Functional equations for Mahler measures of genus-one curves

(joint with Mat Rogers) Matilde N. Lalín

UBC-PIMS, MPIM, U of A
mlalin@math.ubc.ca
http://www.math.ubc.ca/~mlalin
July 5th, 2007

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}} .
\end{aligned}
$$

By Jensen's formula,

Mahler measure of several variable polynomials

$P \in \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$, the (logarithmic) Mahler measure is :

$$
\begin{aligned}
m(P) & =\int_{0}^{1} \ldots \int_{0}^{1} \log \left|P\left(\mathrm{e}^{2 \pi \mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{2 \pi \mathrm{i} \theta_{n}}\right)\right| \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} \\
& =\frac{1}{(2 \pi \mathrm{i})^{n}} \int_{\mathbb{T}^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{\mathrm{d} x_{1}}{x_{1}} \ldots \frac{\mathrm{~d} x_{n}}{x_{n}} .
\end{aligned}
$$

By Jensen's formula,

$$
m\left(a \prod\left(x-\alpha_{i}\right)\right)=\log |a|+\sum \log \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

Examples in several variables

Smyth (1981)

$$
\begin{gathered}
m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(\chi_{-3}, 2\right)=\mathrm{L}^{\prime}\left(\chi_{-3},-1\right) \\
m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)
\end{gathered}
$$

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} elliptic curve, projective closure of

Deninger (1997)
L-functions \leftarrow Bloch-Beilinson's conjectures

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} elliptic curve, projective closure of

$$
x+\frac{1}{x}+y+\frac{1}{y}+k=0
$$

Deninger (1997)
L-functions \leftarrow Bloch-Beilinson's conjectures

The measures of a family of genus-one curves

$$
m(k):=m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right)
$$

Boyd (1998)

$$
m(k) \stackrel{?}{=} \frac{L^{\prime}\left(E_{k}, 0\right)}{s_{k}} \quad k \in \mathbb{N} \neq 0,4
$$

E_{k} elliptic curve, projective closure of

$$
x+\frac{1}{x}+y+\frac{1}{y}+k=0
$$

Deninger (1997)
L-functions \leftarrow Bloch-Beilinson's conjectures

Rodriguez-Villegas (1997)
$k=4 \sqrt{2}$ (CM case)

$$
m(4 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+4 \sqrt{2}\right)=\mathrm{L}^{\prime}\left(E_{4 \sqrt{2}}, 0\right)
$$

(By Bloch)
$k=3 \sqrt{2}\left(\right.$ modular curve $\left.X_{0}(24)\right)$

$$
\begin{gathered}
m(3 \sqrt{2})=m\left(x+\frac{1}{x}+y+\frac{1}{y}+3 \sqrt{2}\right)=q \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right) \\
q \in \mathbb{Q}^{*}, \quad q \stackrel{?}{=} \frac{5}{2}
\end{gathered}
$$

(By Beilinson)
L. \& Rogers (2007)

For $|h|<1, h \neq 0$,

$$
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
$$

Kurokawa \& Ochiai (2005)
For $h \in \mathbb{R}^{*}$,

$$
m\left(4 h^{2}\right)+m\left(\frac{4}{h^{2}}\right)=2 m\left(2\left(h+\frac{1}{h}\right)\right) .
$$

$h=\frac{1}{\sqrt{2}}$ in both equations, and using K-theory,
Corollary

$$
m(8)=4 m(2)=\frac{8}{5} m(3 \sqrt{2})=4 \mathrm{~L}^{\prime}\left(E_{3 \sqrt{2}}, 0\right)
$$

Regulators and Mahler measures

By Jensen's formula,

$$
\begin{aligned}
m(k) & =\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\mathbb{T}^{2}} \log \left|x+\frac{1}{x}+y+\frac{1}{y}+k\right| \frac{\mathrm{d} x}{x} \frac{\mathrm{~d} y}{y} \\
& =\frac{1}{2 \pi \mathrm{i}} \int_{\mathbb{T}^{1}} \log |y| \frac{\mathrm{d} x}{x}=-\frac{1}{2 \pi} \int_{\mathbb{T}^{1}} \eta(x, y) \\
& \eta(x, y):=\log |x| \operatorname{di} \arg y-\log |y| \operatorname{di} \arg x
\end{aligned}
$$

Regulator map (Beilinson, Bloch):

$$
\begin{aligned}
& r: K_{2}(E) \otimes \mathbb{Q} \rightarrow H^{1}(E, \mathbb{R}) \\
& \{x, y\} \rightarrow\left\{\gamma \rightarrow \int_{\gamma} \eta(x, y)\right\}
\end{aligned}
$$

for $\gamma \in H_{1}(E, \mathbb{Z})$.
Need integrality conditions, trivial tame symbols...

Computing the regulator

$$
\begin{array}{ll}
& E(\mathbb{C}) \cong \mathbb{C} / \mathbb{Z}+\tau \mathbb{Z} \\
\mathbb{Z}[E(\mathbb{C})]^{-}=\mathbb{Z}[E(\mathbb{C})] / \sim \quad & {[-P] \sim-[P] .} \\
& R_{\tau}: \mathbb{Z}[E(\mathbb{C})]^{-} \rightarrow \mathbb{C} .
\end{array}
$$

R_{T} is a Kronecker-Eisenstein series.

$$
R_{\tau}=D_{\tau}-\mathrm{i} \mathrm{~J}_{\tau}
$$

D_{τ} is the elliptic dilogarithm.

Proposition

E / \mathbb{R} elliptic curve, x, y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^{1}$

$$
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}\left((x)^{-} *(y)\right)\right)
$$

where Ω_{0} is the real period and $\Omega=\int_{\gamma} \omega$.
Use results of Beilinson, Bloch, Deninger

Proposition

E / \mathbb{R} elliptic curve, x, y are non-constant functions in $\mathbb{C}(E)$ with trivial tame symbols, $\omega \in \Omega^{1}$

$$
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}\left((x)^{-} *(y)\right)\right)
$$

where Ω_{0} is the real period and $\Omega=\int_{\gamma} \omega$.
Use results of Beilinson, Bloch, Deninger

$$
\begin{gathered}
(x)=\sum m_{i}\left(a_{i}\right), \quad(y)=\sum n_{j}\left(b_{j}\right) \\
\mathbb{C}(E)^{*} \otimes \mathbb{C}(E)^{*} \rightarrow \mathbb{Z}[E(\mathbb{C})]^{-} \\
(x)^{-} *(y)=\sum m_{i} n_{j}\left(a_{i}-b_{j}\right) .
\end{gathered}
$$

Idea of Proof

Modular elliptic surface associated to $\Gamma_{0}(4)$

$$
\begin{gathered}
x+\frac{1}{x}+y+\frac{1}{y}+k=0 \\
(x)^{-} *(y)=8(P),
\end{gathered}
$$

P torsion point of order 4.

$$
\begin{gathered}
P \equiv-\frac{1}{4} \quad \bmod \mathbb{Z}+\tau \mathbb{Z} \quad k \in \mathbb{R} \\
\tau=\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|>4 \\
\tau=\frac{1}{2}+\mathrm{i} y_{\tau} \quad k \in \mathbb{R},|k|<4
\end{gathered}
$$

Understand cycle $[|x|=1] \in H_{1}(E, \mathbb{Z})$

$$
\begin{gathered}
\Omega=\tau \Omega_{0} \quad k \in \mathbb{R} \\
-\int_{\gamma} \eta(x, y)=\operatorname{Im}\left(\frac{\Omega}{y_{\tau} \Omega_{0}} R_{\tau}\left((x)^{-} *(y)\right)\right) \\
m(k)=\frac{4}{\pi} \operatorname{Im}\left(\frac{\tau}{y_{\tau}} R_{\tau}(-i)\right), \quad k \in \mathbb{R}
\end{gathered}
$$

Theorem

(Rodriguez-Villegas)

$$
\begin{aligned}
m(k) & =\operatorname{Re}\left(\frac{16 y_{\mu}}{\pi^{2}} \sum_{m, n}^{\prime} \frac{\chi_{-4}(m)}{(m+n 4 \mu)^{2}(m+n 4 \bar{\mu})}\right) \\
& =\operatorname{Re}\left(-\pi \mathrm{i} \mu+2 \sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-4}(d) d^{2} \frac{q^{n}}{n}\right)
\end{aligned}
$$

where $j\left(E_{k}\right)=j\left(-\frac{1}{4 \mu}\right)$

$$
q=\mathrm{e}^{2 \pi \mathrm{i} \mu}=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

and y_{μ} is the imaginary part of μ.

Functional equations

Functional equations of the regulator

$$
\begin{gathered}
J_{4 \mu}\left(\mathrm{e}^{2 \pi \mathrm{i} \mu}\right)=2 J_{2 \mu}\left(\mathrm{e}^{\pi \mathrm{i} \mu}\right)+2 J_{2(\mu+1)}\left(\mathrm{e}^{\frac{2 \pi \mathrm{i}(\mu+1)}{2}}\right) \\
\frac{1}{y_{4 \mu}} J_{4 \mu}\left(\mathrm{e}^{2 \pi \mathrm{i} \mu}\right)=\frac{1}{y_{2 \mu}} J_{2 \mu}\left(\mathrm{e}^{\pi \mathrm{i} \mu}\right)+\frac{1}{y_{2 \mu}} J_{2 \mu}\left(-\mathrm{e}^{\pi \mathrm{i} \mu}\right)
\end{gathered}
$$

$$
q=q\left(\frac{16}{k^{2}}\right)=\exp \left(-\pi \frac{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1,1-\frac{16}{k^{2}}\right)}{{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1, \frac{16}{k^{2}}\right)}\right)
$$

Second degree modular equation, $|h|<1, h \in \mathbb{R}$,

$$
q^{2}\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(h^{4}\right) .
$$

$h \rightarrow \mathrm{i} h$

$$
-q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)=q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right) .
$$

Then the equation with J becomes

$$
\begin{gathered}
m\left(q\left(\left(\frac{2 h}{1+h^{2}}\right)^{2}\right)\right)+m\left(q\left(\left(\frac{2 \mathrm{i} h}{1-h^{2}}\right)^{2}\right)\right)=m\left(q\left(h^{4}\right)\right) . \\
m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i} h+\frac{1}{\mathrm{i} h}\right)\right)=m\left(\frac{4}{h^{2}}\right) .
\end{gathered}
$$

Direct approach

Also some equations can be proved directly using isogenies:

$$
\begin{gathered}
\phi_{1}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{4 h^{2}}, \quad \phi_{2}: E_{2\left(h+\frac{1}{h}\right)} \rightarrow E_{\frac{4}{h^{2}}} . \\
\phi_{1}:(X, Y) \rightarrow\left(\frac{X\left(h^{2} X+1\right)}{X+h^{2}},-\frac{h^{3} Y\left(X^{2}+2 h^{2} X+1\right)}{\left(X+h^{2}\right)^{2}}\right) \\
m\left(4 h^{2}\right)=r_{1}\left(\left\{x_{1}, y_{1}\right\}\right)=\frac{1}{2 \pi} \int_{\left|X_{1}\right|=1} \eta\left(x_{1}, y_{1}\right) \\
=\frac{1}{4 \pi} \int_{|X|=1} \eta\left(x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right)=\frac{1}{2} r\left(\left\{x_{1} \circ \phi_{1}, y_{1} \circ \phi_{1}\right\}\right)
\end{gathered}
$$

Other families

- Hesse family

$$
h\left(a^{3}\right)=m\left(x^{3}+y^{3}+1-\frac{3 x y}{a}\right)
$$

(studied by Rodriguez-Villegas 1997)

$$
h\left(u^{3}\right)=\sum_{j=0}^{2} h\left(1-\left(\frac{1-\xi_{3}^{j} u}{1+2 \xi_{3}^{j} u}\right)^{3}\right) \quad|u| \text { small }
$$

- More complicated equations for examples studied by Stienstra 2005:

$$
m\left((x+1)(y+1)(x+y)-\frac{x y}{t}\right)
$$

and Bertin 2004, Zagier <2005, and Stienstra 2005:

$$
m\left((x+y+1)(x+1)(y+1)-\frac{x y}{t}\right)
$$

