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Further explorations of Boyd’s conjectures
and a conductor 21 elliptic curve

Matilde Laĺın, Detchat Samart and Wadim Zudilin

Abstract

We prove that the (logarithmic) Mahler measure m(P ) of P (x, y) = x + 1/x + y + 1/y + 3 is
equal to the L-value 2L′(E, 0) attached to the elliptic curve E : P (x, y) = 0 of conductor 21. In
order to do this we investigate the measure of a more general Laurent polynomial

Pa,b,c(x, y) = a

(
x +

1

x

)
+ b

(
y +

1

y

)
+ c

and show that the wanted quantity m(P ) is related to a “half-Mahler” measure of P̃ (x, y) =
P√

7,1,3(x, y). In the finale we use the modular parametrization of the elliptic curve P̃ (x, y) = 0,
again of conductor 21, due to Ramanujan and the Mellit–Brunault formula for the regulator of
modular units.

1. Introduction

For a nonzero Laurent polynomial P (x1, . . . , xd) ∈ C[x±11 , . . . , x±1d ], the (logarithmic) Mahler
measure of P is defined by

m(P ) =
1

(2πi)d

∫
· · ·

∫
|x1|=···=|xd|=1

log |P (x1, . . . , xd)|
dx1
x1
· · · dxd

xd

=

∫1
0

· · ·
∫1
0

log |P (e2πiθ1 , . . . , e2πiθd)|dθ1 · · · dθd.

It was observed by Deninger [10] and then systematically verified by Boyd [6] and Rodriguez-
Villegas [16] that general conjectures of Beilinson predict the connection of two-variate Mahler
measures m(P (x, y)) with L-values of the corresponding curve P (x, y) = 0, at least in the cases
when the curve is elliptic and the polynomial P (x, y) = 0 is tempered (for the definition of a
tempered polynomial, see [16, Section III]). A particular family of such two-variate polynomials,
which has launched the elliptic L-story, is

Pk(x, y) = x+
1

x
+ y +

1

y
+ k,

with k = 1 originally considered by Deninger in [10] and later extended to k ∈ Z \ {0} by
Boyd and to k2 ∈ Z \ {0} by Rodriguez-Villegas (see [6, Table 1] and [16, Table 4]). The
work [16] has already incorporated some methods for attacking the conjectural evaluations of
Mahler measures via L-values and proving several such cases when the related elliptic curves
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P (x, y) = 0 have complex multiplication. Some further development of the techniques in the
works of Brunault, Mellit, Rogers and others [7, 11, 13, 14, 18, 19, 20] has allowed to establish
several new conjectural instances when the elliptic curves are parameterized by modular units
(that is, modular functions whose zeroes and poles are only at cusps). The final news is an
elegant general formula of Brunault [8] that allows one to deal with parametrization by Siegel
units; this creates an efficient way to proving any particular Mahler measure evaluation on a
case-by-case study, and the work [8] includes numerous illustrations to the principle.

The original motivation of our project was computing the Mahler measure of polynomial
P3(x, y) and providing explanation of certain related identities first observed numerically. Boyd
[6, Table 1] conjectured that

m(P3) =
21

2π2
L(E, 2) = 2L′(E, 0), (1)

where the elliptic curve E of conductor 21 is defined as the zero locus of P3(x, y), and this
conjecture was confirmed only recently by Brunault [8]. Note that from the modularity theorem
we have L(E, s) = L(f21, s), where f21(τ) = q − q2 + q3 − q4 − · · · ∈ S2(Γ0(21)) and q = e2πiτ .
The curve E : P3(x, y) = 0 does not possess a modular-unit parametrization (and this is the
smallest known example, in terms of conductor, of a tempered polynomial with this property).
At the same time, it is isogenous to

√
7

(
x+

1

x

)
+ y +

1

y
+ 3 = 0,

which defines the modular curve X0(21) and whose modular-unit parametrization was already
observed by Ramanujan (see Section 2 for details). However, the polynomial

√
7

(
x+

1

x

)
+ y +

1

y
+ 3

does not happen to be tempered, and its Mahler measure is (in a certain sense) trivial — see
equation (3) below.

The aim of this paper is to develop a link between Mahler measures associated with general
3-parametric polynomials

Pa,b,c(x, y) = a

(
x+

1

x

)
+ b

(
y +

1

y

)
+ c

and the Mahler measure of m(Pk) and, by these means, to give an alternative proof of
evaluation (1). Notice that for a large set of real parameters a, b, c the Mahler measure has a
trivial evaluation.

Theorem 1. If a, b, c are real and |c| ≤ 2
∣∣|a| − |b|∣∣ then

m(Pa,b,c(x, y)) = log max{|a|, |b|}.

The proof of the result makes use of classical Jensen’s formula

m(x− x0) = log+ |x0| = max{0, log |x0|};

see Section 2 for details.
To proceed further we observe the symmetry m(Pa,b,c) = m(Pb,a,c) of the family and the

property m(Pa,b,c) = log |b|+ m(Pa/b,1,c/b) following from the definition of the Mahler measure.
These features allow us to consider instead the 2-parametric family

Pa,c(x, y) = a

(
x+

1

x

)
+

(
y +

1

y

)
+ c,
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in which |a| ≥ 1. Though several statements about the polynomials remain valid even without
the latter condition, in what follows we focus our study on the case when a, c are real and
a ≥ 1, c > 0.

If we write

yPa,c(x, y) = y2 +A(x)y +B(x) = (y − y+(x))(y − y−(x)),

y±(x) =
−A(x)±

√
A(x)2 − 4B(x)

2
,

then it follows from the definition of m(P ) and Jensen’s formula that

m(Pa,c) = m(yPa,c) = m(y − y+) + m(y − y−) = m+(Pa,c) + m−(Pa,c), (2)

where

m±(Pa,c) = m(y − y±) =
1

2πi

∫
|x|=1

log+ |y±(x)| dx
x
.

When a =
√

7 and c = 3, it is easily seen from Theorem 1 that

m(P√7,3) = log
√

7. (3)

On the other hand, if we decompose m(P√7,3) according to (2), each of m±(P ) encodes more
interesting arithmetic quantities. Indeed, we have discovered from our numerical computation
that

m−(P√7,3) =
1

2
L′(f21, 0) +

3

8
log 7, (4)

m+(P√7,3) = −1

2
L′(f21, 0) +

1

8
log 7,

which will be proven subsequently in this paper. An equivalent form of any of these identities,
namely

m−(P√7,3)− 3m+(P√7,3) = 2L′(f21, 0), (5)

is reminiscent of Boyd’s conjecture (1), so we have hypothesized that there is a way to connect
m(P3) with the L-value by means of identity (5).

More generally, we prove in Section 6 the following result.

Theorem 2. For real k, 0 < k < 4, let a =
√

(4 + k)/(4− k) and c = k/
√

4− k. Then

m(P1,k) = m−(Pa,c)− 3m+(Pa,c). (6)

Note that the parameters participating in (6) can be alternatively expressed by means of
a > 1:

c =

√
2(a2 − 1)√
a2 + 1

and k =
4(a2 − 1)

a2 + 1
.

In Section 3 we compute a Weierstrass form of the elliptic curve E given by Pa,c(x, y) = 0
and identify some particular (torsion) points on the curve. The fact that the “half-Mahler”
measures m±(Pa,c) happen to be Q-linear combinations of log a and the L-value of E has its
roots in a K-theoretic interpretation of the measures and related Beilinson’s conjectures. We
review the corresponding heuristics, essentially due to Deninger [10] and Rodriguez-Villegas
[16], in Section 4. When the parameters a and c are subject to the hypothesis of Theorem 2,
the curve E : Pa,c(x, y) = 0 is isogenous to the curve P1,k(x, y) = 0, and it is this isogeny that
gives rise to the theorem. Section 5 provides the reader with the details on the isogeny, outlines
the proof of a weaker version of Theorem 2 and addresses some other technical issues that are
needed later in Section 7.
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Our next principal result here is equation (4).

Theorem 3. In the above notation,

m−(P√7,3) =
1

2
L′(f21, 0) +

3

8
log 7.

Our proof of Theorem 3 relies crucially on the fact that the curve E : P√7,3(x, y) = 0 admits
a modular-unit parametrization, which enables us to apply [20, Theorem 1]. This part is
achieved in Section 7. We then have Boyd’s evaluation (1) immediately from Theorems 1–3.
Indeed, combining the above for a =

√
7 with equation (3) and the modularity theorem, we

recover the expected result.

Corollary 1. Boyd’s conjecture is true for k = 3. In other words,

m(P3) = 2L′(E, 0),

where E is the elliptic curve P3(x, y) = 0.

Finally, in Section 8 we outline some natural directions for future study.

2. Jensen’s formula

In this section we prove Theorem 1.

Lemma 1. If a, c are real and 1 + |c|/2 ≤ |a| then

m(Pa,c(x, y)) = m−(Pa,c(x, y)) + m+(Pa,c(x, y)) = log |a|. (7)

Proof. When |a| ≥ 1 + |c|/2, the zeroes of the quadratic polynomial in x

xPa,c(x, y)

a
= x2 +

y + 1/y + c

a
x+ 1

are complex conjugate of absolute value 1, because y + 1/y is real between −2 and 2 for y
on the unit circle, so that the real coefficient (y + 1/y + c)/a is in the same range. Therefore,
Jensen’s formula applies to imply that the Mahler measure of the latter polynomial

1

2πi

∫
|x|=1

log

∣∣∣∣xPa,c(x, y)

a

∣∣∣∣ dx

x
=

1

2πi

∫
|x|=1

log |Pa,c(x, y)| dx
x
− log |a|

is zero for any y; integrating over y results in the required two-variate Mahler measure
evaluation.

Proof of Theorem 1. It follows from the symmetry with respect to the parameters a and b,
the relation m(Pa,b,c) = log |b|+ m(Pa/b,1,c/b) and Lemma 1.

3. Weierstrass form

Consider the curve

Ea,c : a

(
x+

1

x

)
+ y +

1

y
+ c = 0.
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If we think of y as a function on x, we have two solutions given by

y±(x) =
−(a(x+ x−1) + c))±

√
(a(x+ x−1) + c))2 − 4

2
. (8)

On the torus |x| = 1 we let x = eiθ, where −π ≤ θ ≤ π, so that x+ 1/x = 2 cos θ. We have
(a(x+ 1/x) + c)2 − 4 > 0 if and only if cos θ < t− or cos θ > t+, where

t− = max

{
−1,−2 + c

2a

}
and t+ = min

{
1,

2− c
2a

}
.

Furthermore, if cos θ < t− then |y−(x)| < 1 < |y+(x)|, while if cos θ > t+ then |y+(x)| < 1 <
|y−(x)|. Denote θ− > θ+ the quantities from the interval [0, π], for which cos θ− = t− and
cos θ+ = t+. In the notation of Section 1 we have

m−(Pa,c) =
1

2π

∫
−θ+≤arg x≤θ+

log |y−(x)|d arg x =
1

π

∫
0≤arg x≤θ+

log |y−(x)|d arg x

=
1

π

∫1
t+

log |at+ c/2 +
√

(at+ c/2)2 − 1|√
1− t2

dt, (9)

m+(Pa,c) =
1

2π

∫
θ−≤arg x≤2π−θ−

log |y+(x)|d arg x =
1

π

∫
θ−≤arg x≤π

log |y+(x)|d arg x

=
1

π

∫ t−
−1

log |at+ c/2−
√

(at+ c/2)2 − 1|√
1− t2

dt. (10)

Note that for a = 1 we get θ− = π, so that m+(P1,c) = 0 and

m(P1,c) = m−(P1,c) =
1

π

∫
0≤arg x≤θ+

log |y−(x)|d arg x.

By taking

X = − a

xy
, Y =

a

2xy

(
y − 1

y
− a

(
x− 1

x

))
,

we obtain the Weierstrass form

Y 2 = X

(
X2 +

(
c2

4
− 1− a2

)
X + a2

)
.

We record here the inverse transformations

x =
a(cX − 2Y )

2X(X − a2)
, y =

cX + 2Y

2X(X − 1)
. (11)

In this Weierstrass form we have two points P = (1, c/2) and Q = (a2, ca2/2) that satisfy

2P =

(
(a2 − 1)2

c2
,

(a2 − 1)(2a4 − a2c2 − 4a2 − c2 + 2)

2c3

)
,

2Q =

(
(a2 − 1)2

c2
,− (a2 − 1)(2a4 − a2c2 − 4a2 − c2 + 2)

2c3

)
,

(12)

and P +Q = (0, 0). Notice that when a = 1, we get P = Q and the point has order 4.
The images of P and Q on the original curve Ea,c : Pa,c(x, y) = 0 are written as

P̄ = (0,∞) and Q̄ =

(
1− a2

ac
,

c

a2 − 1

)
if a 6= 1, and P̄ = Q̄ = (0,∞) if a = 1.
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If c/2 < a+ 1, the points

S̄± =

(
1− c/2±

√
(1− c/2)2 − a2
a

,−1

)
,

T̄± =

(
−1− c/2±

√
(1 + c/2)2 − a2
a

, 1

) (13)

on the curve Ea,c correspond to arg x = ±θ+ and arg x = ±θ− respectively; the latter case is
considered only if c/2 < a− 1. On the curve in its Weierstrass form the points are

S± =
(
1− c/2∓

√
(1− c/2)2 − a2,±

√
(1− c/2)2 − a2

(
1− c/2∓

√
(1− c/2)2 − a2

))
,

T± =
(
1 + c/2±

√
(1 + c/2)2 − a2,±

√
(1 + c/2)2 − a2

(
1 + c/2±

√
(1 + c/2)2 − a2

))
.

Then we have

2S± = 2T± = P and S+ + S− = T+ + T− = −Q.

Remark 1. At this stage we would like to identify two particular choices for a and c that
correspond to special structures of the group generated by P and Q.

First, when

c =

√
2(a2 − 1)√
a2 + 1

, (14)

and in this case only, we have S+ + T+ = −P . This case can be alternatively characterized by

2P = 2Q =

(
a2 + 1

2
, 0

)
in accordance with (12).

Second, if we prescribe

c = a2 − 1 (15)

then

3P = O, 3Q = (0, 0).

As usual, for any meromorphic functions f, g on a smooth projective curve C, we define

η(f, g) = log |f |d arg(g)− log |g|d arg(f), (16)

where d arg(g) is globally defined as Im(dg/g).
Considering x and y = y± as rational functions on the curve in its Weierstrass form we get

from the earlier formulas via the change of variables, for c/2 < a+ 1,

m−(Pa,c) =
1

2π

∫
[S−,S+]

η(y−, x) = − 1

2π

∫
[S−,S+]

η(x, y−) (17)

and also, when c/2 < a− 1,

m+(Pa,c) =
1

2π

∫
[T+,T−]

η(y+, x) = − 1

2π

∫
[T−,T+]

η(x, y−). (18)

We stress on the fact that here and in what follows the integration of η(x, y) is performed
on the curve in its Weierstrass form (that is, in the coordinates (X,Y )); the coordinates x and
y are understood as the rational functions (11) of X and Y . This implies that we integrate in
(17) and (18) over the intervals [S−, S+] and [T−, T+] rather than over [S̄−, S̄+] and [T̄−, T̄+].

There is no simple recipe to identify y (as defined by equation (11)) with either y− or y+.
However we can notice, on the basis of equations (8), that as x→ 0 and x→∞ we have y+ → 0
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and y− →∞, respectively, and this can be used in the identification. We discuss these issues
in Section 5 below.

4. Elliptic regulator

This section has two goals. The first goal is to cast the (“half-”) Mahler measures of Pa,c(x, y)
in terms of elliptic regulators and present some evidence for the former to be rationally
related to the L-value of the underlying curve Ea,c : Pa,c(x, y) = 0. The second goal has a more
technical favour: computing certain tame symbols associated with the integral that appears in
Theorem 3. This computation is an essential part of our proof of the theorem in Section 7.
More specifically, the tame symbols will dictate the choice of the integration path in Lemma 7.

Throughout the section we take a and c such that a2, c2 ∈ Q so that the curve Ea,c is defined
over Q.

First we recall the relationship of the Mahler measure to the regulator and tame symbols.
Matsumoto’s theorem yields a simple expression for the second K-group of a field F :

K2(F ) ∼= F× ⊗Z F
×/〈x⊗ (1− x) : x ∈ F, x 6= 0, 1〉

∼= ∧2F×/〈x⊗ (1− x) : x ∈ F, x 6= 0, 1〉.

For a discrete valuation v and a maximal ideal M, the tame symbol of {x, y} ∈ K2(F ) at v is
given by

(x, y)v ≡ (−1)v(x)v(y)
xv(y)

yv(x)
modM

(see [16]).
Let E/Q be an elliptic curve. In the case when F = Q(E), each point S ∈ E(Q̄) determines

a valuation by considering the order of the rational functions at S. Denote this valuation by
vS . An element {x, y} ∈ K2(Q(E))⊗Q can be seen as an element in K2(E)⊗Q whenever
(x, y)vS = 1 for all S ∈ E(Q̄). This is the case when we consider the symbol {x, y} in
K2(Q(Ea,c)) when a = 1, as this is a tempered family by a result from [16] and therefore
it satisfies the triviality of tame symbols. However, this is not the case for the symbol {x, y}
in K2(Q(Ea,c)) for general a. In fact, we have the following result which will be shown later in
this section.

Lemma 2. On the curve Ea,c we have

|(x, y)P | = |(x, y)−Q| =
1

a
, |(x, y)P+Q| = |(x, y)O| = a;

all the other tame symbols (x, y)R are trivial.

The regulator map of Bloch and Beilinson [2, 4] may be defined by

r : K2(E)→ H1(E,R), {x, y} 7→
{
γ →

∫
γ

η(x, y)

}
,

for γ ∈ H1(E,Z).

Remark 2. Technically, the regulator is defined over K2(E) where E is the Néron model of
the elliptic curve E;K2(E) may be considered, up to torsion, as a subgroup ofK2(E) determined
by finitely many extra conditions given by the primes of bad reduction of E (see [5]).
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When a = 1, after the work of Deninger [10] and Rodriguez-Villegas [16] we can write

m(P1,c) = − 1

2π
rc({x, y})([γ]), (19)

where rc denotes the regulator on E1,c and γ is a generator of H1(E1,c,Z)−, the homology
group generated by the cycles that change signs under complex conjugation of the coordinates
x and y, in this case given by the cycle |x| = 1, |y−| ≥ 1.

Let Z[E(C)]− be the group of divisors on E modulo divisors of the form (a) + (−a) for
a ∈ E(C). To two rational functions f, g ∈ C(E)× with divisors (f) =

∑
imi(ai) and (g) =∑

j nj(bj) the diamond operator

� : ∧2 C(E)× → [Z(E(C)]−

assigns the divisor

(f) � (g) =
∑
i,j

minj(ai − bj).

The elliptic dilogarithm is a certain Eisenstein–Kronecker series that satisfies∫
γ

η(f, g) = DE

(
(f) � (g)

)
,

where γ is a generator of H1(E,Z)−; details can be found, for example, in [10, 13, 16]. For the
purpose of this paper we only use that the elliptic dilogarithm is a function of E and (f) � (g),
in the same spirit as in [17].

As explained in [16, Lemma on p. 25] we have that

Resv η(f, g) = log |(f, g)v|.

Thus, these residues contribute to the integrals in the general case of Ea,c, where some tame
symbols are not trivial. Following the argument similar to that of [10, pp. 272–274] one sees
that the paths of integration [S−, S+] and [T−, T+] can again be interpreted in terms of elements
in H1(Ea,c,Q). To show that they are in H1(Ea,c,Q)−, consider the form

ω =
dX

2Y
= − dx

2x(y − y−1)
.

From the construction of path [S−, S+] we see that
∫
[S−,S+]

ω is purely imaginary, thus

[S−, S+] ∈ H1(Ea,c,Q)−. The same reasoning applies to the path [T−, T+]. Furthermore,
assuming that S± and T± are points of order N , we have the arithmetically stronger versions
[S−, S+], [T−, T+] ∈ H1(Ea,c, (1/N)Z)−.

Therefore, we have the following observation.

Lemma 3. Let f, g ∈ Q(Ea,c) be such that any valuation of their tame symbol is an integral
(possibly zero) power of a. Then there exist rational numbers p and q such that

1

2π

∫
[S−,S+]

η(f, g) =
q

2π
DEa,c

(
(f) � (g)

)
+ p log a,

where q does not depend on the choice of f, g, and the similar statement (with possibly different
p and q) is true for the integral over [T−, T+].

Furthermore, if S±, T± are points of order N then both Np and Nq are integers.
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To compute the divisors (x) and (y), we first perform the computation of the divisors of
some rational functions in the Weierstrass form of the curve:

(X) = 2(P +Q)− 2O,

(X − 1) = (P ) + (−P )− 2O,

(X − a2) = (Q) + (−Q)− 2O,

(cX + 2Y ) = (P +Q) + (−Q) + (−P )− 3O,

(cX − 2Y ) = (P +Q) + (Q) + (P )− 3O.

By referring to equations (11) we obtain

(x) = −(P +Q) + (P )− (−Q) +O and (y) = −(P +Q)− (P ) + (−Q) +O;

thus, the diamond operation of the divisors is given by

(x) � (y) = 4(P ) + 4(Q). (20)

The knowledge of the divisors (x) and (y) allows us to compute the tame symbols.

Proof of Lemma 2. It suffices to concentrate on the tame symbols over points that are
supported in the divisors of x, y, since the tame symbol is trivial for the other points:

|(x, y)P | =
∣∣∣∣ 1

xy

∣∣∣∣
P

=

∣∣∣∣Xa
∣∣∣∣
P

=
1

a
,

|(x, y)−Q| = |xy|−Q =
∣∣∣ a
X

∣∣∣
−Q

=
1

a
,

|(x, y)P+Q| =
∣∣∣y
x

∣∣∣
P+Q

=

∣∣∣∣ (cX + 2Y )(X − a2)

a(cX − 2Y )(X − 1)

∣∣∣∣
P+Q

= a,

|(x, y)O| =
∣∣∣∣xy
∣∣∣∣
O

=

∣∣∣∣a(cX − 2Y )(X − 1)

(cX + 2Y )(X − a2)

∣∣∣∣
O

= a.

We can now summarize the outcomes of Lemmas 2 and 3 in the following form.

Proposition 1. Under the rationality conditions a2, c2 ∈ Q for a, c, there exist
p1, q1, p2, q2 ∈ Q such that

1

2π

∫
[S−,S+]

η(x, y) =
q1
2π

DEa,c

(
(x) � (y)

)
+ p1 log a,

1

2π

∫
[T−,T+]

η(x, y) =
q2
2π

DEa,c

(
(x) � (y)

)
+ p2 log a.

Furthermore, if S±, T± are points of order N then Np1, Nq1, Np2, Nq2 ∈ Z.

Still without identifying the rational function y on Ea,c with either y− or y+, we see that
the integrals in Proposition 1 are, up to sign, the “half-Mahler” measures m−(Pa,c) and
m+(Pa,c). Therefore, the result can be interpreted as follows: each of the measures is a Q-
linear combination of the elliptic dilogarithm DEa,c

((x) � (y))/(2π) and log a. At the same
time, the conjectures of Bloch and Beilinson [2, 4] predict that K2(Ea,c) has rank one and,
thus, the dilogarithmic quantity is a rational multiple of L′(Ea,c, 0), so that both m−(Pa,c) and
m+(Pa,c) are expected to be Q-linear combinations of the L-value and log a.
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5. Isogeny

In this section we concentrate on the curve Ea,c : Pa,c(x, y) = 0 subject to the condition (14).
Its Weierstrass form is

Y 2 = X

(
X − 2a2

a2 + 1

)(
X − a2 + 1

2

)
.

One can construct a degree 2 isogeny ϕ between the latter and

Y ′
2

= X ′
(
X ′

2
+

2(a4 − 6a2 + 1)

(a2 + 1)2
X ′ + 1

)
(21)

given by

X ′ =
2(a2 + 1)Y 2

((a2 + 1)X − 2a2)2
, Y ′ =

23/2Y

(a2 + 1)3/2

(
1 +

a2(a2 − 1)2

((a2 + 1)X − 2a2)2

)
.

Note that (21) is the Weierstrass form of Boyd’s curve P1,k(x′, y′) = 0, where k = 4(a2 − 1)/
(a2 + 1). We record here some relevant relations between the points that we have discussed in
Section 3:

ϕ(P ) = ϕ(Q) = P ′ = 2S′±

and

ϕ(S+) = ϕ(T+) = S′+, ϕ(S−) = ϕ(T−) = S′−.

Our principal task in this section is to prove a weaker version of Theorem 2. This proof
enriches us with crucial understanding of tame symbols that will be needed in Section 7 as well
as clarifies the relationship between y and y±. Theorem 2 will be proven completely in Section
6.

Proposition 2. Under the above rationality conditions for a, c, together with (14), there
exists p ∈ (1/8)Z such that

1

2π

∫
[S−,S+]

η(x, y) =
1

8π

∫
[S′−,S

′
+]

η(x′, y′) + p log a, (22)

1

2π

∫
[T−,T+]

η(x, y) =
1

8π

∫
[S′−,S

′
+]

η(x′, y′) + (p− 1) log a. (23)

In what follows we only discuss the equality (22) as the second one is the immediate
consequence of the expressions (17), (18) and Lemma 1. The apparent sign discrepancy between
the above equations and the expected relationships with m±(Pa,c) = m(y − y±) lies in the fact
that we have y instead of y±. To go from y to y− one must either take y− = y or y− = 1/y and
they are different choices for [S−, S+] and [T−, T+]; see Remark 4 later in this section.

Remark 3. The expression (19) for m(Pa,c) when a = 1 as well as formulas (17) and (18)
show that Proposition 2 is indeed a weaker version of Theorem 2: the rational p is specified in
the latter to be 3/4. The integrality of 8p guaranteed by Proposition 2 gives, in fact, a practical
recipe to compute the number by providing a simple numerical approximation to p; however
the latter has to be done for each particular choice of a, c— the proposition does not guarantee
that the integer p is independent of the parameters.

Before proceeding with the proof of Proposition 2 we recall the following simple fact about
the image of tame symbols under an isogeny.



FURTHER EXPLORATIONS OF BOYD’S CONJECTURES Page 11 of 20

Lemma 4. Let E and E′ be elliptic curves over Q and ϕ : E → E′ an isogeny. Let R be a
point of E(C) and R′ = ϕ(R) its image on E′. For x, y ∈ Q(E′), we have x ◦ ϕ, y ◦ ϕ ∈ Q(E)
and

(x ◦ ϕ, y ◦ ϕ)R = (x, y)R′ .

Proof. By definition,

(x ◦ ϕ, y ◦ ϕ)R = (−1)vR(x◦ϕ)vR(y◦ϕ) (x ◦ ϕ)vR(y◦ϕ)

(y ◦ ϕ)vR(x◦ϕ)

∣∣∣∣
R

(using vR(x ◦ ϕ) = vR′(x) and vR(y ◦ ϕ) = vR′(y))

= (−1)vR′ (x)vR′ (y)
(x ◦ ϕ)vR′ (y)

(y ◦ ϕ)vR′ (x)

∣∣∣∣
R

= (−1)vR′ (x)vR′ (y)
(x)vR′ (y)

(y)vR′ (x)

∣∣∣∣
R′

= (x, y)R′ .

Corollary 2. Under hypothesis (14), the tame symbols (x′ ◦ ϕ, y′ ◦ ϕ)v are trivial and
{x′ ◦ ϕ, y′ ◦ ϕ} ∈ K2(Ea,c).

Proof. The triviality of the tame symbol {x′, y′} inK2(Q(E1,k)), where k = 4(a2 − 1)/(a2 +
1), follows from the fact that the polynomial P1,k is tempered (see Section 4). It remains to
apply the isogeny ϕ and Lemma 4.

Proof of Proposition 2. Condition 14 and the computation in Section 3 imply that the
points S±, T± all have order 8. As shown in Section 4, the divisors of (x) and (y) are supported
at the points P , −Q, P +Q and O on the curve Ea,c, while their diamond operation is given
in (20).

Since the isogeny ϕ sends the endpoints of the paths [S−, S+] and [T−, T+] in Ea,c to the
endpoints of [S′−, S

′
+] in E1,k and the tame symbols (x′, y′)R and (x′ ◦ ϕ, y′ ◦ ϕ)R are trivial,

we can write
1

2π

∫
[S−,S+]

η(x′ ◦ ϕ, y′ ◦ ϕ) =
1

2π

∫
[S′−,S

′
+]

η(x′, y′),

1

2π

∫
[T−,T+]

η(x′ ◦ ϕ, y′ ◦ ϕ) =
1

2π

∫
[S′−,S

′
+]

η(x′, y′).

In addition, applying the isogeny we discover that

(x′ ◦ ϕ) � (y′ ◦ ϕ) = 16(P ) + 16(Q) = 4(x) � (y).

Using now Lemma 3 we obtain

1

2π

∫
[S−,S+]

η(x, y) =
q

2π
DEa,c

(
(x) � (y)

)
+ p log a

=
q

2π
· 1

4
DEa,c

(
(x′ ◦ ϕ) � (y′ ◦ ϕ)

)
+ p log a

=
q

8π

∫
[S−,S+]

η(x′ ◦ ϕ, y′ ◦ ϕ) + p log a

=
1

8π

∫
[S′−,S

′
+]

η(x′, y′) + p log a

with p ∈ (1/8)Z. As noticed earlier, equality (23) follows from (22) and Lemma 1.
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Remark 4. As observed at the end of Section 3, as x→ 0 and x→∞, we have y+ → 0 and
y− →∞, respectively. Here we see that the condition x→ 0,∞ is satisfied over P,−Q,P +Q
and O. However, we see that y → 0 for −Q and O while y →∞ for P and P +Q. Because of
this, we cannot establish a connection between y and y± for the entire set of points in Ea,c.
As defined in equations (13), S± and T± have y-coordinate with absolute value 1, which in
principle can be interpreted as either y+ or y−. Combining the equations in Proposition 2
shows that y = y+ over [S−, S+] while y = y− over [T−, T+].

6. Relations of elliptic integrals

In this section we establish Theorem 2 by differentiation with respect to the continuous real
parameter a > 1.

The following two auxiliary results about elliptic integrals precede our proof.

Lemma 5. For v real, 1 < v <
√

2, the following equality is valid:∫1
3−2v2

dT√
(1− T 2)(T + 2v2 − 1)(T + 2v2 − 3)

=

∫1
(
√
2−v2−v2+1)/v

dt√
(1− t2)(v2t2 + 2(v2 − 1)vt+ v4 − v2 − 1)

.

Proof. By L and R denote the integrals on the left- and right-hand sides of the identity to
be shown. We will make use of the quadratic transformation [1, Eq. (3.1.11)]

F

(
4z

(1 + z)2

)
= (1 + z)F (z2)

of the hypergeometric function

F (z) = 2F1

(
1
2 ,

1
2

1

∣∣∣∣ z) =

∞∑
n=0

(
2n

n

)2(
z

16

)n
=

2

π

∫1
0

dx√
(1− x2)(1− zx2)

.

The substitution

T =
(v2 − 1)x2 + 3− 2v2

(1− v2)x2 + 1

in the integral defining L translates it into

L =

∫1
0

dx√
(1− x2)(1− (v2 − 1)2x2)

=
π

2
F
(
(v2 − 1)2

)
.

Similarly, the substitution

t =
β(α− 1)x2 + α(1− β)

(α− 1)x2 + 1− β
, (24)

with

α =

√
2− v2 − v2 + 1

v
and β =

−
√

2− v2 − v2 + 1

v
,

in the integral for R results in

R =
2√

1 + 2v
√

2− v2 + 2v2 − v4

∫1
0

dx√
(1− x2)(1− w2x2)

=
πF (w2)√

1 + 2v
√

2− v2 + 2v2 − v4
,
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where

w =
1− 2v

√
2− v2 + 2v2 − v4

(v2 − 1)2
.

Since

4w

(1 + w)2
= (v2 − 1)2 and 1 + w =

2√
1 + 2v

√
2− v2 + 2v2 − v4

,

it follows from the quadratic transformation given above that R = L.

Lemma 6. For v real, 1 < v <
√

2, we have

v

∫1
(
√
2−v2−v2+1)/v

(2t+ v) dt√
(1− t2)(v2t2 + 2(v2 − 1)vt+ v4 − v2 − 1)

=
3π

2
.

Proof. Our goal is to convert the elliptic integral on the left-hand side into its Legendre
canonical form, that is, to express it through the standard elliptic integrals

K(z) =

∫1
0

dx√
(1− x2)(1− z2x2)

, E(z) =

∫1
0

√
1− z2x2√
1− x2

dx,

Π(n, z) =

∫1
0

dx

(1− nx2)
√

(1− x2)(1− z2x2)
,

and then to compute the derivative. The complete elliptic integrals are hypergeometric
functions, Π(n, z) is a two-variable Appell F1 hypergeometric function, and it is classically
known that all their (partial) derivatives are given by means of themselves [15, Chapter 19].
In particular,

d

dz
K(z) =

1

z(1− z2)
E(z)− 1

z
K(z),

∂

∂n
Π(n, z) =

nE(z) + (z2 − n)K(z) + (n2 − z2)Π(n, z)

2n(n− 1)(z2 − n)
,

∂

∂z
Π(n, z) =

z

(z2 − 1)(n− z2)
(E(z) + (z2 − 1)Π(n, z)).

Denote the integral on the left-hand side of the required equality by L and employ the
notation from the proof of Lemma 5. We again start with the substitution (24) to express L as

L =
2v√

1 + 2v
√

2− v2 + 2v2 − v4

∫1
0

(
2

(
β +

(α− β)(β − 1)

(β − 1)− (α− 1)x2

)
+ v

)
dx√

(1− x2)(1− w2x2)

=
2v√

1 + 2v
√

2− v2 + 2v2 − v4

(
(2β + v)K(w) + 2(α− β)Π

(
α− 1

β − 1
, w

))
.

Since v ranges between 1 and
√

2, it is immediate that w ∈ (0, 1). Letting r =
√
w, we can

manipulate the last expression above to get

L = (1− r)
(
(1− r − 2

√
r2 + 1)K(r2) + 4

√
r2 + 1 Π(f(r), r2)

)
, (25)
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where f(r) = r(
√
r2 + 1 + 1)(

√
r2 + 1− r). To compute the derivative of L on the interval (0, 1)

we apply the chain rule and the above formulas for differentiation:

d

dr
K(r2) =

2

r(1− r4)
E(r2)− 2

r
K(r2),

d

dr
Π(f(r), r2) =

(
f ′(r)

2(f(r)− 1)(r4 − f(r))
+

2r3

(r4 − 1)(f(r)− r4)

)
E(r2)

+
f ′(r)

2f(r)(f(r)− 1)
K(r2) +

(
(f(r)2 − r4)f ′(r)

2f(r)(f(r)− 1)(r4 − f(r))
+

2r3

f(r)− r4

)
Π(f(r), r2).

This tedious computation results in dL/dr = 0, hence L must be constant on (0, 1).
By taking the limits of the both sides in (25) as r → 0+, one sees immediately that

L = −K(0) + 4Π(0, 0) = −π
2

+
4π

2
=

3π

2
,

as required.

Proof of Theorem 2. Since this is true as a→ 1+, it is sufficient to establish the equality
of the derivatives of both sides of (6) with respect to a.

Under the constraint (14) we take

a =
u2 + 2u− 1

u2 − 2u− 1
,

c

2
=

a2 − 1√
2(a2 + 1)

=
4u(u2 − 1)

(u2 + 1)(u2 − 2u− 1)
, where u >

√
2 + 1,

so that

t− = −1 + c/2

a
= − u4 + 2u3 − 6u− 1

(u2 + 1)(u2 + 2u− 1)
, t+ =

1− c/2
a

=
u4 − 6u3 + 2u− 1

(u2 + 1)(u2 + 2u− 1)
,

and differentiate (9), (10) with respect to the parameter u (also using that |y−(t+)| =
|y+(t−)| = 1):

∂m−(Pa,c)

∂u
= − (u2 + 1)3J− + (u2 + 2u− 1)(u4 − 2u3 + 2u2 + 2u+ 1)I

(u2 + 1)2(u4 − 6u2 + 1)
,

∂m+(Pa,c)

∂u
=

(u2 + 1)3J+ + (u2 + 2u− 1)(u4 − 2u3 + 2u2 + 2u+ 1)I

(u2 + 1)2(u4 − 6u2 + 1)
,

where

J− =
4

π

∫1
t+

tdt√
(1− t2)(t− t−)(t− t+)

, J+ =
4

π

∫ t−
−1

tdt√
(1− t2)(t− t−)(t− t+)

,

I =
4

π

∫1
t+

dt√
(1− t2)(t− t−)(t− t+)

=
4

π

∫ t−
−1

dt√
(1− t2)(t− t−)(t− t+)

.

The latter equality is the standard relation of the two real periods on an elliptic curve and we
also have

J− − J+ = 4 (26)

from differentiating identity (7) with respect to a.
Letting k = 4(a2 − 1)/(a2 + 1), we have

k

2
=

2(a2 − 1)

a2 + 1
=

8u(u2 − 1)

(u2 + 1)2
,

implying, on the basis of (9),

∂m(P1,k)

∂u
= −u

4 − 6u2 + 1

(u2 + 1)3
K,
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where

K =
8

π

∫1
1−k/2

dT√
(1− T 2)(T + k/2− 1)(T + k/2 + 1)

.

To establish (6) we need to prove that the derivatives of the both sides agree:

u4 − 6u2 + 1

(u2 + 1)3
K =

(u2 + 1)3(J− + 3J+) + 4(u2 + 2u− 1)(u4 − 2u3 + 2u2 + 2u+ 1)I

(u2 + 1)2(u4 − 6u2 + 1)
, (27)

while the latter equality follows from

K =
2(u2 + 1)

u2 + 2u− 1
I, (28)

J− + 3J+ = −2(u2 + 2u− 1)

u2 + 1
I. (29)

By switching the parameter u >
√

2 + 1 to v = (u2 + 2u− 1)/(u2 + 1), which ranges from 1
to
√

2, we can write

(t− t−)(t− t+) = t2 +
2(v2 − 1)

v
t+

v4 − v2 − 1

v2
,

k

2
= 2(v2 − 1),

so that

K =
8

π

∫1
3−2v2

dT√
(1− T 2)(T + 2v2 − 1)(T + 2v2 − 3)

,

u2 + 1

u2 + 2u− 1
I =

4

π

∫1
(
√
2−v2−v2+1)/v

dt√
(1− t2)(v2t2 + 2(v2 − 1)vt+ v4 − v2 − 1)

,

hence equality (28) follows from Lemma 5. The change of the parameter in the integrals defining
J− and J+ together with relation (26) and Lemma 6 show that equality (29) is true as well.
This establishes the equality of the derivatives (27) and concludes the proof of Theorem 2.

7. Ramanujan’s modular parametrization

In this section we prove Theorem 3.
A particular entry of Ramanujan’s notebooks [3, p. 236, Entry 68] says that

AB +
7

AB
=

(
A

B

)2

+

(
B

A

)2

− 3,

where A = A(τ) = η(τ)/η(7τ) and B = B(τ) = A(3τ), and η(τ) denotes the Dedekind eta
function. (We believe that this other eta notation does not cause any confusion with (16) as it
depends here on a single variable.) We can interpret Ramanujan’s equation as the modular-unit
parametrization

x = x̃(τ) =
1√
7

η(τ)η(3τ)

η(7τ)η(21τ)
=

1√
7
g1(τ)g2(τ)g23(τ)g4(τ)g5(τ)g26(τ)g8(τ)g29(τ)g10(τ),

y = ỹ(τ) = −
(
η(τ)η(21τ)

η(3τ)η(7τ)

)2

= −(g1(τ)g2(τ)g4(τ)g5(τ)g8(τ)g10(τ))2
(30)

of the elliptic curve P√7,3(x, y) = 0 of conductor 21, where

ga(τ) = q21B2(a/21)/2
∏
n≥1

n≡a mod 21

(1− qn)
∏
n≥1

n≡−a mod 21

(1− qn), q = e2πiτ ,

are level 21 modular units, and B2(x) = x2 − x+ 1/6 is the second Bernoulli polynomial.
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From here on, we let

x0(τ) =
√

7 x̃(τ) = g1(τ)g2(τ)g23(τ)g4(τ)g5(τ)g26(τ)g8(τ)g29(τ)g10(τ).

The rest of this section is devoted to proving Theorem 3.

Lemma 7. The following identity is true:

m−(P√7,3) =
1

2π

∫ i∞
2/7

η(x0(τ), ỹ(τ)).

Proof. Note that for the four CM points on the upper half-plane,

τ± =
∓9 +

√
−3

42
and τ ′± =

∓9 +
√
−3

21
,

we have

(x̃(τ±), ỹ(τ±)) = S̄± and (x̃(τ ′±), ỹ(τ ′±)) = T̄±,

where the latter points (13) lie on the elliptic curve P√7,3(x, y) = 0.
The Atkin–Lehner involution

W21 =
1√
21

(
0 −1
21 0

)
acts on the modular functions as follows [9, Corollary 2.2]: x̃(τ) 7→ 1/x̃(τ) and ỹ(τ) 7→ ỹ(τ). In
addition, W21τ± = τ∓ and W21τ

′
± = 1

4τ
′
∓.

Consider the geodesic [τ−, τ+] in X0(21). All the points in this path have norm 1/21.
Therefore, the involution W21 sends each point τ to −1/(21τ) = −τ on the geodesic and also
reverses the orientation. In particular, the image of (x̃, ỹ) along the path [τ−, τ+] is the complex
conjugated curve (x̃, ỹ). On the other hand, W21 sends (x̃, ỹ) to (1/x̃, ỹ) meaning that we have
|x̃| = 1 and ỹ real along the geodesic [τ−, τ+] in X0(21). This implies that the path corresponds
to [S−, S+] on the elliptic curve. Evaluating ỹ in the middle point of the geodesic τ = i/

√
21

gives a number of absolute value less than 1 and shows that ỹ corresponds to y+ (that is, to
1/y−) along the path.

In other words, we can write

m−(P√7,3) =
1

2πi

∫
|x|=1

log+ |y−(x)|dx
x

= − 1

2π

∫
[S−,S+]

η(x, y−)

=
1

2π

∫
[τ−,τ+]

η(x̃(τ), ỹ(τ)) =
1

2π

∫
[τ−,τ+]

η(x0(τ), ỹ(τ)),

where in the last manipulation we use the fact that ỹ is real along the path.
Our goal is to integrate by choosing paths that avoid the singularities with non-trivial residue.

Let us first compute the tame symbol at each point involved in our integrals. This can be done
directly from the tame symbol computations in Lemma 2. The relationship between the tame
symbols at a point R is given by

(x0, ỹ)R ≡
x
vR(ỹ)
0

ỹvR(x0)
modMR ≡

(
√

7x)vR(y)

yvR(x)
modMR

=
√

7
vR(y)

(x, y)R,

where an ambiguity in setting ỹ(τ) = y is compensated later by making the correspondence
between points in the Weierstrass form and values of τ . Thus,

|(x0, ỹ)P | =
1

7
, |(x0, ỹ)−Q| = 1, |(x0, ỹ)P+Q| = 1, |(x0, ỹ)O| = 7.
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Similarly,

|(x0/7, ỹ)P | = 1, |(x0/7, ỹ)−Q| =
1

7
, |(x0/7, ỹ)P+Q| = 7, |(x0/7, ỹ)O| = 1.

Note that τ = i∞ yields x̃(τ)→∞ and ỹ(τ)→ 0. Equating ỹ(τ) to y we obtain that τ = i∞
corresponds to −Q. Similarly, τ = 0 yields O, and τ = 2/7 yields P +Q. Thus, there are
nontrivial residue singularities for η(x0(τ), ỹ(τ)) at τ = 0 and similarly for η(x0(τ)/7, ỹ(τ)) at
τ = i∞ and 2/7.

The other Atkin–Lehner involution

W7 =
1√
7

(
7 2
21 7

)
acts on the modular functions as follows [9, Corollary 2.2]: x̃(τ) 7→ 1/x̃(τ), x0(τ) 7→ 7/x0(τ),
and ỹ(τ) 7→ 1/ỹ(τ), so that

η(x0(W7τ), ỹ(W7τ)) = η(x0(τ)/7, ỹ(τ)).

Furthermore, W7τ+ = τ− and W7τ
′
+ = τ ′−.

We remark that W7(0) = 2/7. Therefore, we have∫
[τ−,τ+]

η(x0(τ), ỹ(τ)) =

∫2/7
τ−

η(x0(τ), ỹ(τ)) +

∫ τ+
2/7

η(x0(τ), ỹ(τ))

=

∫W−1
7 (2/7)

W−1
7 τ−

η(x0(W7(τ)), ỹ(W7(τ))) +

∫ τ+
2/7

η(x0(τ), ỹ(τ))

=

∫0
τ+

η(x0(τ)/7, ỹ(τ)) +

∫ τ+
2/7

η(x0(τ), ỹ(τ))

=

∫ i/√21

τ+

η(x0(τ)/7, ỹ(τ)) +

∫0
i/
√
21

η(x0(τ)/7, ỹ(τ)) +

∫ τ+
2/7

η(x0(τ), ỹ(τ)).

Observe that ỹ is real on the geodesic [τ+, i/
√

21], and the same is true on the imaginary axis
iR+. Moreover, x0 and x0/7 are also real on iR+. Thus,∫ i/√21

τ+

η(x0(τ)/7, ỹ(τ)) =

∫ i/√21

τ+

η(x0(τ), ỹ(τ)),

∫0
i/
√
21

η(x0(τ)/7, ỹ(τ)) = 0,

and ∫ i∞
i/
√
21

η(x0(τ), ỹ(τ)) = 0.

Continuing the earlier computation we obtain∫ τ+
τ−

η(x0(τ), ỹ(τ)) =

∫ i/√21

τ+

η(x0(τ), ỹ(τ)) +

∫ i∞
i/
√
21

η(x0(τ), ỹ(τ)) +

∫ τ+
2/7

η(x0(τ), ỹ(τ))

=

∫ i∞
2/7

η(x0(τ), ỹ(τ)),

as desired.

Lemma 8. We have

1

2π

∫ i∞
2/7

η(x0(τ), ỹ(τ)) =
1

2
L′(f21, 0) +

3

8
log 7.
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Proof. By equations (30) and [20, Theorem 1] we have∫ i∞
2/7

η(x0(τ), ỹ(τ)) =
1

π
L(f, 2), (31)

where

f(τ) = 12q + 15q2 + 12q3 + 42q4 + · · ·

=
21

4
f21(τ) +

9

32
(96− E2(τ) + 3E2(3τ) + 49E2(7τ)− 147E2(21τ))

and

E2(τ) = 1− 24
∑
k,l>0

kqkl

is the (normalized) logarithmic derivative of the Dedekind eta function.
Let us compute L(g, s), where g(τ) = 96− E2(τ) + 3E2(3τ) + 49E2(7τ)− 147E2(21τ). It

follows immediately from the definition of E2(mτ) that

L(g, s) = −24

(
−1 +

3

3s
+

49

7s
− 147

21s

) ∑
k,l>0

1

ks−1ls

= −24

(
−1 +

3

3s
+

49

7s
− 147

21s

)
ζ(s− 1)ζ(s).

Computing the related Laurent series expansions we get

−1 +
3

3s
+

49

7s
− 147

21s
∼ −2 log 7

3
(s− 2) and ζ(s− 1) ∼ 1

s− 2

as s→ 2. Hence

L(g, 2) =
π2

6
lim
s→2

(
−24

(
−1 +

3

3s
+

49

7s
− 147

21s

)
ζ(s− 1)

)
=

8π2

3
log 7. (32)

Finally, plugging (32) into (31) yields

1

2π

∫ i∞
2/7

η(x0(τ), ỹ(τ)) =
21

8π2
L(f21, 2) +

3

8
log 7 =

1

2
L′(f21, 0) +

3

8
log 7,

as required.

Combining the results of Lemmas 7 and 8 we arrive at the conclusion of Theorem 3. This
leads to the evaluation (1).

8. Conclusion

Many other cases exist, not covered by our Theorem 1, where the Mahler measures m(Pa,b,c)
can be identified as Q-linear combinations of the corresponding L-value and logarithm. Many
other instances of similar evaluations of the “half-Mahler” measures m−(Pa,c) and m+(Pa,c)
show up, not covered by our Theorem 2. Such examples are generated on demand by numerical
computation, and the majority of them sound pretty ugly (in terms of coefficients in the rational
combination). There are however some interesting subfamilies that are worth mentioning as
they can be potentially useful in establishing other conjectural evaluations of Mahler measures.

First, Theorem 2 can be generalized further to include k > 4. Besides the numerical
evidence for that, this is strongly supported by the claims in Sections 3–5, in particular, by
Proposition 2 — the results independent of the constraint 0 < k < 4. On the other hand, the
auxiliary statements in Section 6 must be revisited for k > 4.
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Second, the special case (15) noticed in Section 3 corresponds to an isomorphism between
the curve Pa,a2−1(x, y) = 0 and a curve from another family of Boyd in [6], namely, the elliptic
curve

(1 + x′)(1 + y′)(x′ + y′)− (a2 − 1)x′y′ = 0.

It is given by

x′ =
x(ax+ y + a2 − 1)

x+ ay
, y′ = −x(ax+ y)

x+ ay
.

The isomorphism corresponds to the following simple relation between the corresponding (full)
Mahler measures: for every a ≥ 1

m
(
(1 + x)(1 + y)(x+ y)− (a2 − 1)xy

)
=

3

2
m(Pa,a2−1)− log a,

and this can be shown by the techniques similar to that in Section 6. Note that m+(Pa,a2−1) =
0, hence m−(Pa,a2−1) = m(Pa,a2−1) in this case.

Furthermore, we would like to mention that Boyd himself had the idea of an intelligent split
of the Mahler measure of a 3-variate polynomial into pieces. The details of this story, including
the original conjectures and partial results on their resolution, can be found in [12].

Finally, we believe that the results in this paper substantiate the importance of study of the
associated Mahler measures of parametric families that do not happen to be tempered.
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