# Hyperbolic volumes and zeta values An introduction 

Matilde N. Lalín<br>University of Alberta<br>mlalin@math.ulberta.ca<br>http://www.math.ualberta.ca/~mlalin

Annual North/South Dialogue in Mathematics University of Calgary, Alberta

May 2nd, 2008

## The hyperbolic space

Hyperbolic Geometry: Lobachevsky, Bolyai, Gauss (~ 1830)
Beltrami's Half-space model (1868)

$$
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mid x_{i} \in \mathbb{R}, x_{n}>0\right\}
$$

## The hyperbolic space

Hyperbolic Geometry: Lobachevsky, Bolyai, Gauss (~ 1830)
Beltrami's Half-space model (1868)

$$
\begin{gathered}
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mid x_{i} \in \mathbb{R}, x_{n}>0\right\} \\
\mathrm{d} s^{2}=\frac{\mathrm{d} x_{1}^{2}+\cdots+\mathrm{d} x_{n}^{2}}{x_{n}^{2}} \\
\mathrm{~d} V=\frac{\mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}}{x_{n}^{n}} \\
\partial \mathbb{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right)\right\} \cup \infty
\end{gathered}
$$

Geodesics are given by vertical lines and semicircles whose endpoints lie in $\left\{x_{n}=0\right\}$ and intersect it orthogonally.


Poincaré (1882):
Orientation preserving isometries of $\mathbb{H}^{2}$


Geodesics are given by vertical lines and semicircles whose endpoints lie in $\left\{x_{n}=0\right\}$ and intersect it orthogonally.


Poincaré (1882):
Orientation preserving isometries of $\mathbb{H}^{2}$

$$
\begin{gathered}
\operatorname{PSL}(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M(2, \mathbb{R}) \right\rvert\, a d-b c=1\right\} / \pm I \\
z=x_{1}+x_{2} i \rightarrow \frac{a z+b}{c z+d}
\end{gathered}
$$

Orientation preserving isometries of $\mathbb{H}^{3}$ is $\operatorname{PSL}(2, \mathbb{C})$.

$$
\mathbb{H}^{3}=\left\{z=x_{1}+x_{2} i+x_{3} j \mid x_{3}>0\right\},
$$

subspace of quaternions $\left(i^{2}=j^{2}=k^{2}=-1, i j=-j i=k\right)$.

$$
z \rightarrow(a z+b)(c z+d)^{-1}=(a z+b)(\bar{z} \bar{c}+\bar{d})|c z+d|^{-2}
$$

Poincaré: study of discrete groups of hyperbolic isometries.
Picard (1884): fundamental domain for $\operatorname{PSL}(2, \mathbb{Z}[i])$ in $\mathbb{H}^{3}$ has a finite volume.
Humbert (1919) extended this result.

## Volumes in $\mathbb{H}^{3}$

Lobachevsky function:

$$
\begin{aligned}
& \pi(\theta)=-\int_{0}^{\theta} \log |2 \sin t| d t \\
& л(\theta)=\frac{1}{2} \operatorname{Im}\left(\operatorname{Li}_{2}\left(e^{2 i \theta}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{Li}_{2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad|z| \leq 1 \\
& \operatorname{Li}_{2}(z)=-\int_{0}^{z} \log (1-x) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

(multivalued) analytic continuation to $\mathbb{C} \backslash[1, \infty)$

Let $\Delta$ be an ideal tetrahedron (vertices in $\partial \mathbb{H}^{3}$ ).
Theorem
(Milnor, after Lobachevsky)
The volume of an ideal tetrahedron with dihedral angles $\alpha, \beta$, and $\gamma$ is given by

$$
\operatorname{Vol}(\Delta)=\pi(\alpha)+\quad л(\beta)+\quad л(\gamma) .
$$



Move a vertex to $\infty$ and use baricentric subdivision to get six simplices with three right dihedral angles.

Triangle with angles $\alpha, \beta, \gamma$, defined up to similarity.
Let $\Delta(z)$ be the tetrahedron determined up to transformations by any of $z, 1-\frac{1}{z}, \frac{1}{1-z}$.


If ideal vertices are $z_{1}, z_{2}, z_{3}, z_{4}$,

$$
z=\left[z_{1}: z_{2}: z_{3}: z_{4}\right]=\frac{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}
$$

Bloch-Wigner dilogarithm

$$
D(z)=\operatorname{Im}\left(\operatorname{Li}_{2}(z)+\log |z| \log (1-z)\right)
$$

Continuous in $\mathbb{P}^{1}(\mathbb{C})$, real-analytic in $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$.

$$
\begin{gathered}
D(z)=-D(1-z)=-D\left(\frac{1}{z}\right)=-D(\bar{z}) \\
\operatorname{Vol}(\Delta(z))=D(z)
\end{gathered}
$$

Five points in $\partial \mathbb{H}^{3} \cong \mathbb{P}^{1}(\mathbb{C})$, then the sum of the signed volumes of the five possible tetrahedra must be zero:

$$
\sum_{i=0}^{5}(-1)^{i} \operatorname{Vol}\left(\left[z_{1}: \cdots: \hat{z}_{i}: \cdots: z_{5}\right]\right)=0
$$

Five-term relation

$$
D(x)+D(1-x y)+D(y)+D\left(\frac{1-y}{1-x y}\right)+D\left(\frac{1-x}{1-x y}\right)=0
$$

## Dedekind $\zeta$-function

$F$ number field, $[F: \mathbb{Q}]=n=r_{1}+2 r_{2}$
$\tau_{1}, \ldots, \tau_{r_{1}}$ real embeddings
$\sigma_{1}, \ldots, \sigma_{r_{2}}$ a set of complex embeddings (one for each pair of conjugate embeddings).

$$
\zeta_{F}(s)=\sum_{\mathfrak{A} \text { ideal } \neq 0} \frac{1}{N(\mathfrak{A})^{s}}, \quad \operatorname{Re} s>1
$$

$N(\mathfrak{A})=\left|\mathcal{O}_{F} / \mathfrak{A}\right|$ norm.
Euler product

$$
\prod_{\mathfrak{P} \text { prime }} \frac{1}{1-N(\mathfrak{P})^{-s}}
$$

## Theorem

(Dirichlet's class number formula) $\zeta_{F}(s)$ extends meromorphically to $\mathbb{C}$ with only one simple pole at $s=1$ with

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{F}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{F} \mathrm{reg}_{F}}{\omega_{F} \sqrt{\left|D_{F}\right|}}
$$

where

- $h_{F}$ is the class number.
- $\omega_{F}$ is the number of roots of unity in $F$.
- $\operatorname{reg}_{F}$ is the regulator.

$$
\lim _{s \rightarrow 0} s^{1-r_{1}-r_{2}} \zeta_{F}(s)=-\frac{h_{F} \operatorname{reg}_{F}}{\omega_{F}}
$$

## Regulator

$$
\left\{u_{1}, \ldots, u_{r_{1}+r_{2}-1}\right\} \text { basis for } \mathcal{O}_{F}^{*} \text { modulo torsion }
$$

$$
L\left(u_{i}\right):=\left(\log \left|\tau_{1} u_{i}\right|, \ldots, \log \left|\tau_{r_{1}} u_{i}\right|, 2 \log \left|\sigma_{1} u_{i}\right|, \ldots, 2 \log \left|\sigma_{r_{2}-1} u_{i}\right|\right)
$$

$\operatorname{reg}_{F}$ is the determinant of the matrix.
$=$ (up to a sign) the volume of fundamental domain for $L\left(\mathcal{O}_{F}^{*}\right)$.

Euler:

$$
\zeta(2 m)=\frac{(-1)^{m-1}(2 \pi)^{2 m} B_{m}}{2(2 m)!}
$$

Klingen , Siegel:
$F$ is totally real $\left(r_{2}=0\right)$,

$$
\zeta_{F}(2 m)=r(m) \sqrt{\left|D_{F}\right|} \pi^{2 m n}, \quad m>0
$$

where $r(m) \in \mathbb{Q}$.

## Building manifolds

## Bianchi:

- $F=\mathbb{Q}(\sqrt{-d}) d \geq 1$ square-free
- 「 a torsion-free subgroup of $\operatorname{PSL}\left(2, \mathcal{O}_{d}\right)$,
- $\left[P S L\left(2, \mathcal{O}_{d}\right): \Gamma\right]<\infty$.

Then $\mathbb{H}^{3} / \Gamma$ is an oriented hyperbolic three-manifold.

## Example:

$$
d=3, \quad \mathcal{O}_{3}=\mathbb{Z}[\omega], \quad \omega=\frac{-1+\sqrt{-3}}{2}
$$

Riley:

$$
\left[P S L\left(2, \mathcal{O}_{3}\right): \Gamma\right]=12
$$

$\mathbb{H}^{3} / \Gamma$ diffeomorphic to $S^{3} \backslash \mathrm{Fig}-8$.


## Theorem

(Essentially Humbert)

$$
\begin{gathered}
\operatorname{Vol}\left(\mathbb{H}^{3} / \operatorname{PSL}\left(2, \mathcal{O}_{d}\right)\right)=\frac{D_{d} \sqrt{D_{d}}}{4 \pi^{2}} \zeta_{\mathbb{Q}(\sqrt{-d})}(2) \\
\qquad D_{d}= \begin{cases}d & d \equiv 3 \bmod 4 \\
4 d & \text { otherwise }\end{cases}
\end{gathered}
$$

$M$ hyperbolic 3-manifold

$$
\begin{gathered}
\operatorname{Vol}(M)=\sum_{j=1}^{J} D\left(z_{j}\right) \\
\zeta_{\mathbb{Q}(\sqrt{-d})}(2)=\frac{D_{d} \sqrt{D_{d}}}{2 \pi^{2}} \sum_{j=1}^{J} D\left(z_{j}\right) .
\end{gathered}
$$

Example:

$$
\begin{gathered}
\operatorname{Vol}\left(S^{3} \backslash \operatorname{Fig}-8\right)=12 \frac{3 \sqrt{3}}{4 \pi^{2}} \zeta_{\mathbb{Q}(\sqrt{-3})}(2) \\
=3 D\left(\mathrm{e}^{\frac{2 i \pi}{3}}\right)=2 D\left(\mathrm{e}^{\frac{i \pi}{3}}\right)
\end{gathered}
$$

Zagier (1986):

- $[F: \mathbb{Q}]=r_{1}+2$
$\Gamma$ torsion free subgroup of finite index of the group of units of an order in a quaternion algebra $B$ over $F$ that is ramified at all real places.

$$
\operatorname{Vol}\left(\mathbb{H}^{3} / \Gamma\right) \sim_{\mathbb{Q}^{*}} \frac{\sqrt{\left|D_{F}\right|}}{\pi^{2(n-1)}} \zeta_{F}(2)
$$

- $[F: \mathbb{Q}]=r_{1}+2 r_{2}, \quad r_{2}>1$
$\Gamma$ discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})^{r_{2}}$ such that

$$
\begin{aligned}
& \operatorname{Vol}\left(\left(\mathbb{H}^{3}\right)^{r_{2}} / \Gamma\right) \sim_{\mathbb{Q}^{*}} \frac{\sqrt{\left|D_{F}\right|}}{\pi^{2\left(r_{1}+r_{2}\right)}} \zeta_{F}(2) . \\
& \left(\mathbb{H}^{3}\right)^{r_{2}} / \Gamma=\bigcup \Delta\left(z_{1}\right) \times \cdots \times \Delta\left(z_{r_{2}}\right)
\end{aligned}
$$

## The Bloch group

$$
\operatorname{Vol}(M)=\sum_{j=1}^{J} D\left(z_{j}\right)
$$

then

$$
\sum_{j=1}^{J} z_{j} \wedge\left(1-z_{j}\right)=0 \in \bigwedge^{2} \mathbb{C}^{*}
$$

$$
\bigwedge^{2} \mathbb{C}^{*}=\left\{x \wedge y \mid x \wedge x=0, x_{1} x_{2} \wedge y=x_{1} \wedge y+x_{2} \wedge y\right\}
$$

$\operatorname{Vol}(M)=D\left(\xi_{M}\right)$, where $\xi_{M} \in \mathcal{A}(\overline{\mathbb{Q}})$, and

$$
\mathcal{A}(F)=\left\{\sum n_{i}\left[z_{i}\right] \in \mathbb{Z}[F] \mid \sum n_{i} z_{i} \wedge\left(1-z_{i}\right)=0\right\} .
$$

Let

$$
\begin{gathered}
\mathcal{C}(F)=\left\{\left.[x]+[1-x y]+[y]+\left[\frac{1-y}{1-x y}\right]+\left[\frac{1-x}{1-x y}\right] \right\rvert\,\right. \\
x, y \in F, x y \neq 1\}
\end{gathered}
$$

Bloch group is

$$
\mathcal{B}(F)=\mathcal{A}(F) / \mathcal{C}(F)
$$

$D: \mathcal{B}(\mathbb{C}) \rightarrow \mathbb{R}$ well-defined function,
$\operatorname{Vol}(M)=D\left(\xi_{M}\right)$ for some $\xi_{M} \in \mathcal{B}(\overline{\mathbb{Q}})$, independently of the triangulation.
Then
$\zeta_{F}(2)=\sqrt{\left|D_{F}\right|} \pi^{2(n-1)} D\left(\xi_{M}\right)$ for $r_{2}=1$.

Theorem
(Zagier, Bloch, Suslin) For a number field $[F: \mathbb{Q}]=r_{1}+2 r_{2}$,

- $\mathcal{B}(F)$ is finitely generated of rank $r_{2}$.
- $\xi_{1}, \ldots \xi_{r_{2}} \mathbb{Q}$-basis of $\mathcal{B}(F) \otimes \mathbb{Q}$. Then

$$
\zeta_{F}(2) \sim_{\mathbb{Q}^{*}} \sqrt{\left|D_{F}\right|} \pi^{2\left(r_{1}+r_{2}\right)} \operatorname{det}\left\{D\left(\sigma_{i}\left(\xi_{j}\right)\right)\right\}_{1 \leq i, j \leq r_{2}}
$$

- " $\mathcal{B}(F)$ is $K_{3}(F)$ "
- Borel's theorem.


## Theorem

(Zagier, Bloch, Suslin) For a number field $[F: \mathbb{Q}]=r_{1}+2 r_{2}$,

- $\mathcal{B}(F)$ is finitely generated of rank $r_{2}$.
- $\xi_{1}, \ldots \xi_{r_{2}} \mathbb{Q}$-basis of $\mathcal{B}(F) \otimes \mathbb{Q}$. Then

$$
\zeta_{F}(2) \sim_{\mathbb{Q}^{*}} \sqrt{\left|D_{F}\right|} \pi^{2\left(r_{1}+r_{2}\right)} \operatorname{det}\left\{D\left(\sigma_{i}\left(\xi_{j}\right)\right)\right\}_{1 \leq i, j \leq r_{2}} .
$$

Proof:

- " $\mathcal{B}(F)$ is $K_{3}(F)$ "
- Borel's theorem.


## Conjecture

Let $F$ be a number field. Let $n_{+}=r_{1}+r_{2}, n_{-}=r_{2}$, and $\mp=(-1)^{k-1}$. Then

- $\mathcal{B}_{k}(F)$ is finitely generated of rank $n_{\mp}$.
- $\xi_{1}, \ldots \xi_{n_{\mp}} \mathbb{Q}$-basis of $\mathcal{B}_{k}(F) \otimes \mathbb{Q}$. Then

$$
\zeta_{F}(k) \sim_{\mathbb{Q}^{*}} \sqrt{\left|D_{F}\right|} \pi^{k n_{ \pm}} \operatorname{det}\left\{\mathcal{L}_{k}\left(\sigma_{i}\left(\xi_{j}\right)\right)\right\}_{1 \leq i, j \leq n_{\mp}}
$$

## Example

$F=\mathbb{Q}(\sqrt{5}), r_{1}=2, r_{2}=0$.
$\left\{[1],\left[\frac{-1+\sqrt{5}}{2}\right]\right\}$ basis for $\mathcal{B}_{3}(F)$.

$$
\begin{aligned}
& =\left|\begin{array}{cc}
\mathcal{L}_{3}(1) & \mathcal{L}_{3}\left(\frac{-1+\sqrt{5}}{2}\right) \\
\mathcal{L}_{3}(1) & \mathcal{L}_{3}\left(\frac{-1-\sqrt{5}}{2}\right)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\zeta(3) & \frac{1}{10} \zeta(3)+\frac{25}{48} \sqrt{5} L\left(3, \chi_{5}\right) \\
\zeta(3) & \frac{1}{10} \zeta(3)-\frac{25}{48} \sqrt{5} L\left(3, \chi_{5}\right)
\end{array}\right| \\
& =-\frac{25}{24} \sqrt{5} \zeta(3) L\left(3, \chi_{5}\right)=-\frac{25}{24} \sqrt{5} \zeta_{F}(3) .
\end{aligned}
$$

## Application

D'Andrea, L. (2007)

$$
\frac{1}{(2 \pi \mathrm{i})^{3}} \int_{\mathbb{T}^{3}} \log \left|z-\frac{(1-x)(1-y)}{1-x y}\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \frac{\mathrm{~d} z}{z}=\frac{25 \sqrt{5} L\left(3, \chi_{5}\right)}{\pi^{2}}
$$

