1, . . . , sp) = 0} ∩ {|s1| = · · · = |sp−1| = 1, |sp| ≥ 1}.
From this formula, Deninger [6] establishes

m(P) = m(P∗) −
1

(2iπ)p−1

∫
Γ

η(s1, . . . , sp) (25)

where η(s1, . . . , sp) is a certain R(p − 1)-valued smooth p − 1-form in X (C) \ S. Here, S denotes the set of poles
and zeros of the functions s1, . . . , sp.

For example, in two variables, η has the following shape:

η(x, y) = log |y|i d arg x − log |x |i d arg y.

η is a closed form that is multiplicative and antisymmetric in the variables s1, . . . , sp. Therefore, it is natural to
think of η as a function on

∧p C(X ) ⊗ Q (we tensorize by Q because η is trivial in torsion elements). Even more,
η(1 − s, s, s3, . . . , sp) is an exact form. We may also see η(s1, . . . , sp) as a class in the (DeRham) cohomology of
X \ S. This situation allows us to think of the cohomological class of η as a function in the Milnor K -theory group
K M

p (C(X )) ⊗ Q. Recall that for a field F the Milnor K -theory group is given by

K M
p (F) :=

p∧
F∗/〈(1 − s1) ∧ s1 ∧ · · · ∧ sp, si ∈ F∗

〉.

If we can extend this class to the cohomology of X , η becomes a regulator. In certain cases, seeing the Mahler
measure as a regulator allows us to explain its relation to special values of L-functions via Beilinson’s conjectures and
similar results.

The condition that the class of η(s1, . . . , sp) be extended to X is given by the triviality of the tame symbols in
the Milnor K -theory. A stronger condition is that η(s1, . . . , sp) is exact. Since η is defined in K M

p (C(X )) ⊗ Q,
η(s1, . . . , sp) is exact if the symbol {s1, . . . , sp} is trivial in K M

p (C(X )) ⊗ Q.
This is a very special condition that is not true for a general polynomial. However, it is true for resultants:

Theorem 8. The symbol

{x01, . . . , x0k0 , . . . , xn1, . . . , xnkn } ∈ K M
k (C(X )) ⊗ Q (26)

is trivial.

In order to prove Theorem 8, we will need the following

Lemma 9. Consider a p-variable polynomial

P(u1, . . . , u p) :=

∑
xiu

i.

Here i is a multiindex, ui
= ui1

1 · · · u
i p
p .

Let E be a field containing the x ′

is and let α1, . . . αp be in E. Then
∧

xi is of the form

P(α1, . . . , αp) ∧

∧
ai +

∑
i,h

ri,hαi ∧

∧
ci,h +

∑
j,l

s j,lb j ∧ (1 − b j ) ∧

∧
b′

j,l ,

where ai , b j , b′

j,l , ci,h are elements of E and ri,h, s j,l are integers.

Proof. First we prove the case for which p = 1. Let us write

P(α) = x0

(
1 +

x1

x0
α

(
1 +

x2

x1
α . . .

(
1 +

xq

xq−1
α

)))
.
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After setting y0 = x0 and yi =
xi

xi−1
for i > 0, we obtain

P(α) = y0(1 + y1α(1 + y2α . . . (1 + yqα))),

and

x0 ∧ · · · ∧ xq = y0 ∧ · · · ∧ yq .

We may introduce α in the last place of the wedge product of yi :

y0 ∧ · · · ∧ yq = y0 ∧ · · · ∧ yq−1 ∧ (yqα) − y0 ∧ · · · ∧ yq−1 ∧ α.

Now we introduce α in the second to the last place

= y0 ∧ · · · ∧ yq−1(1 + yqα) ∧ (yqα) − y0 ∧ · · · ∧ (1 + yqα) ∧ (yqα) − y0 ∧ · · · ∧ yq−1 ∧ α

= y0 ∧ · · · ∧ yq−2 ∧ yq−1α(1 + yqα) ∧ (yqα) − y0 ∧ · · · ∧ yq−2 ∧ α ∧ yq
− y0 ∧ · · · ∧ (1 + yqα) ∧ (yqα) − y0 ∧ · · · ∧ yq−1 ∧ α.

Then we introduce α in the third to the last place. We continue in this fashion

= y0 ∧ · · · ∧ yq−2(1 + yq−1α(1 + yqα)) ∧ yq−1α(1 + yqα) ∧ (yqα)

− y0 ∧ · · · ∧ (1 + yq−1α(1 + yqα)) ∧ yq−1α(1 + yqα) ∧ (yqα)

− y0 ∧ · · · ∧ yq−2 ∧ α ∧ yq − y0 ∧ · · · ∧ (1 + yqα) ∧ (yqα)

− y0 ∧ · · · ∧ yq−1 ∧ α.

After q − 1 more steps, we get

P(α) ∧

∧
ai +

q∑
h=1

±

(
bh ∧ (1 − bh) ∧

∧
b′

h,l

)
−

q∑
h=1

y0 ∧ · · · ∧ yh−1 ∧ α ∧ yh+1 ∧ · · · ∧ yq ,

which proves the claim in this case.
Let us now consider p > 1. We use induction on p. Suppose that the claim is true for p − 1. Then we may write

P(α1, . . . , αp) =

∑
Pi (α1, . . . , αp−1)α

i
p.

By the inductive hypothesis we obtain∧
xi = P0(α1, . . . , αp−1) ∧ · · · ∧ Ph(α1, . . . , αp−1) ∧

∧
ai

+

∑
i,h

ri,hαi ∧

∧
ci,h +

∑
j,l

s j,lb j ∧ (1 − b j ) ∧

∧
b′

j,l .

Now apply the case p = 1 to the first term in order to obtain the desired result. �

In the notation of this proof we used that the coefficients were all different from zero. The proof is easily adapted
to the case when some coefficients are zero. We are going to use this lemma in full generality.

Proof (Theorem 8). By definition of Milnor’s K -theory, it is sufficient to work in
∧k C(X )∗⊗Q. Consider the variety

Y = {z − ResA0,...,An = 0} ⊂ Ck+1.

Let H := C(Y) and E be a finite extension of H containing all the roots that are common to the last n polynomials
F1, . . . , Fn in an algebraically closed field containing H .

We will prove that the symbol determined by

z ∧

∧
x0 j ∧

∧
x1 j ∧ · · · ∧

∧
xnj

is trivial in
∧k+1 E∗

⊗Q. This fact implies that the corresponding symbol in K M
k+1(E)⊗Q is trivial. Now j : H ↪→ E

induces j : K M
∗ (H) → K M

∗ (E) whose kernel is finite (see [1]). Then K M
∗ (H) ⊗ Q ↪→ K M

∗ (E) ⊗ Q is injective and
we conclude that the symbol must be trivial in

∧k+1 H∗
⊗ Q.
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The triviality of this symbol implies that∧
x0 j ∧

∧
x1 j ∧ · · · ∧

∧
xnj

is trivial in
∧s C(X )∗ ⊗ Q, because it is the image by the tame symbol morphism with respect to the valuation

determined by z = 0, [14] (in the language of Newton polytopes, ResA0,...,An corresponds to a facet of z −

ResA0,...,An ).
We will use the Poisson product formula for sparse resultants (Theorem 1.1 in [16] and its refinement in [15,

Theorem 8]):

ResA0,...,An =

∏
η

Resη
dη
∏
α̃

F0(α̃), (27)

where η runs over all the maximal facets of the Newton polytope associated to the Minkowski sum A1 + · · · + An ,
Resη stands for the facet resultant associated to (1) and the facet η, dη is a non negative integer, and α̃ runs over all
the common solutions of the system F1 = · · · = Fn = 0 in (E \ {0})n .

Let us proceed by induction on n. For n = 1 we have, F0 = x01ta01
1 + · · · + x0k0 t

a0k0
1 and F1 = x11ta11

1 + · · · +

x1k1 t
a1k1
1 , where we assume w.l.o.g. that a01 < a02 < · · · < a0k0 and a11 < a12 < · · · < a1k1 . Also, we can suppose

w.l.o.g. that a01 = a11 = 0. This is due to the fact that the resultant is invariant under translations of the Ai ’s. Then,

Res(F0, F1) = xd
1k1

∏
F0(α),

where α runs over the roots of F1 in E \ {0}, and d is a positive integer. Let F̃1 := x12ta12
1 + · · · + x1k1 t

a1k1
1 . Then

z ∧

∧
x0 j ∧

∧
x1 j =

∑
F0(α) ∧

k0∧
j=1

x0 j ∧ F̃1(α) ∧

k1∧
j=2

x1 j + dx1k1 ∧

k0∧
j=1

x0 j ∧ F̃1(α) ∧

k1∧
j=2

x1 j .

The second term is zero because it contains two copies of x1k1 . By applying Lemma 9, the first term yields a
combination of terms of the form b j ∧ (1 − b j ) ∧

∧
b′

j,l , which is trivial in K -theory.
Now let n > 1, and assume again w.l.o.g. that all the supports Ai are contained in Nn , so the Fi ’s are Taylor

polynomials and we can use Lemma 9. Fix a solution α̃ = (α1 . . . , αn) in (E \ {0})n for the last n equations. As in
the case n = 1, it is easy to see that we may write equations of the kind

xl1 = a−1 F̃l(α̃)

where a is equal to a product (possibly empty) of αi .
We need to consider

z ∧

∧
x0 j ∧

∧
x1 j ∧ · · · ∧

∧
xnj ,

which, due to (27), equals∑
F0(α̃) ∧

k0∧
j=1

x0 j ∧ F̃1(α̃) ∧

k1∧
j=2

x1 j ∧ · · · ∧ F̃n(α̃) ∧

kn∧
j=2

xnj

+

∑
η

dη Resη ∧

k0∧
j=1

x0 j ∧ F̃1(α̃) ∧

k1∧
j=2

x1 j ∧ · · · ∧ F̃n(α̃) ∧

kn∧
j=2

xnj .

The sum is over all the solutions α̃ of Fi = 0 for 1 ≤ i ≤ n.
For the first term, we apply Lemma 9 to each of the n + 1 sets of coefficients and obtain a combination of terms of

the form b j ∧ (1 − b j ) ∧
∧

b′

j,l , which is trivial in K -theory.
The terms that correspond to combinations of αi ∧

∧
ci,h are zero because we have n different αi ’s but n +1 terms,

which means that some αi appears twice in the wedge product and then it must be equal to zero.
Consider the second term. For each η and i = 1, . . . , n, we define Gη

i := Fη
i , the restriction of Fi to the facet η

(see [16] for a precise definition of these polynomials). As the coefficients of the Gη
i ’s are included in the coefficients

of the Fi , we can apply induction and obtain the triviality of this term. This can be done due to the fact that Resη is
always a resultant associated to a system of dimension n − 1 or less. Hence, the symbol is trivial in K M

k+1(E)⊗ Q and
that proves the claim. �
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